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 The Inventory Routing Problem (IRP) has been highlighted as a valuable strategy for tackling 
routing and inventory problems. This paper addresses the IRP but considers the forward delivery 
and the use of Returnable Transport Items (RTIs) in the distribution strategy. We develop an 
optimization model by considering inventory routing decisions with RTIs collection (backhaul 
customers) of a Closed-Loop Supply Chain (CLSC) within a short-term planning horizon. RTIs 
consider reusable packing materials such as trays, pallets, recyclable boxes, or crates. The RTIs 
represent an essential asset for many industries worldwide. The solution of the model allows 
concluding that if RTIs are considered for the distribution process, the relationship between the 
inventory handling costs of both the final goods and RTIs highly determines the overall 
performance of the logistics system under study. The obtained results show the efficiency of the 
proposed optimization scheme for solving the combined IRP with RTIs, which could be applied to 
different real industrial cases. 
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1. Introduction 

 
Returnable transport items (RTIs) are an initiative developed in the '90s to move products between destinations in the supply 
chain, replacing disposable packaging to reduce the environmental impact generated by the inadequate disposal of waste, 
which makes the distribution of products sustainable (Sarkar et al., 2017). RTIs are used for the internal transport of materials, 
components, semi-finished products, and finished products' distribution. RTIs include all means of assembling goods for 
transport, storage, handling, and product protection in the supply chain, which are returned for further usage. The RTIs include 
returnable pallets and all forms of reusable crates, totes, trays, boxes, roll pallets, roll cages, barrels, trolleys, pallet collars, 
racks, lids, and refillable liquid or gas containers (Hellström & Johansson, 2010). A logistical challenge appears related to the 
storage and recovery of these elements. This challenge consists of deciding the period for which the RTIs should stay at the 
customer's facilities and the return process to the supplier's facilities to consider as available to distribute a new product.  RTIs 
generally represent an essential asset to companies today. A single RTI could cost 10 Euros to thousands of Euros (Hellström 
& Johansson, 2010). However, the RTI cost generally does not exceed the holding product cost. RTIs often represent a 
significant capital investment and a considerable cost of holding and transportation. Therefore, it is not usual to leave the RTIs 
to the customer from a practical perspective.  RTI, as its name suggests, should ideally be collected or returned. The RTI is 
mainly collected for two reasons: a) due to the need to use them for future deliveries, and b) due to the difficulty of leaving 
them at the customer's location for a long time, mainly when empty. When a certain amount of RTIs remains in a customer's 
facility, a cost is incurred to manage these inventories, ranging from the cost of the physical space that is occupied to managing 
it for its custody and protection. Johansson & Hellström (2007) mention that there is no adequate management of RTIs and 
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that there is no accounting for these, and even Carrasco-Gallego et al. (2012) showcase loss of RTIs, which are up to 10%. 
As Glock & Kim (2014) state, the benefit obtained using RTIs can be lost if its return is not managed correctly. 
 
The challenge of RTIs management implies, from the cost point of view, minimizing the cost of maintaining inventories and 
the transportation cost of returning them. However, the decision must consider other aspects since the return activity of RTIs 
for their reuse makes the supply chain become a Closed-Loop Supply Chain (CLSC). Under this concept, forward logistics 
decisions are being integrated with reverse logistics. In forward logistics, inventory management decisions have been 
integrated with transportation decisions in the Inventory Routing Problem (IRP) strategy. Some strategies are evaluated for 
reverse logistics decisions, such as first delivery and then pick-up (backhaul), mixed delivery and pick-up, and simultaneous 
delivery and pick-up (Mahjoob et al., 2021). 
 
Londoño et al. (2021a) present a problem integrating the optional backhaul collection of RTIs with final goods distribution 
decisions for a single day. The authors discuss the conflict between paying the penalty for keeping RTIs at the customer's 
facility versus the cost of visiting the customer to pick up empty RTIs. However, broader planning horizons must be considered 
to establish when the RTIs should be collected. The following facts justify the backhaul collection: a) the need to prioritize 
deliveries, b) to avoid cross-contamination of some products, or c) the operation of reorganizing the load at customer facilities 
(Koç & Laporte, 2018). 
 
It is necessary to establish a decision-making process integrating product distribution decisions with RTI collection decisions 
to have a CLSC with the return of RTIs. This integration seeks to minimize the logistics costs for a given planning horizon, 
including delivery costs, RTI collection, and total inventory handling costs (final products and RTIs). In the context of the 
Periodic Vehicle Routing Problem, where routing is planned over a finite time horizon, if the supply chain conditions are 
stable or similar, decisions on a finite horizon could be replicated for planning horizons of equal length in the future. 
This paper seeks to model and optimize the integration of forwarding logistics decisions for the delivery of goods with those 
of reverse logistics for collecting RTIs in closed-loop supply chains for a given planning horizon minimizing the total logistics 
cost of transportation and inventory holding. We introduce the problem and propose a mathematical model based on the 
selection of predefined customer visit programs, which correspond to one, two, three, and six periodic visits to customers for 
delivery or collection. The rest of the paper is organized as follows. Section 2 is devoted to the literature review of the related 
problems of IRP. Section 3 describes the proposed mathematical model with its assumptions and details. The obtained results 
are analyzed in Section 4. Finally, Section 5 describes the concluding remarks. 
 
2. Literature Review 
 
The IRP is a challenging problem integrating two relevant components of supply chain management: inventory management 
and transportation (Campbell et al., 1998). The IRP simultaneously optimizes visit sequence decisions for a set of customers 
and inventory decisions for each node by considering a discrete-time horizon. The IRP aims to determine the routes to satisfy 
the customers' demand and avoid stockouts by considering the minimum total cost. The following decisions are considered: 
i) the period to serve a customer, ii) the amount to be served for each customer, and iii) the routes to be performed. 
 
Several methods have been proposed to model and solve the IRP and its variants. Farias et al. (2019) propose mathematical 
formulations for the IRP. In this work, computational experiments on randomly generated instances have been used to test the 
proposed formulations. Other authors, such as Campbell and Savelsbergh (2004) and Archetti (2007), propose IRP models 
without considering elements of periodic routing. 
 
Reviews of IRP-related aspects have been developed by Coelho et al. (2014a), Malladi and Sowlati (2018), and Thinkaran et 
al. (2019). Coelho et al. (2014a) present an extensive review of thirty years of IRP. The paper's primary goal is to provide a 
comprehensive review of the literature based on a new classification of the problem. Malladi and Sowlati (2018) propose a 
comprehensive analysis-based literature review of IRP considering Sustainability aspects. This review covers different topics, 
including waste management (reverse logistics), returnable transport item management (CLSC), waste prevention and 
reduction (perishable products), and emission reduction (emission caps and carbon price). A brief review of some 
metaheuristic methods for IRP has recently been proposed by Thinkaran et al. (2019), and a detailed study of various 
algorithms and classes of IRP is presented. Finally, Londoño et al. (2021b) categorize IRP by considering RTIs. 
 
Different researchers have extensively studied IRP variants. Agra et al. (2018) and Kleywegt et al. (2002) have proposed some 
relevant works considering stochastic aspects. Bertazzi et al. (2019) studied multi-depot considerations for the IRP. The 
Inventory-Routing Problem with transshipment is the IRP considering transshipments between retailers or between the 
supplier and a retailer. Lefever et al. (2018) and Coelho et al. (2012) propose solution methods for this problem based on 
exact approaches and approximate algorithms. Two variants of the well-known IRP, such as the IRP with Logistic Ratio and 
the multiobjective green cyclic IRP, have been studied by Benoist et al. (2011), Singh et al. (2015), Archetti et al. (2017), 
Alvarez et al. (2018), Archetti et al. (2019) and Rau et al. (2018). Real applications of the IRP have been introduced by Coelho 
et al. (2014b), Ghiami et al. (2019), Azadeh et al. (2017), and Onggo et al. (2019), and Wei et al. (2019). Finally, Stochastic 
IRP problems have been studied recently by Nikzad et al. (2019), Markov et al. (2020), and Alvarez et al. (2021). 
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However, there are two specific variants that are closely related to the problem of the Inventory Routing Problem with the 
consideration of Returnable Transport Items (CLIRPB): Inventory Routing Problem (IRP) and the Inventory Routing Problem 
with Backhauls (IRPB). The IRP considers routing decisions and inventory policies for retailers and suppliers for a multiperiod 
strategy with a minimal total cost function. The IRP has been extensively studied in the literature, and several authors have 
proposed exact, heuristic, metaheuristic, and matheuristic approaches for solving different variants. Exact algorithms have 
been proposed by Yadollahi et al. (2018), Yadollahi et al. (2019), and Aksen et al. (2012). Yadollahi et al. (2018) consider 
the IRP with stochastic demand, minimizing the total cost. The authors formulate a mathematical model as a safety-stock-
based stochastic IRP (SIRP) considering variables such as the retailers' inventory storage capacity. Yadollahi et al. (2019) 
consider the SIRP when the retailers' demand' variability is relevant. The authors propose two mathematical modeling 
approaches: the first uses a safety stock-based deterministic model, where extra stock is kept at the retailers to face the 
demands' variability. The second approach uses the sample average approximation (SAA) to solve the considered problem. 
Aksen et al. (2012) introduced two different formulations for the Selective Periodic Inventory Routing Problem. 
 
Different modeling strategies for IRP have been proposed by Bard & Nananukul (2009), Qin et al. (2014), Liu et al. (2016), 
Juan et al. (2014), Cárdenas-Barrón et al. (2019), and Fukunaga et al. (2014). An interesting approach to solve a real problem 
for supermarket chains in the Netherland was proposed by Gaur & Fisher (2004). In this work, a saving of 4% of distribution 
cost for the first year of implementation is obtained. 
 
In the IRPB, products are shipped from the depot to line-haul customers. Products or RTIs are collected from backhaul 
customers, and the vehicle must return to the depot. It is noteworthy that the IRPB can be observed in various industries (e.g., 
the automotive industry) (Arab et al., 2018). This problem is significant to this paper due to the possible consideration of RTIs 
to protect products in the distribution process, an aspect that has not been traditionally considered within IRP contexts. The 
management of the RTIs is considered relevant in scientific literature (Kroon & Vrijens (1995), Johansson & Hellström 
(2007), and Kim et al. (2014)). Glock & Kim (2014) and Hariga et al. (2016) studied the integration of forward and reverse 
logistics of RTIs with inventory decisions along the supply chain. These decisions are involved in a concept called CLSC. 
 
To the best of our knowledge, the combined problem of inventory and routing decisions with RTI collection (backhaul 
customers) within CLSC has not been addressed yet in the scientific literature. This paper considers an IRP problem with 
RTIs considering a short-term horizon (1 week) without RTIs deterioration. Although the concept of combining delivery and 
pickup for vehicle routing problems has been studied intensely, the integration of the decision of delivery and pickup 
simultaneously for a given collection point and the collection of RTIs for backhaul customers within an integrated IRP 
framework has not been studied within the literature review. 
 
3. Proposed Approach 
 
This paper considers a distribution system comprising a supplier and a set of 𝑛 customers that must be served to meet their 
known demand on a discrete planning horizon of 𝑇 periods (days within a week). We consider that the customer's demands 
are repeated each week identically or similarly (periodic). Therefore, the system becomes periodic (assuming a scenario with 
stable demands: deterministic and periodic). In other words, the solution is focused on a set of 𝑇 periods, and the resulting 
delivery and collection plan could be repeated for the following 𝑇 period horizon. At the same time, the demand conditions 
do not change significantly. 
 
The supplier (depot) has a single vehicle per period with enough capacity to distribute and use their RTIs to handle and protect 
the products. When the supplier arrives at a customer's location, it delivers the RTIs with the product. Once the products are 
delivered and the customers locate them in their storage locations, the RTIs are available for collection. Naturally, the RTIs 
cannot be withdrawn from the customer's location if the demand for the product has not occurred first. 
 
A holding cost is incurred for each unit of product in inventory at the customer, and each RTI unit causes additional holding 
costs. At the same time, it is not withdrawn from the customer's facilities. It is considered a fixed and known transportation 
cost to travel from a location 𝑖 to 𝑗. The available vehicle has a fixed and known capacity defined in RTI units for both the 
delivery and collection processes (the RTIs are not collapsible). Product demands from customers are established in RTI units. 
 
The collection process must be performed once the delivery process has been completed. A vehicle's route for each period of 
the planning horizon must start at the supplier's location, first visiting the customers who must receive products and then 
visiting the customers with empty RTIs to collect. The vehicle returns to the supplier at the end of the travels. In a delivery 
and collection route, one of four possible situations could occur: i) a customer is visited only once to make a delivery, ii) a 
customer is visited only once to make a collection, iii) a customer is visited once to make not only delivery but also a collection 
and iv) a customer is visited twice, the first time to make a delivery and the second time to make a collection. 
The combined IRPB considers several decisions. The following main decisions are considered for the proposed model: the 
customers should be visited in any of the four possible situations for each period of the planning horizon, in which sequence 
the visits should be carried out, and the number of products that must be delivered, and the amount of RTIs to be collected at 
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each visit while satisfying the demand. The solution seeks to minimize the total transport costs for delivery and collection, 
the costs of handling inventories, and the penalty for non-collection RTIs. 
 
This problem is called a Closed Loop Inventory Routing with a Backhaul-type collection of RTIs (CLIRPB). The CLIRPB 
could be represented as a complete graph problem. Let 𝐺 =  (𝑉,𝐸) be a complete undirected graph, where 𝑉 = {0,1, … ,𝑛} 
is the vertices set representing customers with the supplier at vertex 𝑣଴. 𝐸 = {൫𝑣௜ , 𝑣௝൯: 𝑖 ≠ 𝑗} is the set of edges over a given 
planning horizon of length 𝑇. With each edge (𝑣௜ , 𝑣௝)  ∈  𝐸 is associated a non-negative traveling cost 𝑐௜௝. Each customer 𝑗 ∈𝑉\{𝑣଴} has a non-negative rate consumption 𝑑 (volume per day) and could maintain a local inventory of products up to a 
maximum of 𝐶௝. The initial inventory at customer 𝑗 is 𝐼௝  at time 0. A homogeneous vehicle per period with capacity 𝑄 is 
available at the depot 𝑣଴. We propose a pattern strategy based on the idea proposed by Aksen et al. (2014) to solve this 
problem. The authors propose a set of patterns indicating whether or not there be a visit in period 𝑡. The chosen set 𝑃 is shown 
in Table 1. Note that the mathematical model depends on the number of chosen patterns. However, the model is flexible and 
could be used with any patterns the managers consider.  
 
Table 1  
Schedule – Visit Patterns 

Pattern Period 
1 2 3 4 5 6 

1 1 0 0 0 0 0 
2 0 1 0 0 0 0 
3 0 0 1 0 0 0 
4 0 0 0 1 0 0 
5 0 0 0 0 1 0 
6 0 0 0 0 0 1 
7 1 0 0 1 0 0 
8 0 1 0 0 1 0 
9 0 0 1 0 0 1 
10 1 0 1 0 1 0 
11 0 1 0 1 0 1 
12 1 1 1 1 1 1 

 
3.1 Model formulation  
 
Assumptions 

• Daily demand is fixed and known, and it is expected to remain unchanged shortly (e.g., some weeks or months). 
• All cost parameters are deterministic along the planning horizon. It is also assumed to remain unchanged shortly.  
• These two assumptions support the fact that the system solution can be periodically repeated for each 𝑇 periods. 
• Requests for withdrawing empty RTIs are assumed to occur at least one period after product delivery. This fact 

implies that all pick-up activities must be performed after all deliveries planned for the same period have already 
been executed. Suppose a delivery pattern occurs twice a week and the collection pattern occurs once a week (called 
example 1). Thus, the situation would be as follows: Assuming that the demand per period in the 6-day planning 
horizon of a customer is one unit, then the delivery is six units. Once the demand occurs, an RTI is available to be 
collected in the following period, another RTI in the following period, and it is kept until the customer is visited for 
collection. As the collection is twice per planning horizon, each time it is collected, the number of RTIs used to 
satisfy the demand divided by two is collected. This fact is independent of the moment in which the delivery occurs.  

• All products to be delivered and empty RTIs to be withdrawn have to be 100% fulfilled. 
• There is no additional loss and production of products and RTIs. These initial and final inventories of products and 

RTIs are equal. 
• A full and empty RTI uses the same space inside the vehicle. Thus, the delivery and pick-up capacities are also the 

same. 
• There is a vehicle capable of executing scheduled routes. 
• There are no capacity constraints at the supplier. Therefore, we consider the entire available inventory to supply the 

scheduled shipments on the planning horizon. 
• The vehicle has a limited capacity. 

 
Notation for the CLIRPB 
 
Sets: 
 

• 𝑇: Periods on the planning horizon 𝑇 = {1, . . ,𝐻}, where 𝐻 is the number of periods. 
• 𝑉: Nodes of the graph, including the depot or supplier (node 0) and the 𝑁 customers, i.e., 𝑉 = {0,1, . . ,𝑁}. 
• 𝑉ᇱ: Customers to be served 𝑉ᇱ = {1, . . ,𝑁}. 
• 𝑃: Visit pattern to be assigned to customers. 
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Parameters: 
 
• 𝑑௜: Product demand for a given period for each customer 𝑖 ∈ 𝑉ᇱ (homogeneous across 𝑡 = 1, … ,𝑇) 
• 𝑄: Vehicle capacity (same unit of customer demand). 
• 𝐶௜௝: Total transportation costs associated with a trip from node 𝑖 ∈ 𝑉 to node 𝑗 ∈ 𝑉. 
• ℎ1௜: Unit holding costs associated with end inventory of products at each customer or node 𝑖 ∈ 𝑉′. 
• ℎ2௜: Unit holding costs associated with end inventory of RTIs at each customer or node 𝑖 ∈ 𝑉′. 
• 𝐵௣௧: Binary parameter indicating if the visit pattern 𝑝, 𝑝 ∈ 𝑃, involves a visit on period 𝑡 (1 in a favorable case and 

0 otherwise). An example of a visit pattern for a planning horizon of 𝑇 =  6 periods is 𝑃 = ሾ1 0 0 1 0 0ሿ, where a 
value of 1 indicates that a visit is scheduled in periods 1 and 4, and a value of 0 indicates periods 2, 3, 5 and 6 where 
no visits are scheduled. 

• 𝐿1௣௧: Integer parameters indicating the number of demand periods that the delivered products must cover in a visit 
on period 𝑡, 𝑡 = 1, … ,𝑇, if a visit pattern 𝑝, 𝑝 ∈ 𝑃 is employed. In other words, it counts the number of future 
periods, including the period 𝑡, in which a customer must not be visited, considering the visit pattern 𝑝, 𝑝 ∈ 𝑃. As 
an example, given the pattern 𝑃 = ሾ1 0 0 1 0 0ሿ, the amount of product delivered for period 1 must cover the 
demands of periods 1, 2, and 3. Besides, the amount of product delivered in period 4 must cover the demand of 
periods 4, 5, and 6. Therefore, 𝐿1௣ଵ = 3, 𝐿1௣ସ = 3, 𝐿1௣ଶ = 𝐿1௣ଷ = 𝐿1௣ହ = 𝐿1௣ ଺ = 0. 

• 𝐿2௣௧: Integer parameters indicating the number of periods that the RTIs must cover in a visit on period 𝑡, 𝑡 = 1, … ,𝑇, 
if a visit pattern 𝑝, 𝑝 ∈ 𝑃 is considered. The values of 𝐿2௣௧ are obtained as the values of 𝐿1௣௧ by considering the 
periods from the end to the beginning. Indeed, for pattern 𝑃 = ሾ1 0 0 1 0 0ሿ, the pickup of product is scheduled for 
backward period 3 (forward period 4) and backward period 6 (forward period 1).  

• 𝑇𝐼1௣: Total inventory level generated along the planning horizon on a given customer 𝑖 ∈ 𝑉ᇱ with a unitary demand, 
in case of serving it following the visit pattern 𝑝, 𝑝 ∈ 𝑃. For example, considering pattern 𝑃 = ሾ1 0 0 1 0 0ሿ, at the 
end of period 1, the final inventory must fulfill the demand of periods 2 and 3. At the end of period 2, the final 
inventory must fulfill the demand of period 3. Similarly, for period 4, the same number of inventory periods is 
established analogously. Therefore, the amount of holding inventory for the planning horizon is equal to 𝑇𝐼1௣ = 6 
periods—the total inventory for any customer 𝑖 can be computed as the simple product of this parameter by the daily 
demand 𝑑௜. 

• 𝑇𝐼2௣: Total inventory level generated by RTIs along the planning horizon on a given customer 𝑖 ∈ 𝑉ᇱ, following the 
visit pattern 𝑝. For pattern 𝑃 = ሾ1 0 0 1 0 0ሿ, the values of 𝑇𝐼2௣ are calculated in an analogous way to those of 𝑇𝐼1௣, 
considering the backward periods. 
 

For example, 1, after the delivery occurs, there are five units left in the inventory; in the next period, four units remain, and 
so on until the last period of the horizon, so that in the planning horizon of 6 periods, the quantity of units 𝑇𝐼1௣ in inventory 
is 15. For the inventory of empty RTIs, the situation is as follows: In the first period, there is one unit; in the next period, there 
are 2, and in the next, there are three until the vehicle arrives and picks it up. Thus, the number of units 𝑇𝐼2௣ on the planning 
horizon is six. 
 
Decision Variables: 
 

• 𝑍1௜௧: Binary decision variable that indicates if a customer 𝑖 ∈ 𝑉ᇱ is visited for product delivery during period 𝑡. 
• 𝑍2௜௧: Binary decision variable that indicates if a customer 𝑖 ∈ 𝑉ᇱ is visited for RTIs pick-up during period 𝑡. 
• 𝑌1௜௝௧ : Binary decision variable that indicates if the vehicle travel from customer 𝑖  to customer 𝑗 on period 𝑡  for 

product delivery. 
• 𝑌2௜௝௧ : Binary decision variable that indicates if the vehicle travel from customer 𝑖 to customer 𝑗 on period 𝑡 for RTIs 

pick-up at node 𝑗 (not necessarily for node 𝑖). 
• 𝑌3௜௧: Binary decision variable that indicates if the vehicle consecutively performs a product delivery and an RTIs 

pick-up at a customer 𝑖 on period 𝑡. 
• 𝑃1௜௣: Binary decision variable that indicates if the visit pattern 𝑝 is assigned to customer 𝑖 for product delivery. 
• 𝑃2௜௣: Binary decision variable that indicates if the visit pattern 𝑝 is assigned to customer 𝑖 for RTIs pick-up. 
• 𝑊1௜௧: Product amount to be delivered from customer 𝑖 on period 𝑡, which naturally depends on the visit pattern 

assigned to the customer for delivering. 
• 𝑊2௜௧: RTI amount to be picked up from customer 𝑖 on period 𝑡, which naturally depends on the visit pattern assigned 

to the customer for picking up. 
• 𝐼1௜: Total product inventory produced by customer 𝑖 along the overall planning horizon. 
• 𝐼2௜: Total RTI inventory produced by customer 𝑖 along the overall planning horizon. 

 
Following (Gavish & Graves, 1978), the following fictitious variables are created to avoid subtours. 
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• 𝐹1௜௝௧ : Fictitious integer flow from node 𝑖 to node 𝑗 during period 𝑡, associated with the delivery process.  
• 𝐹2௜௝௧ : Fictitious integer flow from node 𝑖 to node 𝑗 during period 𝑡, associated with the pick-up process. 

Fig. 1 presents a small example to show the relationship between variables 𝐹1௜௝௧ , 𝐹2௜௝௧ , 𝑌1௜௝௧ , 𝑌2௜௝௧ , and 𝑌3௜௧.  
 

 
Fig. 1. Representation of a delivery and pickup (backhauls) route 

 
3.1 Mathematical model 
 
Objective function: 
Minimize Transportation Costs + Inventory Holding Costs 
 ෍ ෍ ෍𝐶௜௝ ∗ 𝑌1௜௝௧௧∈் ൅෍ ෍ ෍𝐶௜௝ ∗ 𝑌2௜௝௧௧∈்௝∈௏,௜ஷ௝௜∈௏௝∈௏,௜ஷ௝  ௜∈௏ ൅ ෍ ℎ1௜ ∗ 𝐼1௜௜∈௏ᇲ ൅ ෍ ℎ2௜ ∗ 𝐼2௜௜∈௏ᇲ  (1) 

Eq. (1) represents the objective function considering the transportation and holding costs of products and RTIs, respectively. 
 

Subject to 𝐹1௜௝௧ ≤ 𝑁 ൈ 𝑌1௜௝௧  ∀ 𝑖𝜖𝑉, 𝑗𝜖𝑉ᇱ, 𝑖 ≠ 𝑗 ∀ 𝑡𝜖𝑇 (2) ෍ 𝐹1௝௟௧௟∈௏ᇲ,௟ஷ௝ − ෍ 𝐹1௜௝௧௜∈௏,௜ஷ௝ = −𝑍1௝௧ ∀ 𝑗𝜖𝑉ᇱ,∀ 𝑡𝜖𝑇 (3) ෍ 𝐹1଴௝௧௝∈௏ᇲ = ෍ 𝑍1௝௧௝∈௏ᇲ  ∀ 𝑡𝜖𝑇 (4) 𝐹2௜௝௧ ≤ 𝑁 ൈ 𝑌2௜௝௧  ∀ 𝑖𝜖𝑉, 𝑗𝜖𝑉ᇱ,∀ 𝑡𝜖𝑇 𝑖 ≠ 𝑗 (5) ෍ 𝐹2௝௟௧௟∈௏,௟ஷ௝ − ෍ 𝐹2௜௝௧௜∈௏ᇲ,௜ஷ௝ = 𝑍2௝௧ ∀ 𝑗𝜖𝑉ᇱ,∀ 𝑡𝜖𝑇 (6) ෍ 𝐹2଴௝௧௝∈௏ᇲ = ෍ 𝑍2௝௧௝∈௏ᇲ  ∀ 𝑡𝜖𝑇 (7) 

 
Constraints (2) to (7) represent linehaul and backhaul unit flows (allow subtours to be eliminated). Constraints (2) ensure that 
a positive flow can occur if there is a vehicle traversing arc (𝑖, 𝑗) for delivery when the variable 𝑌1௜௝௧  is used for each period 𝑡 ∈ 𝑇. Similarly, constraints (5) ensure the same as (2) for RTIs. Equations (3) and (6) ensure the mass balance of the delivery 
process of products and the pick-up process for RTIs. The value of −𝑍1௝௧ in (3) indicates that a delivery has been performed, 
and the outflow must be negative. The value of 𝑍2௝௧ in (6) represents a pick-up of RTIs, and the outflow must be positive for 
each period 𝑡 ∈ 𝑇. Equations (4) and (7) ensure the number of maxima of accumulating flows for products and RTIs. In 
particular, the number of accumulating flows of products and RTIs must be equal to the sum of the total of backhaul nodes 
(4) or linehaul nodes (7). 
 𝑌3௜௧ ≤ (𝑍1௜௧ ൅ 𝑍2௜௧)2  ∀ 𝑖 ∈ 𝑉ᇱ, 𝑡 ∈ 𝑇 (8) ෍ 𝑌1௝௜௧௝ఢ௏,௜ஷ௝ = 𝑍1௜௧ ∀ 𝑖𝜖𝑉ᇱ, 𝑡𝜖𝑇 (9) 



J. C. Londoño et al. / International Journal of Industrial Engineering Computations 14 (2023) 843෍ 𝑌1௜௝௧  ௝ఢ௏,௜ஷ௝ + ෍ 𝑌2௜௝ ௧௝ఢ௏,௜ஷ௝ ≤ 2 ∗ 𝑍1௜௧ ∀ 𝑖𝜖𝑉ᇱ, 𝑡𝜖𝑇 (10) ෍ 𝑌1௜௝௧௝ఢ௏  ௜ஷ௝ =  𝑍1௜௧ − 𝑌3௜௧ ∀ 𝑖 ∈ 𝑉ᇱ, 𝑡 ∈ 𝑇 (11) ෍ 𝑌2௝௜௧௝ఢ௏ ௜ஷ௝ ≤ 1 ∀ 𝑖 ∈ 𝑉ᇱ, 𝑡 ∈ 𝑇 (12) ෍ 𝑌2௜௝௧௝ఢ௏  ௜ஷ௝ ≤ 1 ∀ 𝑖 ∈ 𝑉ᇱ, 𝑡 ∈ 𝑇 (13) 

 
Constraints (8) establish the relationships between the decision variables of the visiting customer for delivery or collection, 
considering that the collection visit is performed immediately after the delivery is performed for the given node. Constraints 
(8) allow that the variable 𝑌3௜௧ could be equal to 1 only if the node 𝑖 ∈ 𝑉ᇱ is visited to perform a delivery and collection 
consecutively at the period 𝑡 ∈ 𝑇. Constraints (9) to (10) determine that delivery or collection decisions are conditioned if the 
node is visited or not. Constraints (9) and (10) ensure that a visit of a node 𝑖 ∈ 𝑉ᇱ  (for collection or delivery) must be 
performed if 𝑍1௜௧ = 1 for a given period 𝑡 𝜖 𝑇. Equations (11) ensure that from a delivery node 𝑖 ∈ 𝑉ᇱ must not be performed 
another delivery or return to the supplier when a pick-up is performed for the same served node 𝑖 ∈ 𝑉ᇱ for each period 𝑡 𝜖 𝑇. 
The maximum number of input and output arcs for a given collection node is restricted by (12) and (13). 
 
Note that variables 𝑌1௜௝௧  are activated according to variables 𝐹1௜௝௧ , while 𝐹1௜௝௧  variables are activated according to variables 𝐹2௜௝௧ . Additionally, 𝐹1௜௝௧  are modeled as flowing from supplier to the customers, while 𝐹2௜௝௧ are modeled to flow from the 
customers to the supplier. 
 𝑍1௜௧ + 𝑌3௜௧ − 1 ≤ ෍ 𝑌2௜௝௧௝ఢ௏,௜ஷ௝  ∀ 𝑖 ∈ 𝑉ᇱ, 𝑡 ∈ 𝑇 (14) 𝑍2௜௧ = ෍ 𝑌2௜௝௧௝ఢ௏,   ௜ஷ௝  ∀ 𝑖 ∈ 𝑉ᇱ, 𝑡 ∈ 𝑇 (15) 𝑍2௜௧ − 𝑌3௜௧ = ෍ 𝑌2௝௜௧௝ఢ௏  ௜ஷ௝  ∀ 𝑖 ∈ 𝑉ᇱ, 𝑡 ∈ 𝑇 (16) ෍ 𝑌3௜௧௜ఢ௏ᇲ  ௜ஷ௝ ≤ 1 ∀  𝑡 ∈ 𝑇 (17) 
 

Constraints (14) to (17) establish the relationship between the visit decisions to deliver and collect (variables  𝑍1௜௧, 𝑍2௜௧) with 
the decisions to arrive at and leave a node (variables 𝑌1௜௝௧ , 𝑌2௜௝௧ )  and the delivery and collection decisions immediately after 
(variables  𝑌3௜௧). Constraints (14) and (15) ensure that the vehicle must visit another collection node or return to the supplier 
once a collection node has been served. Equations (16) ensure that a node for which a collection and pick up must be performed 
simultaneously, it must not be reached from any node 𝑗 𝜖 𝑉 avoiding this aspect by variable 𝑌2௝௜௧  (collection node). Finally, 
Constraints (17) ensure that it is possible to link one delivery node to one collection node for each route as maximum. 
 ෍ ൫𝑌1௝௜௧ + 𝑌2௝௜௧ ൯௝ఢ௏,   ௜ஷ௝ = ෍ ൫𝑌1௜௝௧ + 𝑌2௜௝௧ ൯௝ఢ௏,   ௜ஷ௝  ∀ 𝑖 ∈ 𝑉ᇱ, 𝑡 ∈ 𝑇 (18) ෍ (𝑌1଴௜௧ + 𝑌2଴௜௧ )௜∈௏ᇲ,௜ஷ଴ = ෍ (𝑌1௜଴௧ + 𝑌2௜଴௧ )௜∈௏ᇲ,௜ஷ଴  ∀ 𝑡 𝜖 𝑇 (19) ෍ (𝑌1଴௜௧ + 𝑌2଴௜௧ ) ≤௜∈௏ᇲ,௜ஷ଴ 1 ∀ 𝑡 𝜖 𝑇 (20) 𝑍1௜௧ ≤ ෍ 𝑌1଴௝௧௝∈௏ᇲ  ∀ 𝑖 ∈ 𝑉ᇱ, 𝑡 ∈ 𝑇 (21) 𝑍2௜௧ ≤ ෍ 𝑌2௝଴  ௧௝∈௏ᇲ  ∀ 𝑖 ∈ 𝑉ᇱ, 𝑡 ∈ 𝑇 (22) 

Eq. (18) guarantee the balance for each node. Equations (19) establish the balance between the number of input arcs and 
output arcs for each period 𝑡 𝜖 𝑇. Complementary constraints (20) determine that the sum of the number of input arcs from 
the supplier is equal to 1 for each period 𝑡 𝜖 𝑇. Besides, constraints (21) indicate that a delivery customer 𝑗 ∈ 𝑉ᇱmust be visited 
on the sequence from the supplier or delivery arc 𝑌1଴௝௧  for a given period 𝑡 𝜖 𝑇. In addition, a collection customer must be 
connected to the supplier or collection arc 𝑌2௝଴ ௧  for a given period 𝑡 𝜖 𝑇 (Constraints 22). 
 



  

 

844𝐼1௜ = ෍𝑑௜ × 𝑇𝐼1௣ × 𝑃1௜௣௣∈௉  ∀ 𝑖 𝜖 𝑉ᇱ (23) 𝐼2௜ = ෍𝑑௜ × 𝑇𝐼2௣ × 𝑃2௜௣௣∈௉  ∀ 𝑖 𝜖 𝑉ᇱ (24) 𝑍1௜௧ = ෍𝐵௣௧ × 𝑃1௜௣௣∈௉  ∀ 𝑖 ∈ 𝑉ᇱ, 𝑡 ∈ 𝑇 (25) 𝑍2௜௧ = ෍𝐵௣௧ × 𝑃2௜௣ ௣∈௉  ∀ 𝑖 ∈ 𝑉ᇱ, 𝑡 ∈ 𝑇 (26) ෍𝑃1௜௣ = 1 ௣∈௉  ∀ 𝑖 ∈ 𝑉ᇱ (27) ෍𝑃2௜௣ = 1 ௣∈௉  ∀ 𝑖 ∈ 𝑉ᇱ (28) 𝑊1௜௧ = ෍𝐿1௣௧௣∈௉ × 𝑑௜ × 𝑃1௜௣ ∀ 𝑖 ∈ 𝑉ᇱ, 𝑡 ∈ 𝑇 (29) 𝑊2௜௧ = ෍𝐿2௣௧௣∈௉ × 𝑑௜ × 𝑃2௜௣ ∀ 𝑖 ∈ 𝑉ᇱ, 𝑡 ∈ 𝑇 (30) ෍𝑊1௜௧௜∈௏ᇲ ≤ 𝑄 ∀ 𝑡 𝜖 𝑇 (31) ෍𝑊2௜௧௜∈௏ᇲ ≤ 𝑄 ∀ 𝑡 𝜖 𝑇 (32) 

Eq . (23) and Eq. (24) establish the inventory levels for each period, while Eq. (25) and Eq. (26) determine the decision to visit 
from the patterns. Note that the inventory level for each customer depends on the selected pattern and the demand 𝑑௜. Besides, 
a node 𝑖 ∈ 𝑉ᇱ must be assigned to a visit pattern for delivery and for collection for a given period 𝑡 ∈ 𝑇 (Equations 27 and 
28). Equations (29) and (30) determine that the number of products and RTIs for a customer 𝑖 ∈ 𝑉ᇱ are determined by the 
selected pattern 𝑝 ∈ 𝑃. Finally, constraints (31) and (32) determine that the number of dispatched products and the collected 
RTIs from a customer must not exceed the vehicle capacity. 
 𝑍1௜௧ and 𝑍2௜௧ are activated according to the binary pattern of visits. For the pattern 𝑃 =  [1 0 0 1 0 0], constraints (26) and 
(27) make the decision variables take the value of 1 or 0 depending on the period. For this schedule, it is essential to visit a 
customer in periods 1 and 4 of the planning horizon. Thus, variables 𝑍1௜௧ and 𝑍2௜௧ would take the value of 1 in periods 1 and 
3 and 0 in periods 2, 3, 5, and 6. Constraints (28) and (29) assign each customer a single pattern of visits. Constraints (30) and 
(31) define the number of products and RTIs to be delivered and collected according to the visit pattern and the number of 
periods L1 and L2. Constraints (32) and (33) are better explained with the above description.  As observed before, the proposed 
CLIRPB model allows the scheduling of inventory management and transportation of both final goods and RTIs to be carried 
out. This schedule could be performed for a certain number of periods within an established planning horizon and are very 
useful in the predetermined planning of the use of vehicles and for the predefinition of visits to customers, which could even 
be a fixed distribution strategy over specific periods ahead. In fact, under the assumption of stability of market conditions, 
these decisions arising when solving the CLIRPB model could be replicated in the future in planning horizons of a similar 
number of periods compared to those studied in the base model.  Nevertheless, these customer visit schedules help the supplier 
and the customer. For example, in a planning horizon of one week, a delivery program can establish whether a specific 
customer should be visited once a week (on any specific day), twice a week (indicating two specific days), or three times a 
week (on three specifically chosen days). These different visiting schedules allow the supplier and customers to establish 
schedules and resources to have available. A customer could know the amount of product and the time to be visited for product 
delivery or a collection of RTIs. On the other hand, the supplier could establish the inventory levels of products and RTIs and 
determine the available vehicle. 
 
These results provided by the CLIRPB are potentially valuable for determining vehicle requirements, given the predetermined 
use that these would have according to the model in each period. The model must have accurate information on transportation 
costs and the costs of maintaining inventory to ensure the success of the solution and its implementation. Moreover, regarding 
transport costs, it should be made clear if there are differences between the costs of delivering and collecting, so these cost 
variations could be considered in the cost function. 
 
4. Computational Experimentation  
 
This section presents the results of computational experiments with the model proposed in Section 3.2. The model has been 
coded in AMPL and solved using CPLEX for AMPL Version 20.1 on a standard computer with an Intel Core I7 processor, 
2.5 GHz. CPU 8 GB RAM. The effectiveness of the proposed model has been tested on a small example and a set of synthetic 
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instances, consisting of a central supplier, a set of customers ranging from 10 to 30 customers with known demands, one 
single vehicle, a planning horizon, transportation costs for delivery and collection, and handling inventory costs for final 
goods and RTIs. Two experiments have been conducted for a single instance: the base problem described in Section 3.2 and 
the problem considering customers with equal demand. The experiments are explained below. 
 
4.1 Small example 
 
A case of a supply chain considering a supplier, five customers, and a planning horizon of four periods is presented to illustrate 
the CLIRPB. The proposed visit patterns (𝐵௣௧)  are presented in Table 2. 
 
Table 2  
Visit patterns for small examples 𝐵௣௧ Period 

Pattern 1 2 3 4 
1 1 0 0 0 
2 0 1 0 0 
3 0 0 1 0 
4 0 0 0 1 
5 1 0 1 0 
6 0 1 0 1 
7 1 1 1 1 

 
The value of the parameters 𝐿1௣௧ and 𝐿2௣௧, which indicates the demand periods that are covered with a delivery or collection 
node associated with a pattern, are presented in Table 3. For example, suppose pattern one is selected. In that case, the number 
of periods covered in the planning horizon with this pattern is four because when making a delivery, it must be large enough 
to satisfy the demand during 𝐿1௣௧ until the next one occurs delivery. The same situation occurs for the collection, which would 
collect the 𝐿2௣௧ periods back since the last collection was performed. 
 
Table 3  
Periods associated with parameters 𝐿1௣௧ and 𝐿2௣௧ 𝐿1௣௧, 𝐿2௣௧ Periods (𝐿1௣௧ and 𝐿2௣௧) 

Pattern 1 2 3 4 
1 4 0 0 0 
2 0 4 0 0 
3 0 0 4 0 
4 0 0 0 4 
5 2 0 2 0 
6 0 2 0 2 
7 1 1 1 1 

 
The total number of inventory periods 𝑇𝐼1௣ and 𝑇𝐼2௣ per each pattern type are presented in Table 4. Table 4 shows that if it 
is pattern 1, after the first period, there are three days of coverage ahead in the inventory (and after the demand occurs 1 RTI). 
In the second period, there are two units in the inventory (2 units of RTIs), and finally, in the third period, one unit remains 
in the inventory (and three units of RTIs). Thus, six units were in the goods inventory and six in an inventory of RTIs to pick 
up. 
 
Table 4 
Inventory periods per each pattern for 𝑇𝐼1௣ and 𝑇𝐼2௣ 

Pattern 1 2 3 4 5 6 7 𝑇𝐼1௣, 𝑇𝐼2௣ 6 6 6 6 2 2 0 

 
Information of the nodes is presented in Table 5.  

Table 5 
Information of the nodes 

Node Coord X Coord Y Demand 
0 0 0 0 
1 353 109 52 
2 72 342 95 
3 123 57 25 
4 17 6 64 
5 362 407 45 

 

The used values of  ℎଵ = 4 and ℎଶ = 1.The visit assigned patterns when solving the model are shown in Table 6. 
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Table 6 
Used patterns 

Node 𝑖 Pattern 𝑃1௜௣ Pattern 𝑃2௜௣ 
1 6 6 
2 7 5 
3 7 6 
4 7 7 
5 6 2 

 
Concerning 𝑃1௜௣, customers 1 and 5 are visited for delivery according to pattern 6. Therefore, the customers are visited twice 
(second and fourth period). Each period must cover a total of 𝐿1௜ = 2 periods ahead of the planning horizon (𝑖 = {1, 5}). 
Tables 7 and 8 show the obtained results of patterns 𝑃1௜௣. 

Table 7 
Visit of pattern 𝑃1௜௣ = 6 

Customers Pattern\Period 1 2 3 4 
1,5 6 0 1 0 1 

 

Table 8 
Visit of pattern 𝑃1௜௣ = 7 

Customers Pattern\Period 1 2 3 4 
2,3,4 7 1 1 1 1 

 

 

Customers 2, 3, and 4 are visited for delivery according to pattern 7. Therefore, these customers are visited each day of the 
planning horizon.  Concerning 𝑃2௜௣, customers 1 and 3 are visited for collection according to pattern 6. Tables 9 and 10 show 
the obtained results of the collection patterns.  
 
Table 9 
Visit of pattern 𝑃2௜௣ = 6 

Customers Pattern\Period 1 2 3 4 
1,3 6 0 1 0 1 

 
Twice in the planning horizon, in the second and fourth periods. Each collection must cover a total of 𝐿1௣௧ = 2 periods ahead 
of the planning horizon for 𝑖 = {1,3}. Moreover, customer 2 is visited with collection pattern 5, customer 4 with collection 
pattern 7, and customer 5 with collection pattern 2. Table 10 shows the pattern summary.   

Table 10 
Visit of collection pattern for customers 2, 4, and 5 

Customers Pattern\Period 1 2 3 4 
2 5 1 0 1 0 
4 7 1 1 1 1 
5 2 0 1 0 0 

 
For customer 2, a pick-up visit is performed twice in the planning horizon (first and third period). Each collection must cover 
a total of 𝐿2௜ = 2 periods ahead of the planning horizon for 𝑖 = {2}. For customer 4, a collection visit is performed four times 
in the planning horizon (all periods). Each collection must cover a total of 𝐿2௜ = 0 periods ahead of the planning horizon for 𝑖 = {4}. For customer 5, a pick-up visit is performed only once in the planning horizon (period two). Each collection must 
cover a total of 𝐿2௜ = 4  periods behind the planning horizon for 𝑖 = {5}. The results of the variables 𝑍1௜௧ , 𝑍2௜௧  and 𝑌3௜௧ 
obtained when solving the IRPB for the proposed case are presented in Table 11. 
 
Table 11 
Variable solutions for the small problem 

Period Node 𝑍1௜௧ 𝑍2௜௧ 𝑌3௜௧ 
1 2 1 1 1 
1 3 1   
1 4 1 1  
2 1 1 1  
2 2 1   
2 3 1 1  
2 4 1 1  
2 5 1 1 1 
3 2 1 1 1 
3 3 1   
3 4 1 1  
4 1 1 1 1 
4 2 1   
4 3 1 1  
4 4 1 1  
4 5 1   

 



J. C. Londoño et al. / International Journal of Industrial Engineering Computations 14 (2023) 847

The visit schedule for each period of the planning horizon according to binary variables 𝑌1௜௝௧ , 𝑌2௜௝௧  , and flow variables 𝐹1௜௝௧ , 𝐹2௜௝௧  is shown in Table 12. The quantities of products to be delivered to customers 1 and 5 are calculated by using (29) for 
customer 1 in period 2 is 𝑊1ଵଶ = 𝐿1ଵଶ ∗ 𝐷ଵ ∗ 𝑃1ଵ଺ = 104. The amount of product remaining in the inventory in period two is 
52 units, which are demanded for the next period, leaving the inventory at zero. On the other hand, after visiting customers 2 
and 5, the vehicle returns and picks up the RTIs in the inventory (from two periods ago), leaving zero units in inventory. 
Finally, for the next period, after the demand for that period has occurred, 52 RTIs remain in inventory. 
 
Table 12 
Visit Scheduling for planning horizon 

Period Node 
Start 

Node 
End Type 𝑌1௜௝௧  𝑌2௜௝௧  𝑌31௜௧ 𝐹1௜௝௧  𝐹2௜௝௧  𝑊1௜௧ 𝑊1௜௧ 𝐼1௜௧ 𝐼2௜௧ 

1 0 4 D 1   3  64  0  
1 4 3 D 1   2  25  0 25 
1 3 2 D/P 1  1 1  95 95 0 0 
1 2 4 p  1   1  25  0 
1 4 0   1   3     
1 1 No visited 0 0  0 0 0 0 52 104  
1       5 No visited 0 0  0 0 0 0 45 135 
2       0 4 D 1   5  64  0 
2 4 3 D 1   4  25  0  
2 3 1 D 1   3  104  52  
2 1 2 D 1   2  95  0 95 
2 2 5 D/P 1  1 1  90 180 45 0 
2 5 1 P  1   1  95  0 
2 1 3 P  1   2  104  0 
2 3 4 P  1   4  64  0 
2 4 0   1   5     
3 0 4 D 1   3  64  0  
3 4 3 D 1   2  25  0 25 
3 3 2 D/P 1  1 1  95 95 0 0 
3 2 4 P  1   2  64  0 
3 4 0   1   3    0 
3 1 No visited 0 0  0 0 0 0 52 104  
3 5 No visited 0 0  0 0 0 0 45 45  
4 0 4 D 1   5  64  0  
4      4 3 D 1   4  25  0 
4      3 2 D 1   3  104  52 
4 2 5 D 1   2  95  0  
4 5 1 D/P 1  1 1  90 90 45 0 
4 1 3 P  1   1  95  0 
4 3 4 P  1   2  104  0 
4 4 0   1   3     
4 5 No         90  
1 0 4 D 1   3  64  0  
1 4 3 D 1   2  25  0 25 
1 3 2 D/P 1  1 1  95 95 0 0 
1 2 4 p  1   1  25  0 

 

Fig. 2 to Fig. 5 show the Solution for the CLIRPB for all periods. 

  
Fig. 2. Solution for the first period Fig. 3. Solution for the second period 
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Fig. 4. Solution for the third period Fig. 5. Solution for the fourth period 

4.1. Data Set Synthetic Instances 
 

• It is assumed that the supplier has enough capacity to meet the known demands. The coordinates of the supplier location (𝑋଴,𝑌଴) is generated in different coordinates. For example, in the lower corner of the grid (0,0), in the middle of the 
grid (250,250), and in random positions.  

• Customers range from 10 to 30 nodes. 
• Customer demand is known and is randomly generated with a uniform distribution in the interval [10, 100], and the 

coordinates (𝑋௜ ,𝑌௜)  of each location are generated randomly with a uniform distribution in the interval [0,500].  
• The transportation cost  𝐶௜௝ = 𝐹ට൫𝑋௜ − 𝑋௝൯ଶ + ൫𝑌௜ − 𝑌௝൯ଶ, where 𝐹 is a factor used to convert the distance into the 

cost. The used value of 𝐹 =  1. 
• Vehicle capacity is 1.5 of total demand per period adapted from the works of (Archetti et al., 2007; Coelho et al. 2012). 
• The planning horizon is six periods (e.g., days within a week). 
• The cost of handling finished products in inventory is arbitrarily established for three different values: high (ℎଵ = 4), 

medium (ℎଵ = 2) and low (ℎଵ = 1).  
• The cost of handling the RTI inventory is established with values proportional to ℎଵ , thus, ℎଶ = 𝛾 ∗ ℎଵ  and 𝛾 

represents a set of factors whose values are less than one, making the cost of keeping RTIs in inventory less 𝛾 = [0.75, 0.50, 0.25, 0.125, 0.0625, 0.03125] is a used dynamic factor to test the proposed approach.  
 

4.2. Results and discussion 
 
The results of an instance with 15 customers with different depot location are shown in Tables 13, 14, and 15. For each table, 
the first and second columns show the different values that ℎଵ and ℎଶ could take, and the rest show the optimal solution under 
each scenario. The third and fourth columns show the 𝐶ଵ delivery transportation cost, 𝐶ଶ represents the collection cost, and 
column five shows the total transportation cost. Columns six and seven show the handling inventory cost of finished products 
(𝐶ଷ) and RTIs (𝐶ସ), and column eight shows the total handling cost. The total logistics costs are in column 9. Column 10 
shows whether the schedule is for a delivery (D) or a pick-up (P) node. The determined visit scheduling for delivery and 
collection of each customer is shown in columns 11 to 25. Indeed, the column “Visit Scheduling” values correspond to the 
selected pattern for each customer (customers numbered from 1 to 15). Note that the customers that must be visited during all 
periods of the planning horizon are highlighted in red, while in yellow are labeled customers who must have three visits on 
the planning horizon, and in green, customers who must have two visits. Finally, some customers have one visit on the 
planning horizon without color. The last column presents the processing time [seconds]. Tables 13 – 15 are color-coded to 
represent the frequency of visits to customers. The customers that are visited less frequently have no color; the others 
correspond to a traffic light where green is that these customers are visited twice on the horizon, yellow three times on the 
horizon, and red every period. 
 
4.2.1. Base Case Results 
 
Table 13 shows the results of the scheduling visits (both to make deliveries and to make collections) for different values of 
inventory handling costs ℎଵ and ℎଶ, and transportation costs. In this table, the results are associated with the supplier's location 
in the lower-left corner of the grid with coordinates 𝑋଴  =  0 and 𝑌଴  =  0. Later, solutions to other supplier locations are 
discussed.
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Table 14  
CLIRPB results for a single instance considering the supplier location at (250,250) 

Depot location (250, 250) Visit Scheduling Computing time ℎଵ   
$

ℎଶ    
$

𝐶ଵ [$] 𝐶ଶ [$] Transportation 
[$]

𝐶ଷ [$] 𝐶ସ [$] Holding 
[$]

Total 
[$]

Deliver  
i k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  

4.00 3.000 9016 9016 18032 1056 792 1848 19880 
D 12 12 12 12 12 10 12 12 12 12 12 12 12 10 9 

13.67 
P 12 12 12 12 12 10 12 12 12 12 12 12 12 10 9 

4.00 2.000 9016 7198 16214 1056 2058 3114 19328 
D 12 12 12 12 12 10 12 12 12 12 12 12 12 10 9 

79.55 
P 10 12 10 10 12 10 12 10 10 12 12 10 12 10 9 

4.00 1.000 9792 4801 14593 444 2286 2730 17323 
D 12 12 12 12 12 10 12 12 12 12 12 12 12 12 9 

124.84 
P 10 10 10 10 11 10 11 10 10 11 11 10 10 11 3 

4.00 0.500 10024 3085 13109 288 2246 2533.5 15643 
D 12 12 12 12 12 12 12 12 12 12 12 12 12 12 8 

40.53 
P 9 8 8 8 7 8 7 9 9 2 7 8 8 7 2 

4.00 0.250 10034 2260 12294 288 1476 1764 14058 
D 12 12 12 12 12 12 12 12 12 12 12 12 12 12 8 

70.50 
P 9 8 5 8 7 5 7 3 9 2 7 8 8 6 2 

4.00 0.125 9879 1839 11718 444 1245 1689.38 13407 
D 12 12 12 12 12 10 12 12 12 12 12 12 12 12 7 

131.62 
P 5 2 3 3 1 3 7 5 5 4 1 3 2 6 4 

2.00 1.500 5139 5139 10278 4074 3055 7129 17407 
D 11 10 10 10 11 10 12 11 11 10 11 10 10 11 3 

15.03 
P 11 10 10 10 11 10 12 11 11 10 11 10 10 11 3 

2.00 1.000 5139 4775 9914 4074 2319 6393 16307 
D 11 10 10 10 11 10 12 11 11 10 11 10 10 11 3 

27.03 
P 11 10 10 10 11 10 11 11 11 9 11 10 10 11 3 

2.00 0.500 7251 3894 11145 2052 1848 3900 15045 
D 11 12 11 11 12 11 12 11 11 11 12 11 12 11 10 

367.17 
P 11 7 11 11 10 2 10 11 11 1 10 11 7 2 1 

2.00 0.250 7302 2641 9943 2052 1713 3765 13708 
D 10 12 10 10 12 10 12 10 10 10 12 10 12 10 11 

417.31 
P 3 11 1 1 8 1 8 3 3 5 8 1 11 5 2 

2.00 0.125 7426 1857 9283 2058 1245 3303.38 12586 
D 10 12 10 10 12 10 12 10 10 12 12 10 12 10 9 

314.8 
P 3 4 1 1 2 1 8 3 3 6 2 1 4 5 6 

2.00 0.062 7426 1806 9232 2058 669.4 2727.38 11959 
D 10 12 10 10 12 10 12 10 10 12 12 10 12 10 9 

451.53 
P 3 4 1 1 2 1 6 3 3 6 2 1 4 5 6 

1.00 0.750 4634 4510 9144 2439 1946 4385.25 13529 
D 11 11 11 11 10 11 10 11 11 10 10 11 11 8 4 

107.78 
P 11 11 11 11 10 6 10 11 11 10 10 11 11 8 4 

1.00 0.500 
 

4634 4165 8799 2439 1593 4032 12831 
D 11 11 11 11 10 11 10 11 11 10 10 11 11 8 4 

60.09 
P 11 11 11 11 10 6 10 11 11 5 10 11 11 5 4 

1.00 0.250 4256 2005 6261 3162 2223 5385 11646 
D 10 11 7 7 9 7 11 10 10 11 9 7 11 9 4 

766.56 
P 5 2 1 1 9 1 9 5 5 4 9 1 2 6 4 

1.00 0.125 4616 1839 6455 2757 1245 4002.38 10457 
D 7 10 10 10 11 10 11 7 7 8 11 10 10 11 3 

580.48 
P 4 1 5 5 6 5 9 4 4 6 6 5 1 2 3 

1.00 0.062 4616 1839 6455 2757 622.7 3379.69 9835 
D 7 10 10 10 11 10 11 7 7 8 11 10 10 11 3 

861.83 
P 4 1 5 5 6 5 9 4 4 6 6 5 1 2 3 

1.00 0.031 4884 1828 6712 2472 334.7 2806.69 9519 
D 10 10 10 10 11 10 11 10 10 9 11 10 10 9 4 

410.3 P 5 1 3 3 2 3 4 5 5 4 2 3 1 6 4 
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Table 15  
CLIRPB results for a single instance considering supplier location at a randomly nodes 

Depot location (231, 71) Visit Scheduling Computing time ℎଵ   
$/ i

ℎଶ    
$/ i

𝐶ଵ [$] 𝐶ଶ [$] Transportation 
[$]

𝐶ଷ [$] 𝐶ସ [$] Holding 
[$]

Total cost 
[$]

Deliver  
i k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  

4.00 3.000 9268 9268 18536 288 216 504 19040 
D 12 12 12 12 12 12 12 12 12 12 12 12 12 12 9 

8.2 
P 12 12 12 12 12 12 12 12 12 12 12 12 12 12 9 

4.00 2.000 9268 7738 17006 288 1548 1836 18842 
D 12 12 12 12 12 12 12 12 12 12 12 12 12 11 9 

77.34 
P 12 12 11 12 10 11 12 12 11 12 10 12 12 10 9 

4.00 1.000 9463 4444 13907 900 2442 3342 17249 
D 12 12 12 12 12 12 12 12 12 12 12 12 12 11 9 

657.92 
P 11 10 10 10 10 1 10 11 11 10 10 10 10 11 3 

4.00 0.500 9810 3458 13268 288 2246 2533.5 15802 
D 12 12 12 12 12 12 12 12 12 12 12 12 12 12 7 

2517.64 
P 7 9 9 9 7 9 7 8 7 4 7 9 9 7 1 

4.00 0.250 9938 3125 13063 288 1267 1554.75 14618 
D 12 12 12 12 12 12 12 12 12 12 12 12 12 12 9 

10445.49 
P 8 9 7 7 8 3 8 8 8 3 8 7 9 3 3 

4.00 0.125 9810 3458 13268 288 2246 2533.5 15802 
D 12 12 12 12 12 12 12 12 12 12 12 12 12 12 7 

20231.09 
P 4 6 3 3 1 3 1 8 1 1 4 3 6 4 1 

2.00 1.500 5824 5645 11469 3144 2520 5664 17133 
D 11 10 10 10 12 10 12 11 11 10 12 10 10 11 8 

29.94 
P 11 10 10 10 12 10 12 11 11 10 12 10 10 11 2 

2.00 1.000 5714 4444 10158 3360 2442 5802 15960 
D 11 10 10 10 12 10 12 11 11 10 12 10 10 11 1 

21.33 
P 11 10 10 10 10 3 10 11 11 10 10 10 10 11 1 

2.00 0.500 5714 4444 10158 3360 1221 4581 14739 
D 11 10 10 10 12 10 12 11 11 10 12 10 10 11 1 

167.36 
P 11 10 10 10 10 3 10 11 11 10 10 10 10 11 1 

2.00 0.250 6664 2937 9601 2640 1588 4227.5 13829 
D 12 11 11 11 12 11 12 12 10 11 12 11 11 11 5 

2627.44 
P 9 8 4 4 10 2 10 9 3 1 10 4 2 6 5 

2.00 0.125 7297 2115 9412 2118 1262 3380.25 12792 
D 12 11 11 11 12 11 12 12 10 11 12 11 11 12 7 

2492.09 
P 3 2 4 4 5 4 1 9 5 1 5 4 2 3 1 

2.00 0.062 7980 2138 10118 1338 669.4 2007.38 12125 
D 12 12 10 10 12 10 12 12 11 12 12 10 12 10 9 

1156.53 
P 1 4 5 5 2 3 6 1 6 6 2 5 4 2 6 

1.00 0.750 4444 4444 8888 2442 1832 4273.5 13162 
D 11 10 10 10 10 1 10 11 11 10 10 10 10 11 5 

99.09 
P 11 10 10 10 10 1 10 11 11 10 10 10 10 11 5 

1.00 0.500 4444 4444 8888 2442 1221 3663 12551 
D 11 10 10 10 10 1 10 11 11 10 10 10 10 11 5 

28.05 
P 11 10 10 10 10 1 10 11 11 10 10 10 10 11 5 

1.00 0.250 4577 2948 7525 2418 1808 4225.5 11751 
D 11 10 10 10 11 10 11 11 11 6 11 10 10 11 6 

665.3 
P 11 10 5 5 2 1 6 11 6 6 2 5 10 4 6 

1.00 0.125 4847 2185 7032 2418 1245 3663.38 10695 
D 10 11 11 11 10 11 10 10 10 5 10 11 11 10 4 

654.61 
P 5 2 6 6 1 6 7 5 3 1 1 6 2 5 4 

1.00 0.062 4867 2082 6949 2418 669.4 3087.38 10036 
D 10 11 11 11 10 11 10 10 10 3 10 11 11 10 3 

592.84 
P 1 2 4 4 5 6 3 1 5 3 5 4 2 1 3 

1.00 0.031 4867 2082 6949 2418 334.7 2752.7 9702 
D 10 11 11 11 10 11 10 10 10 3 10 11 11 10 3 

634.72 
P 1 2 4 4 5 6 3 1 5 3 5 4 2 1 3 
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Table 16 
Variations related to highest ℎଵ and ℎଶvalues considering supplier location at (0,0) 

Depot location (0, 0) ℎଵ 
[$/Unit] 

ℎଶ 
[$/Unit] 

Transportation cost 
[$] 

Holding cost 
[$] 

∆ Transportation 
Cost [$] 

∆ Holding 
Cost [$] 

∆ Transportation 
Cost [%] 

∆ Holding 
Cost [%] 

4.00 3.000 17600 504 0 0 0.00 0.00 
4.00 2.000 16058 1836 1542 -1332 8.76 -264.29 
4.00 1.000 14075 2439 3525 -1935 20.03 -383.93 
2.00 1.500 10606 5757 6994 -5253 39.74 -1,042.26 
2.00 1.000 10606 4740 6994 -4236 39.74 -840.48 
2.00 0.500 11065 3141 6535 -2637 37.13 -523.21 
1.00 0.750 9223 3672.75 8377 -3168.75 47.60 -628.72 
1.00 0.500 8947 3388.5 8653 -2884.5 49.16 -572.32 
1.00 0.250 8507 3141.8 9093 -2637.8 51.66 -523.36 

 
 

On the other hand, the difference between the cost of handling inventories between final goods and RTIs affects the scheduling 
of visits (see Table 16). Fig. 7 shows the performed routes for the first period to visit customers for delivery and pick-ups, 
considering three cost scenarios for maintaining inventory of RTIs in customers (other parameters remain constant). Each 
route starts from the depot (node 0) and moves along the route marked by the blue line, making all scheduled deliveries. Once 
the deliveries have been performed, the vehicle begins collecting the empty RTIs, visiting the scheduled customers, and 
following the green route, as shown in Fig.7. Therefore, when the handling RTIs cost is much lower than the cost of final 
goods, the visit schedule is modified, making the collection frequency more minor than the frequency of visits in the case of 
delivery. It can be seen, for example, in Fig. 7, in cases A, B, and C for period 1 of the planning horizon that, when the values 
of ℎଵ  and ℎଶ  are similar, the delivery and collection visit schedule are the same. However, in the case where ℎଶ  is low 
about ℎଵ, the delivery schedule changes, making the frequency of visits to customers to collect the RTIs less clearly due to 
the cost of having the RTIs stored in the customer facilities is very low compared to the cost of visiting the customer. It must 
also be considered that the vehicle's capacity may become a constraint that forces the frequency of visits to be more significant. 
Another factor related to the frequency of visits is the proximity of customers to the warehouse. Note that due to the supplier's 
proximity to customers 4 and 12, their transportation cost is very low, so the visit is scheduled for all periods of the planning 
horizon. See Fig. 7(a). 
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b) 

 

c) 
Fig. 7. A sequence of visits for period 1 of the planning horizon in the CLIRPB, with 15 customers by 

considering the supplier location at (0,0) and values of 𝒉𝟏 = 𝟒 and  𝒉𝟐 = [𝟑 𝟐 𝟏], cases a, b, c. 
 

 
Considering the importance of parameters ℎଵ and ℎଶ for a scheduled visit, we have calculated the difference between ℎଵ −ℎଶ. Using the concept of elasticity, we have calculated the percentage impact on costs 𝐶 that generates a percentage increase 
of 1% of the difference of ℎଵ − ℎଶ. We have performed the proposed approach's two runs or scenarios (A and B). Let be the 
values of 𝐶୅ and 𝐶୆ as the value of (1) for scenarios A and B. The traditional point elasticity formula calculated is 𝑒 =

0124
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corresponding model A and B respectively. Note that the value of 𝑒 ∈ [0, 1]. Indeed, varying the difference ℎଵ − ℎଶ within 
the range (ℎଵ୆ − ℎଶ୆) − (ℎଵ୅ − ℎଶ୅) (increasing or decreasing) by 1%, then cost 𝐶 must vary in the same direction (increase 
or decrease) but by a smaller percentage (inelastic). If 𝑒 < 0, it is understood that when ℎଵ − ℎଶ varies by 1% in a specific 
direction, 𝐶 will vary in the opposite direction. Finally, if |𝑒| > 1, it is said that ℎଵ − ℎଶ is elastic concerning 𝐶 or varies by 
a percentage greater than the percentage variation of ℎଵ − ℎଶ. 
 
Table 17 shows the calculation of the elasticity of the distance ℎଵ − ℎଶ  concerning the Total Cost. For example, the value of 𝑒 =  −1.57  is calculated with the values of ℎଵହ − ℎଶହ = 3.75 , ℎଵ଺ − ℎଶ଺ = 3.87 , 𝐶ହ = 14.233 , 𝐶଺ = 13.487 , and its 
meaning is that an increase of 1% in the distance ℎଵ − ℎଶ  , within the range (ℎଵ଺ − ℎଶ଺) − (ℎଵହ − ℎଶହ), is associated with a 
1.57% reduction in total costs (the value of 𝑒 =  −1.57 is shown in the last line of Table 16 – see the value of the last column). 
Note that the smaller value of (ℎଵହ − ℎଶହ) and (ℎଵ଺ − ℎଶ଺) are, the elasticity of ℎଵ − ℎଶ,  on total cost decreases, noting a 
greater impact on costs as the difference of ℎଵ − ℎଶ is greater. 
 
 
 
Table 17  
Elasticity of 𝒉𝟏 − 𝒉𝟐over Total Cost by considering supplier location at (0,0) and 𝒉𝟏 = 𝟒 

Run ℎଵ ℎଶ ℎଵ − ℎଶ   Total Cost (1) Elasticity of ℎଵ − ℎଶ over Total 
Cost 

1 4.00 3.00 1.00 18104  
2 4.00 2.00 2.00 17894 -0.01 
3 4.00 1.00 3.00 16514 -0.15 
4 4.00 0.50 3.50 15355 -0.42 
5 4.00 0.25 3.75 14233 -1.02 
6 4.00 0.13 3.87 13487 -1.57 

 
 
Table 18 shows the elasticities of distance ℎଵ − ℎଶ  on Holding Costs and Transportation Costs, highlighting in bold the 
highest elasticity values are always associated with cases associated with greater distances ℎଵ − ℎଶ. When considering a 
different supplier location and another demand condition, the same is observed concerning the elasticity (disturbance) of costs 
in the case of greater distances ℎଵ − ℎଶ .   
 
Table 18  
Elasticity of 𝒉𝟏 − 𝒉𝟐 over Costs considering supplier location at (0,0) and 𝒉𝟏 = 𝟒 

Run 𝒉𝟏 𝒉𝟐 𝒉𝟏 − 𝒉𝟐   Elasticity of 𝒉𝟏 − 𝒉𝟐  on Holding Cost  Elasticity of 𝒉𝟏 − 𝒉𝟐   on Transportation 
Cost 

1 4.00 3.00 1.00   
2 4.00 2.00 2.00 2.64 -0.08 
3 4.00 1.00 3.00 0.65 -0.24 
4 4.00 0.50 3.50 0.50 -0.58 
5 4.00 0.25 3.75 -6.11 0.03 
6 4.00 0.13 3.87 -1.76 -1.54 

 
 
 
Elasticity decomposes the problem analysis performed by the incidence of the holding cost and transportation cost parameters. 
They not only provide important insight into the performance of the decisions of the inventory routing problem but also point 
to the parameters where the management should focus. However, for the sensible use of elasticity in real richly problems, 
additional information related to different types of holding and transportation costs depending on the products and their 
options for management are required. Such information may indicate that the management should focus on parameters with 
a large difference between ℎଵ and ℎଶ rather than the shorter elasticities. Obtained preliminary results suggest that elasticities 
are reasonably accurate in predicting even significant changes in the objective function (total cost) due to significant changes 
in holding and transportation costs. However, more information about the robustness of elasticity in realistic settings is needed, 
considering effects such as uncertainties in parameter estimates, model structure, covariance, and correlations between ℎଵ and ℎଶ. However, from practice, when ℎଵ >>  ℎଶ indicates that it is convenient to negotiate with the administration of the RTIs 
given the low holding costs, it will depend on the customer's storage capacity and the degree of cooperation in the chain. 
Therefore, the model takes advantage of this fact and reduces collections' frequency accordingly, obtaining significant savings 
in RTI recovery costs. Regarding the location of the supplier, additional experiments were performed with arbitrary locations 
for a basic comparison. In all cases studied, it was observed that for a huge value of ℎଵ concerning the value ℎଶ, the percentage 
variation of holding, transportation, and total cost is more significant, confirming the above described. In addition, when the 
impact on the total cost of the different supplier locations has been analyzed, we can see that these changes are not significant 
due to the delta of the route schedule being related to the edges connecting the supplier with the remaining route. 
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4.2.2 Base case results with equal demand 
 
In this case, the aim is to inquire about the model's performance when the customer demand is homogeneous (the same for all 
customers). In this case, when conducting experiments similar to those in Table 17, we get that the elasticity relationship ℎଶ 
and the Total Cost is positive for any supplier location. Indeed,  when the value of one increases, then the other value increases, 
and vice versa. The same behavior was observed between ℎଶand the Cost of Transportation, with few exceptions, conclusions 
compatible with the initial case when the demand differed between customers. When comparing the obtained results for the 
initial case versus the case of equal demand, there are more significant impacts of the greater difference between ℎଵ and ℎଶ 
(ℎଵ − ℎଶ). When the supplier is located at (0,0), there is a more significant difference in transportation costs for all scenarios, 
specifically when ℎଵ and ℎଶ are further away. However, in cases where the supplier is in the center of the graph or elsewhere, 
the costs do not vary significantly when comparing the two scenarios (Figs. 8-10). 
 

 
 
 

Fig. 8. Transportation cost analysis for base and equal demand cases when the supplier is located at (0,0) 
 
 

 
 

Fig. 9. Transportation cost analysis for base and equal demand cases when the supplier is located at (250,250) 
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Fig. 10. Transportation cost analysis for base and equal demand cases when the supplier is located at (231,71) 
 
In addition, when the impact on the total cost of the different supplier locations was analyzed, we can see that these changes 
are insignificant. This fact is due to the route schedule changes related to the arcs connecting the supplier to the remaining 
route. Finally, Table 19 summarizes the total results for the complete data set. 
 
Figs. 11-13 show the computing times for each of the instances (10 to 30) for the different values of ℎଵ  and ℎଶ.  Figures 11 
to 13 show the computing times for instances (customers ranging from 10 to 30; and depot located on the corner, the middle, 
and random node) for the different values of h1 and h2. These figures show that the computing times have a similar behavior 
pattern, except where the depot is located on the corner of the grid (0, 0). For the instance of 30 customers and when the 
deposit is located randomly (396,172) for the instance of 25 customers, the computing times become pretty high. Generally, 
the instances of 25 customers have the highest computational times regardless of the type of depot location. However, even if 
these results are considered as such since it is a periodic decision that can be used during several future time horizons, these 
times can be considered acceptable. 
 

 
Fig. 11. Computing time when the supplier is located at (0,0) 
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Fig. 12. Computing time when the supplier is located at (250,250) 

 

 
 

Fig. 13. Computing time when the supplier is located at random grid 
 
 

Table 19  
Final results  for the complete synthetic data set 

Depot 
Location Customers 𝒉𝟏   [$/unit] 𝒉𝟐    [$/unit] 𝑪𝟏 [$] 𝑪𝟐 [$] Transportation 

cost [$] 𝑪𝟑 [$] 𝑪𝟒 [$] Holding 
cost [$] 

Total 
cost [$] Time 

G
rid Corner

 
(0, 0)

 

10 4.00 3.00 6363 6363 12726 924 693 1617 14343 0.94 
10 4.00 2.00 5601 4971 10572 1812 1470 3282 13854 1.76 
10 4.00 1.00 6609 3612 10221 672 1581 2253 12474 1.28 
10 2.00 1.50 4971 4641 9612 1470 1377 2847 12459 1.24 
10 2.00 1.00 3612 3612 7224 3162 1581 4743 11967 9.53 
10 2.00 0.50 5043 3019 8062 1470 1360.5 2830.5 10892.5 5.81 
10 1.00 0.75 3612 3612 7224 1581 1185.8 2766.8 9990.8 5.12 
10 1.00 0.50 3612 3612 7224 1581 790.5 2371.5 9595.5 4.92 
10 1.00 0.25 3612 3612 7224 1581 395.2 1976.2 9200.2 3.62 
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Table 19  
Final results  for the complete synthetic data set (Continue) 

Depot 
Location Customers 𝒉𝟏   [$/unit] 𝒉𝟐    [$/unit] 𝑪𝟏 [$] 𝑪𝟐 [$] Transportation cost [$] 𝑪𝟑 [$] 𝑪𝟒 [$] Holding cost [$] Total cost [$] Time 

G
rid M

iddle
 

(250,250)
 

10 4.00 3.00 6504 5451 11955 252 1143 1395 13350 1.16 
10 4.00 2.00 6504 4557 11061 252 1470 1722 12783 1.16 
10 4.00 1.00 6504 3411 9915 252 1581 1833 11748 2.88 
10 2.00 1.50 4557 4227 8784 1470 1377 2847 11631 2.24 
10 2.00 1.00 4557 3918 8475 1470 1140 2610 11085 3.94 
10 2.00 0.50 4557 3111 7668 1470 1090.5 2560.5 10228.5 9.17 
10 1.00 0.75 2756 2756 5512 2214 1660.5 3874.5 9386.5 8.38 
10 1.00 0.50 2797 2562 5359 2214 1233 3447 8806 6.59 
10 1.00 0.25 2756 1989 4745 2214 1021.5 3235.5 7980.5 7.34 

G
rid M

iddle
 

(107, 430)
 

10 4.00 3.00 4461 4461 8922 2412 1809 4221 13143 1.42 
10 4.00 2.00 4461 4167 8628 2412 1470 3882 12510 1.56 
10 4.00 1.00 4461 4167 8628 2412 1470 3882 12510 3.09 
10 2.00 1.50 4461 3264 7725 2412 1398 3810 11535 1.41 
10 2.00 1.00 4167 4167 8334 1470 1102.5 2572.5 10906.5 0.81 
10 2.00 0.50 4167 3264 7431 1470 1398 2868 10299 2.72 
10 1.00 0.75 3264 3264 6528 1398 1048.5 2446.5 8974.5 4.28 
10 1.00 0.50 2989 2891 5880 1716 924 2640 8520 4.62 
10 1.00 0.25 3167 1944 5111 1716 1130.2 2846.2 7957.2 3.22 

G
rid Corner

 
(0,0)

 

15 4.00 3.00 8800 8800 17600 288 216 504 18104 2.49 
15 4.00 2.00 8800 7258 16058 288 1548 1836 17894 31.19 
15 4.00 1.00 9205 4870 14075 288 2151 2439 16514 428.05 
15 2.00 1.50 5936 4670 10606 2706 3051 5757 16363 66.2 
15 2.00 1.00 5936 4670 10606 2706 2034 4740 15346 16.06 
15 2.00 0.50 6841 4224 11065 1554 1587 3141 14206 23.28 
15 1.00 0.75 4634 4634 9268 2073 1554.75 3627.75 12895.75 94.11 
15 1.00 0.50 4551 4396 8947 2187 1201.5 3388.5 12335.5 66.08 
15 1.00 0.25 4577 3930 8507 2226 915.75 3141.75 11648.75 106.02 

G
rid M

iddle
 

(250,250)
 

15 4.00 3.00 9016 9016 18032 1056 792 1848 19880 13.67 
15 4.00 2.00 9016 7198 16214 1056 2058 3114 19328 79.55 
15 4.00 1.00 9792 4801 14593 444 2286 2730 17323 124.84 
15 2.00 1.50 5139 5139 10278 4074 3055 7129 17407 15.03 
15 2.00 1.00 5139 4775 9914 4074 2319 6393 16307 27.03 
15 2.00 0.50 7251 3894 11145 2052 1848 3900 15045 367.17 
15 1.00 0.75 4634 4510 9144 2439 1946.25 4385.25 13529.25 107.78 
15 1.00 0.50 4634 4165 8799 2439 1593 4032 12831 60.09 
15 1.00 0.25 4256 2005 6261 3162 2223 5385 11646 766.56 

G
rid M

iddle
 

(231, 71)
 

15 4.00 3.00 9268 9268 18536 288 216 504 19040 8.2 
15 4.00 2.00 9268 7738 17006 288 1548 1836 18842 77.34 
15 4.00 1.00 9463 4444 13907 900 2442 3342 17249 657.92 
15 2.00 1.50 5824 5645 11469 3144 2520 5664 17133 29.94 
15 2.00 1.00 5714 4444 10158 3360 2442 5802 15960 21.33 
15 2.00 0.50 5714 4444 10158 3360 1221 4581 14739 167.36 
15 1.00 0.75 4444 4444 8888 2442 1831.5 4273.5 13161.5 99.09 
15 1.00 0.50 4444 4444 8888 2442 1221 3663 12551 28.05 
15 1.00 0.25 4577 2948 7525 2418 1807.5 4225.5 11750.5 665.3 

G
rid Corner

 
(0,0)

 

20 4.00 3.00 10761 10761 21522 636 477 1113 22635 69.01 
20 4.00 2.00 10815 8424 19239 636 2244 2880 22119 58.38 
20 4.00 1.00 11103 5577 16680 636 3123 3759 20439 82.49 
20 2.00 1.50 8391 7290 15681 2244 2596.5 4840.5 20521.5 13.33 
20 2.00 1.00 9009 5577 14586 1860 3123 4983 19569 43.86 
20 2.00 0.50 9009 5577 14586 1860 1561.5 3421.5 18007.5 60.01 
20 1.00 0.75 5577 5577 11154 3123 2342.25 5465.25 16619.25 14.25 
20 1.00 0.50 5577 5577 11154 3123 1561.5 4684.5 15838.5 31.77 
20 1.00 0.25 5495 4846 10341 3243 1365.75 4608.75 14949.75 476.61 

G
rid M

iddle
 

(250,250)
 

20 4.00 3.00 10650 10650 21300 636 477 1113 22413 7.14 
20 4.00 2.00 10650 10650 21300 636 477 1113 22413 4.17 
20 4.00 1.00 11391 5673 17064 120 2880 3000 20064 18.11 
20 2.00 1.50 7830 7755 15585 2646 2052 4698 20283 19.3 
20 2.00 1.00 8049 5673 13722 2646 2880 5526 19248 37.83 
20 2.00 0.50 7993 4323 12316 2646 2599.5 5245.5 17561.5 77.33 
20 1.00 0.75 5673 5439 11112 2880 2342.25 5222.25 16334.25 16.92 
20 1.00 0.50 5673 4981 10654 2880 1981.5 4861.5 15515.5 29.22 
20 1.00 0.25 5746 3482 9228 3000 1911.75 4911.75 14139.75 532.5 
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Table 19  
Final results  for the complete synthetic data set (Continue) 

Depot 
L ti

Customers 𝒉𝟏   [$/unit] 𝒉𝟐    [$/unit] 𝑪𝟏 [$] 𝑪𝟐 [$] Transportation cost [$] 𝑪𝟑 [$] 𝑪𝟒 [$] Holding cost [$] Total cost [$] Time 

G
rid Random

 
 

(96, 49)
 

20 4.00 3.00 10761 10761 21522 636 477 1113 22635 55.61 
20 4.00 2.00 10815 8424 19239 636 2244 2880 22119 66.94 
20 4.00 1.00 11103 5505 16608 636 3123 3759 20367 143.56 
20 2.00 1.50 8391 7290 15681 2244 2596.5 4840.5 20521.5 10.91 
20 2.00 1.00 9009 5505 14514 1860 3123 4983 19497 23.58 
20 2.00 0.50 9246 5152 14398 1548 1981.5 3529.5 17927.5 265.83 
20 1.00 0.75 5505 5505 11010 3123 2342.25 5465.25 16475.25 24.05 
20 1.00 0.50 5505 5505 11010 3123 1561.5 4684.5 15694.5 34.2 
20 1.00 0.25 5423 4622 10045 3243 1365.75 4608.75 14653.75 387.01 

G
rid Corner (0, 0)

 25 4.00 3.00 11460 11460 22920 3244 0 0 22920 388.01 
25 4.00 2.00 11241 10902 22143 3245 288 402 22545 389.01 
25 4.00 1.00 11862 6531 18393 3246 0 3462 21855 390.01 
25 2.00 1.50 9465 9063 18528 3247 2010 1863 20391 391.01 
25 2.00 1.00 9993 6936 16929 3248 1566 3135 20064 392.01 
25 2.00 0.50 9993 6408 16401 3249 1566 1860 18261 393.01 
25 1.00 0.75 6531 6531 13062 3250 3462 2596.5 15658.5 394.01 
25 1.00 0.50 6531 6531 13062 3251 3462 1731 14793 395.01 
25 1.00 0.25 6883 5102 11985 3252 3228 1902.8 13887.8 396.01 

G
rid M

iddle 
 

(250, 250)
 

25 4.00 3.00 12549 10905 23454 0 1557 1903.8 25357.8 2745 
25 4.00 2.00 12549 10089 22638 0 1644 1904.8 24542.8 2370 
25 4.00 1.00 12549 6606 19155 0 3531 1905.8 21060.8 3683 
25 2.00 1.50 9684 9072 18756 2088 2151 1906.8 20662.8 1733.4 
25 2.00 1.00 10089 6606 16695 1644 3531 1907.8 18602.8 2002.2 
25 2.00 0.50 10089 6002 16091 1644 2169 1908.8 17999.8 9549.2 
25 1.00 0.75 6240 6240 12480 3918 2938.5 1909.8 14389.8 42.2 
25 1.00 0.50 6606 6002 12608 3531 2169 1910.8 14518.8 43.1 
25 1.00 0.25 6428 3677 10105 4086 2635.5 1911.8 12016.8 59.4 

G
rid Random

 
 

(396, 172)
 

25 4.00 3.00 11568 11568 23136 0 0 1912.8 25048.8 2677 
25 4.00 2.00 11349 11010 22359 288 402 1913.8 24272.8 1859 
25 4.00 1.00 11970 6273 18243 0 3660 1914.8 20157.8 1818 
25 2.00 1.50 9573 9171 18744 2010 1863 1915.8 20659.8 248 
25 2.00 1.00 10893 6789 17682 528 3498 1916.8 19598.8 7212.2 
25 2.00 0.50 10101 6150 16251 1566 1959 1917.8 18168.8 5303.2 
25 1.00 0.75 6273 6273 12546 3660 2745 1918.8 14464.8 31 
25 1.00 0.50 6162 6162 12324 3789 1894.5 1919.8 14243.8 33.0 
25 1.00 0.25 6640 4825 11465 3426 2022 1920.8 13385.8 570.0 

G
rid Corner

 
 (0, 0)

 

30 4.00 3.00 12804 12804 25608 720 540 1921.8 27529.8 26.94 
30 4.00 2.00 12804 12201 25005 720 882 1922.8 26927.8 64.99 
30 4.00 1.00 12804 8558 21362 720 3096 1923.8 23285.8 127.44 
30 2.00 1.50 11793 11007 22800 1278 1629 1924.8 24724.8 592.86 
30 2.00 1.00 11941 8558 20499 1146 3096 1925.8 22424.8 197.39 
30 2.00 0.50 12405 6589 18994 696 2760 1926.8 20920.8 499.52 
30 1.00 0.75 8083 7360 15443 3618 3323.25 1927.8 17370.8 293.41 
30 1.00 0.50 8083 6992 15075 3618 2523 1928.8 17003.8 1268.39 
30 1.00 0.25 8083 6026 14109 3618 2004.75 1929.8 16038.8 33680.88 

  30 4.00 3.00 12711 12711 25422 876 657 1930.8 27352.8 23.14 

G
rid M

iddle
 

 (250, 250)
 

30 4.00 2.00 12574 12574 25148 1044 522 1931.8 27079.8 13.53 
30 4.00 1.00 13101 7592 20693 492 3900 1932.8 22625.8 133.12 
30 2.00 1.50 11455 10577 22032 1710 2101.5 1933.8 23965.8 80.47 
30 2.00 1.00 11455 7592 19047 1710 3900 1934.8 20981.8 126.24 
30 2.00 0.50 11455 6356 17811 1710 2641.5 1935.8 19746.8 571.58 
30 1.00 0.75 7548 6356 13904 3942 3962.25 1936.8 15840.8 115.84 
30 1.00 0.50 7548 6356 13904 3942 2641.5 1937.8 15841.8 180.64 
30 1.00 0.25 7137 4844 11981 4473 2432.25 1938.8 13919.8 10698.84 

G
rid Random

 
 

(152, 34) 
 

30 4.00 3.00 12432 12432 24864 876 657 1939.8 26803.8 48.92 
30 4.00 2.00 12295 12295 24590 1044 522 1940.8 26530.8 19.09 
30 4.00 1.00 12432 8177 20609 876 3249 1941.8 22550.8 58 
30 2.00 1.50 12024 10740 22764 834 1687.5 1942.8 24706.8 142.47 
30 2.00 1.00 12295 8177 20472 522 3249 1943.8 22415.8 94.34 
30 2.00 0.50 12342 6173 18515 522 2838 1944.8 20459.8 349.5 
30 1.00 0.75 7816 6944 14760 3657 3440.25 1945.8 16705.8 371.81 
30 1.00 0.50 7816 6576 14392 3657 2601 1946.8 16338.8 1612.56 
30 1.00 0.25 7243 5368 12611 4521 2036.25 1947.8 14558.8 27505.17 
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5. Concluding Remarks  
 
This paper introduces the IRP by considering not only the forward delivery but also the use of RTIs in the distribution strategy 
considering inventory routing decisions with RTIs collection (backhaul customers) within a Closed-Loop Supply Chain within 
a short-term planning horizon. We consider a distribution system with a supplier and a set of 𝑁 customers that must be served 
to meet their known demand on a discrete planning horizon of 𝑇 periods (days within a week). We proposed a mathematical 
model to represent and solve the considered problem. The supply schedule must decide the period to visit the customer, the 
quantity of product to be delivered and collected for each visit, and the vehicle's route. 
 
We have analyzed the elasticity of the results (schedule visits) by considering the transportation and holding cost changes. 
The results show the more significant impacts of the more significant difference between ℎଵ and ℎଶ  (ℎଵ − ℎଶ ) when 
comparing the obtained results for the initial case versus the case of equal demand. The location of the supplier has a more 
significant difference in transportation costs, specifically when ℎଵ and ℎଶ are further away from each other. The obtained 
results show the efficiency of the proposed optimization scheme for solving the combined IRP with RTIs, which could be 
extended to different real application problems. 
 
For future research, we suggest the following aspects to develop. 
 

• Consider many patterns and corresponding input values to feed the proposed model. The delivery and collection 
patterns are intended to simulate possible basic patterns evaluated in the proposed approach without being exhaustive. 
The delivery and collection patterns are intended to simulate possible basic patterns evaluated in the proposed 
approach without being exhaustive. The mathematical model is flexible, and other patterns and relative input 
parameters could be explored in future works. Indeed, any set of patterns could be chosen. The proposed model is 
intended to be generic and flexible, exposing analyses that do not seek to depend on the selected patterns. 

• Extend the problem by considering various functions (environmental emissions (Mahjoob et al., 2021), financial risk 
(Chen & Lin, 2009), and perishable aspects (Shamsiet et al., 2014)). Besides, obtaining a multiobjective problem 
using some strategy to generate a Pareto frontier with two or three objective functions (Escobar, 2017; Polo et al., 
2019; Tordecilla-Madera et al., 2018; Escobar et al., 2020). 

• Use the optimization of heuristics techniques to solve the model in large instances (Cárdenas-Barrón & Melo, 2021; 
Alvarez et al., 2020; Ramadhan & Imran, 2020), and also extend the heuristic such as granular tabu search based on 
similar problems (Puenayán et al., 2014; Escobar et al., 2022; Escobar et al., 2014a; Linfati et al., 2014a; Linfati et 
al., 2014b; Escobar, 2014; Bernal et al., 2017, and Bernal-Moyano et al., 2017) or genetic algorithms (Bolaños et al., 
2018 and Escobar-Falcón et al., 2021). Besides, the problem's solution is by considering efficient approaches based 
on Granular Tabu Search with the combination of Variable Neighborhood Search (VNS) or Iterated Local Search 
(ILS) such as Escobar et al. (2014b) and Escobar et al. (2015). 

• Solving the proposed model for large instances uses advanced mathematical optimization techniques, such as branch-
and-cut and branch-and-price (Bard & Nananukul, 2010; Grønhaug et al., 2010). 

• Solving the multiperiod problem by considering a homogeneous and heterogeneous fleet of vehicles. Besides, solving 
the stochastic version of this problem and the CLIRPB. 
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