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 With the growing environmental concerns and the rising number of electric vehicles, researchers 
and companies are paying more and more attention to green logistics. This paper studies the Electric 
Vehicle Routing Problem with time-dependent speeds and soft time windows. The purpose is to 
minimize the total distance travelled, while penalizing early or late arrivals at the customers’ 
locations. For this purpose, we formulated the Mixed Integer Linear Program (MILP) and 
developed a General Variable Neighborhood Search (GVNS) metaheuristic, an efficient way to 
tackle this problem. To prove the efficiency of our approach, we tested the GVNS against the 
Adaptive Large Neighborhood Search (ALNS) algorithm and our MILP model, using a set of 
available benchmark instances. After an extensive experimental evaluation, we concluded that 
GVNS can find better quality solutions than other methods considered in this research or the same 
quality solution in less time. 
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1. Introduction 

 
With the rising concern about the environmental impact of greenhouse gases (GHG) emissions, many countries committed 
to reducing their emission levels, either by imposing higher taxes on emissions or by subsidizing energy sources that are 
considered to be environmentally friendly. CO2 is the most common GHG, attributing around 81% of all GHG in the EU 
(Agency, 2020). As approximately 26% of all GHG emissions come from the transportation sector (Agency, 2020), it is 
important to consider different tactics for reducing those emissions. For this reason, environmentally friendly logistics has 
received much attention in recent years.  
 
The vehicle routing problem is a well-studied problem, with several books published on the topic Golden et al. (2008); Toth 
and Vigo (2014, 2002). It can be seen as a generalization of the Traveling Salesmen Problem with N salesmen. Many different 
variations of the VRP emerged over time, each characterized by a specific set of constraints and objective functions. The 
particular features characterizing a VRP variant are also called attributes. The most common attributes include capacities of 
vehicles, time windows, homogeneity or heterogeneity of a fleet of vehicles, asymmetry of the distances between nodes, 
multiple depots, multiple compartments, split deliveries, time dependency, and many others. 
 
The Environmentally friendly Vehicle Routing Problem (EF-VRP) appeared quite recently, in response to the growing 
concerns about CO2 emissions and climate change. It is an extension of the classic VRP which considers the environmental 
impact of routing a fleet of vehicles. EF-VRP is very often referred to as the Green Vehicle Routing problem, but this term is 
ambiguous, as it also designates one specific version of EF-VRP. EF-VRP can be divided into three different categories. 
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Pollution Routing Problem (PRP) was introduced by Bektaş and Laporte (2011). It considers the fleet of conventional internal 
combustion vehicles (ICV) but differs from the classical VRP in terms of the objective function, as PRP aims at minimizing 
the total GHG emissions of each route. When approximating emissions associated with each route, several factors can be 
taken into consideration, including the distance between customers, vehicle speeds, fuel consumption, load, road gradient, 
etc. This type of problem most often optimizes several distinct objectives at once, thus balancing the economic and 
environmental factors. Green Vehicle Routing Problem (GVRP) seeks to minimize the fuel consumption of a fleet of vehicles. 
The fleet can consist of ICVs, alternative fuel vehicles (AFV), or both. AFVs denote any vehicle that uses any other type of 
engine other than the petroleum-based internal combustion engine, including electric vehicles, hybrid electric vehicles, 
hydrogen vehicles, and others. The problem was first formulated by Erdoğan and Miller-Hooks (2012), who introduced the 
term GVRP. The emissions concerns are implicitly dealt with, as the assumption is that by simply using AFVs for the delivery 
process we eliminate the GHG emissions associated with routing. This is, of course, a simplified view as we do not take into 
consideration the emissions related to the production of AFVs nor the emissions resulting from generating electrical energy, 
which is still primarily comes from burning fossil fuels IEA (2019), but these problems are out of the scope of the VRP. A 
special case of GVRP that deals with the routing of electric vehicles is referred to as the Electric Vehicle Routing Problem 
(EVRP). The third type of problem that is sometimes classified as EF-VRP is the VRP in reverse logistics. This type of 
problem does not necessarily address emissions. More often, it deals with other environmentally beneficial aspects of VRP, 
such as the waste collection or recycling of used materials. 
 
In this paper, we will look at a version of GVRP that uses electric vehicles with soft time windows and time-dependent speeds 
(TD-EVRP-STW). This problem has a real-world application as it addresses the needs of delivery companies with a fleet of 
electric vehicles. More particularly, last-mile delivery in urban neighborhoods is examined in this case. Considering the fact 
that vehicle speed is greatly influenced by the time of the day in heavily populated areas (rush hours, congestions, construction 
work, etc.), the time-dependent speeds have to be included in the model in order to correctly calculate the time necessary for 
the delivery of goods. Moreover, customer satisfaction is often correlated with the ability of the company to deliver purchased 
goods in a preferred time window. That being said, some small deviations from the preferred delivery time can be tolerated, 
therefore, soft time windows are preferable to hard time windows. For these reasons, we believe that the proposed formulation 
of the problem is relevant to the needs of the industry. To the best of our knowledge, this problem has not yet been researched 
in the literature. The contributions of this paper are multiple: 

• We identified and formulated a version of EVRP that was not previously considered in the literature and has a clear 
application in the industry. 

• We presented the reader with an extensive literature review on the topic of EVRP. 
• We proposed a Mixed Integer Linear Program (MILP) formulation for TD-EVRP-STW and developed a General 

Variable Neighborhood Search metaheuristic for finding a good quality solution in a reasonable amount of time. 
• We proposed a procedure for determining the departure times of each vehicle from visited customers and recharging 

stations in an efficient way. 
• We analyzed the neighborhood structures used in our local search method and presented our findings so that other 

authors could have some insight into the quality of the aforementioned neighborhoods and could more easily decide 
which one to include in their own methods. 

 
This paper is organized as follows. In Section 2, we described the problem considered in this article. Section 3 provides the 
reader with an extensive literature review on the topic. In Section 4, we propose our own mathematical model for TD-EVRP-
STW, and in Section 5, we describe our proposed metaheuristic for finding a good quality solution to this problem. The 
experimental evaluation of our method is presented in Section 6, together with the analysis of used neighborhood structures 
and parameters. Finally, we presented the concluding remarks and potential areas for future research in Section 7. 

2. Problem definition 

Let us consider a distribution company with a fleet of electric vehicles at its disposal. Each day, the company receives a certain 
number of requests from its customers and needs to fulfill those requests in the most efficient manner. All the vehicles are the 
same in terms of capacity, consumption rate, and base speed. Each customer selects a certain amount of goods and a time 
interval in which the delivery would be preferable. The company then dispatches its vehicles, making sure that the total amount 
of goods loaded into the truck does not exceed its capacity. As electric vehicles have a limited range, they might need to visit 
a refueling station at some point while serving customers. Recharging electric vehicles is not as quick as refueling an ICV, so 
the dispatcher has to take that aspect into account when planning the arrival times of each vehicle at customers’ locations. If 
a customer is visited outside of its preferred time window, it is more likely to be unsatisfied with the company’s service and 
could potentially take business elsewhere in the future. Arriving late at the customer’s location can obviously impact the 
satisfaction with the service, but arriving early can also be problematic as the customer may not be ready to receive the 
delivery. In some of the studies, this is mended by making the vehicle wait until the start of the time window. In our opinion, 
this approach is inadequate, because waiting at a certain location can result in a much higher penalty for being late at other 
customers’ locations. For this reason, we allow vehicles to arrive early at the location with a certain penalty. In real-world 
situations, each refueling station has a limitation on how many vehicles it can serve at any given time and could have several 
different recharging technologies, allowing users to recharge their vehicles at a different rate, but also at different prices. In 
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this paper, we ignored this factor and assumed that each refueling station has unlimited vehicle capacity and the same 
recharging rate. Additionally, in real-world scenarios, energy consumption is influenced by numerous factors, such as 
distance, road gradient, the weight of the vehicle, etc. For more information on different consumption models please refer to 
Abousleiman and Rawashdeh (2015); Chen et al. (2020). These models are most often nonlinear. Despite that, for this 
research, we assumed that consumption is a linear function of distance. We find the justification for this simplification in the 
fact that the primary goal of this research is to devise a reliable metaheuristic method that can find a good enough solution in 
a reasonable amount of time. Introducing the nonlinear element to our model would greatly increase the complexity of the 
mathematical model while having little to no effect on metaheuristic methods. Therefore, we concluded that demonstrating 
the advantage of our metaheuristic approach over an exact solver is a good indication of their relative performance, even when 
nonlinearity is introduced to the problem. For the same reason, we assumed that the charging function is a linear function of 
battery level, which is not the case in practice Montoya et al. (2017). Both these nonlinear elements can be easily added to 
our proposed metaheuristic without any change to the algorithm. We also assume that each time a vehicle visits a recharging 
station, its battery is recharged to its full capacity. The entire time interval in which the customers should be served is divided 
into several smaller intervals, to model the different road conditions and rush hours. Each interval is associated with an average 
speed by which a vehicle can travel during that time interval. These time-dependent speeds have to be taken into consideration, 
as they directly influence the ability of a vehicle to arrive at a customer’s location during the preferred time window. In Figure 
1, we display a generic version of EVRP. The depot is represented with a triangle, customers with circles, and refueling 
stations with rhombi. Each vehicle starts its journey from the depot with 100% of the battery levels. Each time a vehicle serves 
some customer its battery level gets lower until it’s forced to visit one of the recharging stations and replenish the battery. 

 

 
Fig. 1. A generic example of EVRP 

3. Literature review 

In this paper, we are primarily interested in Electric Vehicle Routing Problem (EVRP). In recent years, EVPR received much 
attention, as many articles have been published on the topic, considering various attributes and solution approaches to this 
problem. 
 
Felipe et al. (2014) considered EVRP with partial recharges and multiple recharging technologies, which allow the battery to 
replenish at different rates and costs. Recharging vehicles at higher speeds would result in lower recharging time but would 
have a higher price. Several local search methods were tested, including the Simulated Annealing (SA) (Kirkpatrick et al. 
(1983)) metaheuristic. Schneider et al. (2014) developed a Variable Neighborhood Search (VNS) and Tabo Search (TS) 
(Glover (1986)) hybrid for finding a solution to the EVRP with hard time windows and capacity constraints. Furthermore, a 
set of benchmark instances for EVRP is proposed. Bruglieri et al. (2015) considered a version of EVRP with hard time 
windows and partial battery recharge. The goal was to simultaneously minimize the number of vehicles, total travel time, total 
recharge time, and total waiting time. For this purpose, the authors used a metaheuristic based on VNS called Variable 
Neighborhood Branching (VNB), first proposed by Hansen et al. (2006). Goeke and Schneider (2015) examined a capacitated 
EVRP with hard time windows and a heterogeneous fleet, where at least a part of the fleet consists of electric vehicles. The 
objective was to minimize the total distance travelled by all vehicles, the total cost of vehicle propulsion and labor, and the 
cost of battery recharging. The Adaptive Large Neighborhood Search (ALNS) (Ropke and Pisinger (2006)) metaheuristic was 
used, with an acceptance criterion based on SA. EVRP with hard time windows was also explored in Hiermann et al. (2016). 
The authors considered a scenario in which a company does not own electric vehicles but leases them at a certain price. There 
are several types of vehicles at disposal, differing in capacity. The goal is to minimize the total travel cost as well as the 
acquisition cost of the vehicles. For this purpose, ALNS is used, coupled with the local search and a labeling procedure which 
helps to improve the solution. Another example of ALNS being used for EVRP is presented by Keskin and Çatay (2016). The 
goal was to minimize the total distance travelled, considering hard time windows and partial recharges. Yavuz and Çapar 
(2017) considered EVRP with a heterogeneous fleet consisting of both AFVs and ICVs. Vehicles do not only deliver goods 
to customers but provide certain services, therefore, the service time of a particular customer can be longer than in the standard 
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version of the problem. This allows vehicles to be partially recharged while serving a customer, but visits to AFS still replenish 
the battery to its full capacity. A multi-objective variant of the problem is considered, with four distinct objectives: minimizing 
the total distance travelled by all vehicles, minimizing CO2 emissions, minimizing the fuel cost, and minimizing the distance 
travelled by ICVs. For finding a Pareto-front for this problem, the VNS method was used. VNS is also used by Affi et al. 
(2018) for minimizing the total energy cost for a fleet of electric vehicles with capacity constraints. A basic version of EVRP 
was examined by Mavrovouniotis et al. (2018), who used Ant Colony Optimization (ACO) (Dorigo et al. (1996)) to minimize 
the total operation time of the fleet of electric vehicles. This approach was further improved in Mavrovouniotis et al. (2019), 
where the authors introduced parallelization to ACO. A similar approach to a basic EVRP was taken by Zhang et al. (2018a), 
who proposed using the Ant Colony System (ACS) to minimize the total distance travelled. The authors also presented the 
two-phase heuristic for tackling this problem, which consists of solving the TSP version of the problem by applying the 
Nearest Neighbor Criteria to it, after which the visits to the AFSs and depot are inserted into the solution, turning it into a 
solution to the initial problem. Zhang et al. (2018b) considered capacitated EVRP, with the goal of optimizing the total energy 
consumption. The consumption is estimated by taking into consideration vehicle weight, distance, speed, motor efficiency, 
etc. For this problem, the authors hybridized ACO with Iterated Local Search (ILS). Additionally, ALNS was also proposed 
for this problem but was outperformed by the ACO-ILS hybrid. The multi-start local search (MSLS) metaheuristic was 
applied to EVRP in Andelmin and Bartolini (2019). Hiermann et al. (2019) considered a fleet of vehicles consisting of ICVs, 
hybrid electric vehicles (HEV), and EVs. Furthermore, vehicles in each class can vary in terms of capacity, energy 
consumption, and battery capacity. Hard time windows constraint is also imposed on this problem, as well as partial recharge. 
The goal was to optimize the total cost, consisting of fixed costs like maintenance and acquisition of vehicles, and dynamic 
costs such as fuel consumption. The routes are obtained by using a Genetic Algorithm (GA), and the visits to the AFSs are 
inserted into a route by using dynamic programming. Macrina et al. (2019b) examined EVRP with partial recharges, hard 
time windows, and a heterogeneous fleet consisting of both ICVs and EVs. The goal was to minimize the total fuel and 
electricity cost. As a solution approach, the authors proposed a metaheuristic based on the Large Neighborhood Search (LNS) 
algorithm. The same problem was discussed in Macrina et al. (2019a), with ILS as a solution approach. SA was used for a 
capacitated EVRP by Normasari et al. (2019) to minimize the total distance travelled by all vehicles. Peng et al. (2019) 
minimized the total distance travelled by electric vehicles by using a Memetic algorithm (MA), with adaptive local search as 
a local search procedure. MA with a competition mechanism combined with VNS was proposed by Wang and Lu (2019) for 
minimizing the total distance travelled by all EVs. The algorithm starts by creating the initial population using the k-nearest 
neighbors algorithm, where each individual has a different, randomly selected starting point. VNS with SA acceptance 
criterion is used in each generation to intensify the search in promising areas. Zhang et al. (2019) considered EVRP with 
multiple depots, with the goal of minimizing the total distance travelled. The solution approach consists of assigning each 
customer to its nearest depot and then applying ACS to several single-depot EVRP instances. Li et al. (2020) examined the 
distribution sharing version of EVRP, where several distribution companies combine their assets in order to minimize the 
overall cost. For this purpose, the authors used the ACO algorithm. Ren et al. (2020) proposed bi-objective VNS for 
minimizing emissions and total delay time of a fleet consisting of both ICVs and EVs, where each customer is associated with 
a hard time window. The delay time refers to the observation that even if a customer is served inside a predetermined time 
window, the satisfaction with service is greater if the arrival time is closer to the beginning of the time window, as opposed 
to the end of the time window. Zhang et al. (2020b) presented two methods for minimizing CO2 emissions of the multi-depot 
EVRP: two-stage Ant Colony System (TSACS) and Partition-Based Algorithm (PBA). Emissions are estimated simply by 
applying a conversion factor to the total distance travelled. 
 
Even though soft time windows are a relatively common attribute for the classic version of VRP, there are not many articles 
in which this attribute is used with EVRP. One example of EVRP with soft time windows can be found in the conference 
paper by Zhang et al. (2018c). The authors considered EVRP in reverse logistics, with partial recharges, but only presented a 
mathematical model. It is said in the paper that TS was also implemented, but the authors do not provide any implementation 
details, nor a comparison with a MILP solver. EVRP with soft time windows was also examined in Urazel and Keskin (2021). 
The authors proposed two solution approaches: GA and a hybrid metaheuristic combining GA and SA, with the objective of 
minimizing the total distance travelled and penalties from missing time windows. 
 
Similar to the soft time windows constraint, the time-dependent variant of EVRP was not extensively researched. A general 
review of time-dependent routing problems is presented by Gendreau et al. (2015), without explicitly considering EVs. There 
are several articles considering time-dependent variants for PRP, like Xiao and Konak (2015, 2017); Wang et al. (2019), 
which also consider soft time windows. To the best of our knowledge, only two articles applied the time-dependent speeds 
assumption to the EVRP and proposed some metaheuristic solution approach. Wang et al. (2020) investigated EVRP with 
hard time windows, time-dependent speeds, and path flexibility. The authors presented a MILP model for selecting the optimal 
path, where the objective was to minimize the energy consumption and the total distance, where relative influences of these 
two goals are controlled by their respective weights. Based on this model, the authors further developed a MILP model for 
the original problem with the objective of minimizing the total distance travelled. The General VNS method was applied to 
this problem with two neighborhood structures. Zhang et al. (2020a) analyzed the EVRP with time-dependent speeds, hard 
time windows, partial battery recharge, and congestion tolls. The objective was to minimize route duration costs, recharging 
costs, and congestion tolls. The authors presented a MILP model, and offered ALNS as a more practical solution method. 
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4. Mathematical model 

 
TD-EVRP-STW can be formulated as follows. Let 𝑉 be the set of customers to be visited, 𝐹 is the set of refueling stations 
and 𝐷 represents the depot. Considering the fact that refueling stations can be visited multiple times during the delivery, we 
create a set of dummy nodes 𝐹′ by replicating nodes from 𝐹 several times. With this in mind, we can create a directed complete 
graph 𝐺 = (𝑁,𝐴), where 𝑁 = 𝐷 ∪ 𝑉 ∪ 𝐹′ ∪ 𝐷 is a set of vertices corresponding to the depot, customers and refueling stations, 
and 𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗} is the set of arcs connecting these vertices. The depot node is duplicated to differentiate 
between the origin and destination of each route. The weights associated with each arc correspond with the distance between 
the nodes connected by that arc. The entire period in which the delivery should take place is divided into several time intervals, 
each represented by a starting time, ending time, and the average speed of the vehicles. By introducing time intervals we can 
model more realistic situations, especially in the case of the last-mile delivery, where the average speed of vehicles may vary 
throughout the day depending on rush hours, congestion, or other reasons. The time needed to traverse each arc is determined 
dynamically, by taking into account the starting time and time intervals in which the arc traversing takes place. Each customer 
is associated with a demand and a time window, i.e. the preferred time in which the customer should be served. Arriving early 
or late at a customer's location results in a penalty, as it affects the satisfaction of a customer. All of the vehicles are 
homogeneous, which means that they have the same capacity, consumption rate, and speed, given a time interval. The time 
that a vehicle spends at each node is given for each customer as a service time 𝑠௜ , 𝑖 ∈ 𝑉, while the service time at the refueling 
stations depends on the remaining battery level and the refueling rate. Partial recharges are not considered, i.e. the battery is 
recharged fully each time a vehicle visits a recharging station. The mixed-integer linear program (MILP) formulation 
presented in this paper is inspired by (Schneider et al., 2014) and (Zhang et al., 2020a). Furthermore, we adopt the same 
naming convention as in the aforementioned publication. The complete list of symbols used in our MILP formulation is 
presented in Table 1. together with the meaning behind each of the symbols. 
 
Table 1  
Variable and parameter definitions 

Symbol Meaning 0,𝑁 + 1 Depot nodes 𝐹 The set of recharging stations 𝐹′ Dummy nodes representing the set of replicated nodes from 𝐹 𝐹଴ᇱ Recharging nodes 𝐹ᇱincluding the depot node 0, 𝐹ᇱ ∪ {0} 𝑉 Set of customers 𝑉 = {1, … ,𝑁}  𝑉଴ Set of customers including the depot, 𝑉଴ = 𝑉 ∪ {0} 𝑉′ Set of customers and recharging stations, 𝑉ᇱ =  𝑉 ∪ 𝐹′  𝑉଴ᇱ Set of customers, recharging stations and depot 0,  𝑉଴ᇱ =  𝑉ᇱ ∪ {0}  𝑉ேାଵᇱ  Set of customers, recharging stations and depot {𝑁 + 1}, 𝑉ேାଵᇱ =  𝑉ᇱ ∪  {𝑁 + 1} 𝑉଴,ேାଵᇱ  Set of customers, recharging stations and depot instances {0} and {𝑁 + 1},  𝑉଴,ேାଵᇱ =  𝑉ᇱ ∪ {𝑁 + 1} ∪ {0} 𝐾 Set of time intervals     𝜓௞ The beginning of the time interval 𝑘 ∈ 𝐾 𝜐௞ The end of the time interval 𝑘 ∈ 𝐾 𝐿௞ The vehicle speed during the time interval 𝑘 ∈ 𝐾 𝑐ଵ, 𝑐ଶ Coefficients for the objective function 𝑑௜௝ The distance between nodes 𝑖 and 𝑗 𝑡௜௝௞ The travel time between nodes 𝑖 and 𝑗 during the time interval 𝑘 𝐶 Vehicle capacity    𝑔 Recharging rate ℎ Vehicle consumption rate 𝑄 Battery capacity 𝑞௜ Demand of node 𝑖,  0 𝑖𝑓 𝑖 ∉ 𝑉  𝑠௜ Service time of node 𝑖,  0 𝑖𝑓 𝑖 ∉ 𝑉 𝑒௜ The start of the time window of node 𝑖 𝑙௜ The end of the time window of node 𝑖 𝛼 Penalty coefficient for arriving early at some node    𝛽 Penalty coefficient for arriving late at some node        𝑀  Large enough constant (upper bound)      𝑥௜௝ Decision variable indicating that the arc (𝑖, 𝑗) is travelled 𝑧௜௝௞ Decision variable indicating that the arc (𝑖, 𝑗) is travelled during the time interval 𝑘 𝜏௜ Decision variable specifying the arrival time at node 𝑖 𝜙௜ Decision variable specifying the departure time from node 𝑖 𝑢௜ Decision variable specifying the remaining cargo on arrival at node 𝑖  𝑦௜ Decision variable specifying the remaining battery level on arrival node 𝑖 𝜑௜௝௞ Decision variable specifying the distance travelled from node 𝑖 to node 𝑗  during the time interval 𝑘 𝜇௜ Decision variable indicating the penalty for arriving early at node 𝑖   𝜂௜ Decision variable indicating the penalty for arriving late at node 𝑖 𝑝௜ Decision variable indicating the total penalty at node 𝑖 
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 𝑚𝑖𝑛ቌ𝑐ଵ ෍ ෍ 𝑑௜௝௝∈௏ᇲಿశభ,௜ஷ௝௜∈௏బᇲ  𝑥௜௝  +  ෍𝑝௜௜∈௏ ቍ 
(1) 

subject to  ෍ 𝑥௜௝௝∈௏ᇲಿశభ ,௜ஷ௝ = 1, ∀𝑖 ∈ 𝑉 (2) 

෍ 𝑥௜௝௝∈௏ᇲಿశభ ,௜ஷ௝ ≤ 1, ∀𝑖 ∈ 𝐹′ (3) 

෍ 𝑥௝௜௝∈௏ᇲಿశభ ,௜ஷ௝ −  ෍ 𝑥௜௝௝∈௏ᇲబ ,௜ஷ௝ = 0, ∀𝑗 ∈ 𝑉′ (4) 

𝜏௜ + ෍𝑡௜௝௞௞∈௄ +  𝑠௜ −  𝑙଴൫1 − 𝑥௜௝൯ ≤ 𝜏௝ , ∀𝑖 ∈ 𝑉଴, ∀𝑗 ∈ 𝑉′ேାଵ, 𝑖 ≠ 𝑗 (5) 

𝜏௜ + ෍𝑡௜௝௞௞∈௄ +  𝑔(𝑄 − 𝑦௜) −  (𝑙଴ +  𝑔𝑄)൫1 − 𝑥௜௝൯ ≤ 𝜏௝ , ∀𝑖 ∈ 𝐹ᇱ, ∀𝑗 ∈ 𝑉′ேାଵ, 𝑖 ≠ 𝑗 (6) 𝜇௜ = max(0, 𝑒௜ −  𝜏௜) , ∀𝑖 ∈ 𝑉  (7) 𝜂௜ = max(0, 𝜏௜ −  𝑙௜) , ∀𝑖 ∈ 𝑉  (8) 𝑝௜ = 𝛼𝜇௜ +  𝛽𝜂௜ , ∀𝑖 ∈ 𝑉  (9) 0 ≤ 𝑢௝ ≤ 𝑢௜ − 𝑞௜𝑥௜௝ + 𝐶൫1 − 𝑥௜௝൯, ∀𝑖 ∈ 𝑉′଴ , ∀𝑗 ∈ 𝑉′ேାଵ, 𝑖 ≠ 𝑗 (10) 0 ≤ 𝑢଴ ≤ 𝐶 (11) 0 ≤ 𝑦௝ ≤ 𝑦௜ −  ൫ℎ ∙ 𝑑௜௝൯𝑥௜௝ +  𝑄൫1 − 𝑥௜௝൯, ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝑉′ேାଵ, 𝑖 ≠ 𝑗 (12) 0 ≤ 𝑦௝ ≤ 𝑄 −  ൫ℎ ∙ 𝑑௜௝൯𝑥௜௝ , ∀𝑖 ∈ 𝐹′଴, ∀𝑗 ∈ 𝑉′ேାଵ, 𝑖 ≠ 𝑗 (13) 𝑑௜௝ ∙ 𝑥௜௝ =  ෍𝜑௜௝௞ ௞∈௄ , ∀𝑖 ∈ 𝑉′଴, ∀𝑗 ∈ 𝑉′ேାଵ, 𝑖 ≠ 𝑗  (14) 𝜙௜ ≥ 𝜏௜ + 𝑠௜ , ∀𝑖 ∈ 𝑉′଴,ேାଵ  (15) 𝜙௜  ≥ 𝜏௜ +  𝑔(𝑄 − 𝑦௜), ∀𝑖 ∈ 𝐹′ (16) 𝑥௜௝ −  𝑧௜௝௞  ≥ 0, ∀𝑖 ∈ 𝑉′଴, ∀𝑗 ∈ 𝑉′ேାଵ, ∀𝑘 ∈ 𝐾 (17) ෍𝑧௜௝௞௞∈௄  ≥ 𝑥௜௝ , ∀𝑖 ∈ 𝑉′଴, ∀𝑗 ∈ 𝑉′ேାଵ (18) 𝜑௜௝௞ −  𝑑௜௝ ∙ 𝑧௜௝௞  ≤ 0 , ∀𝑖 ∈ 𝑉′଴, ∀𝑗 ∈ 𝑉′ேାଵ, ∀𝑘 ∈ 𝐾  (19) 𝑧௜௝௞ −  𝑀 ∙  𝜑௜௝௞ ≤ 0 , ∀𝑖 ∈ 𝑉′଴, ∀𝑗 ∈ 𝑉′ேାଵ, ∀𝑘 ∈ 𝐾   (20) 𝑡௜௝௞ =  𝜑௜௝௞𝐿௞   , ∀𝑖 ∈ 𝑉′଴, ∀𝑗 ∈ 𝑉′ேାଵ, ∀𝑘 ∈ 𝐾   (21) 𝑡௜௝௞  ≤  𝜐௞ −  𝜓௞ , ∀𝑖 ∈ 𝑉′଴, ∀𝑗 ∈ 𝑉′ேାଵ, ∀𝑘 ∈ 𝐾   (22) 𝜙௜ + 𝑡௜௝௞  ≤  𝜐௞ +  𝜐௟௔௦௧(1 − 𝑧௜௝௞) , ∀𝑖 ∈ 𝑉′଴, ∀𝑗 ∈ 𝑉′ேାଵ, ∀𝑘 ∈ 𝐾   (23) 𝜓௞ + 𝑡௜௝௞  ≤  𝜏௝ +  𝜐௟௔௦௧(1 − 𝑧௜௝௞) , ∀𝑖 ∈ 𝑉′଴, ∀𝑗 ∈ 𝑉′ேାଵ, ∀𝑘 ∈ 𝐾   (24) 𝜙௜ +  ෍𝑡௜௝௞௞∈௄  ≤ 𝜏௝ +  𝜐௟௔௦௧൫1 − 𝑥௜௝൯, ∀𝑖 ∈ 𝑉′଴, ∀𝑗 ∈ 𝑉′ேାଵ (25) 𝑥௜௝ ∈ {0,1},    ∀𝑖 ∈ 𝑉′଴, ∀𝑗 ∈ 𝑉′ேାଵ (26) 𝑧௜௝௞ ∈ {0,1},    ∀𝑖 ∈ 𝑉′଴, ∀𝑗 ∈ 𝑉′ேାଵ, ∀𝑘 ∈ 𝐾 (27) 𝜏௜ ,𝜙௜ ,𝑢௜ ,𝑦௜ ,𝜇௜ , 𝜂௜ ,𝑝௜ ≥ 0, ∀𝑖 ∈ 𝑉′଴,ேାଵ (28) 𝜑௜௝௞  ≥ 0 , ∀𝑖 ∈ 𝑉′଴, ∀𝑗 ∈ 𝑉′ேାଵ, ∀𝑘 ∈ 𝐾  (29) 
 
The objective function consists of two parts: minimizing the total distance travelled by all vehicles and minimizing the penalty 
for missing time windows for customers (1). The relative influence of these two parts is controlled by constants c1 and c2. 
Constraints (2) ensure that each customer has to be visited exactly once, and constraints (3) define that each dummy node 
representing a refueling station can be visited at most once. Constraints (4) ensure the connectivity of each route, by specifying 
that each node except the depot must have the same number of incoming and arcs. Constraints (5) define the arrival times at 
each node, thus ensuring the time feasibility of arcs leaving depot and customers, and constraints (6) do the same for arcs 
leaving refueling stations. Constraints (7), (8), and (9) calculate the penalty for missing a time window at each node. 
Considering the fact that the penalty is minimized as a part of the objective function, the max function can easily be represented 
as a set of linear constraints (30), without including any new variables. 
 𝑦 = max(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) ↔ 𝑦 ≥ 𝑥௜ ,∀𝑖 = 1, … ,𝑛 (30) 
 
Please keep in mind that this transformation works only if y is minimized in the objective function. For a more generic 
linearization technique, please refer to Asghari et al. (2022). Constraints (10) and (11) ensure that there is enough cargo to 
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fulfill the demand of each customer. Constraints (12) and (13) guarantee that the battery level will not fall below zero during 
the delivery. Constraints (14) state that the distance travelled in all periods must be equal to the distance between nodes 𝑖 and 𝑗, if the arc (𝑖, 𝑗) is travelled. Constraints (15) define the departure time from customers and depot, based on the service time 
and arrival time. Similarly, constraints (16) define the departure time from refueling stations. Constraints (17) and (18) make 
a connection between variables 𝑥 and 𝑧, by specifying that if arc (𝑖, 𝑗) is travelled, there needs to be at least one period 
associated with it, otherwise, there cannot be any period associated with that arc. Constraints (19) specify that the distance 
travelled at any period may not be greater than the total distance of arc (𝑖, 𝑗), if that arc is travelled. Constraints (20) ensure 
that if the arc is travelled during a period k, the distance crossed during that period should be greater than zero. Constraints 
(21) determine the time travelled during each period, constraints (22) forbid the time travelled to be greater than the length of 
the period, and constraints (23) limit the time travelled to the remaining time in that period, considering the departure time of 
the vehicle. These constraints also ensure that the FIFO property is satisfied, as vehicles automatically change speeds as soon 
as a new period begins. This approach addresses the issues with the step function presented in Malandraki and Daskin (1992) 
and criticized in Ichoua et al. (2003), which assumes that a vehicle will travel the whole ark (𝑖, 𝑗) at a speed associated with 
the period in which the vehicle departed from node 𝑖. Constraints (24) ensure that the actual time in which the traveling is 
completed for some period (i.e. sum of beginning time for a given period and traveling time in that period) does not exceed 
the arrival time at the next node. Constraints (25) define that if arc (𝑖, 𝑗) is travelled, the sum of departing time at node i and 
the total traveling time during all periods should not exceed the arrival time at node 𝑗. Finally, constraints (26)-(29) define the 
nature of decision variables. 

5. General Variable Neighbourhood Search 

 
Variable Neighborhood Search (VNS) is a single solution metaheuristic, based on local search and systematical change of 
neighborhood structures. It was first proposed by Mladenović and Hansen (1997), and since then it has been successfully 
applied to numerous problems Kovač et al. (2018); Yazdani et al. (2010); Matijević (2022). In its basic form, VNS consists 
of three main steps: shaking, local search, and neighborhood change. In the shaking step, the algorithm chooses a random 
solution from neighborhood 𝑁௞ of the incumbent solution. The purpose of this step is to diversify the search and allow the 
algorithm to escape local optima. The solution generated in the shaking step is passed to the local search procedure, which 
tries to improve it by assessing its neighbors, using one or more neighborhood structures. After the local search, the obtained 
solution is evaluated in the Neighborhood change step, and if it is better than the incumbent solution, it is accepted as the new 
best solution, so the search continues from the smallest neighborhood, otherwise, the search moves on to the next 
neighborhood. There are many variations of the VNS method. The simplest one is the Reduced VNS, which consists only of 
shaking and neighborhood change steps. Skewed VNS differs from the basic VNS in the neighborhood change step, as it allows 
a little bit worse solutions to be accepted, as long as they are relatively distant from the incumbent solution. Similarly, Plateau 
VNS allows solutions with the same quality as the incumbent solution to be accepted. This is done in order to prevent the 
algorithm from getting stuck in some local optimum. A deterministic version of VNS called Variable Neighborhood Descent 
(VND) does not include the shaking step but sequentially searches all neighborhoods. It uses the first-improvement approach, 
i.e. as soon as the algorithm finds an improvement in some neighborhood, it goes back to the first neighborhood, and the 
search continues. Nonetheless, the neighborhoods themself can be explored by using either the first-improvement or the best-
improvement approach. The variation of VNS that uses VND as its local search procedure is called General Variable 
Neighborhood Search (GVNS). 

5.1. Solution representation 
 
The solution 𝑆 to our TD-EVRP-STW is represented as an array of doubly linked lists, each list representing a vehicle (𝑆௜ , 𝑖 =1, … ,𝑁) . Each element in a doubly linked list represents one customer, described with an ordered quadruple 𝑆௜௝ =൫𝑆௜௝௜௡ௗ௘௫, 𝑆௜௝௔௥௥௜௩௔௟, 𝑆௜௝ௗ௘௣௔௥௧௨௥௘, 𝑆௜௝௧௬௣௘൯, 𝑖 = 1, … ,𝑁 , 𝑗 = 1, … ,𝐾௜ . 𝑆௜௝௜௡ௗ௘௫ contains an index corresponding with a customer, 
depot, or recharging station, 𝑆௜௝௔௥௥௜௩௔௟ and 𝑆௜௝ௗ௘௣௔௥௧௨௥௘  represent arrival and departure times for the node 𝑆௜௝ respectively, and 𝑆௜௝௧௬௣௘ defines the type of a node, i.e. it contains the information on whether the node represents a depot, customer, or a 
recharging station. The sequence of nodes in each list defines the ordering in which they are traversed in a route. The general 
example of our solution structure is presented in Figure 2. 
 

 
Fig. 2. Representation of a solution 
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5.2. Neighbourhood structures 
 
Choosing the right neighborhoods for local search and shaking procedures can have a tremendous impact on the overall 
performance of an algorithm. In this paper, we identified ten different neighborhood structures, some of which were previously 
presented in Affi et al. (2018). 
 

• 𝑁ଵ(𝑆, 𝜀) : Changes the departure time of a customer by 𝜀, either by adding or subtracting 𝜀 to/from the current 
departure time. 

• 𝑁ଶ(𝑆) : Moves a customer to some other position on the same route. 
• 𝑁ଷ(𝑆) : Moves a customer from one route to another. 
• 𝑁ସ(𝑆) : Swaps the positions of two customers inside the same route. 
• 𝑁ହ(𝑆) : Swaps the positions of two customers who are on different routes. 
• 𝑁଺(𝑆) : Removes a refueling station from a route. 
• 𝑁଻(𝑆) : Moves a refueling station to some other position inside the same route. 
• 𝑁଼(𝑆) : Replaces a refueling station with another refueling station. 
• 𝑁ଽ(𝑆, 𝑘) : Moves 𝑘 consecutive nodes to some other position inside the same route. 
• 𝑁ଵ଴(𝑆, 𝑘) : Moves 𝑘 consecutive nodes from one route to another. 

5.3. Feasibility 
 

There are two possible ways in which the solution to our TD-EVRP-STW can be infeasible. First, the sum of demands of all 
customers in a route can exceed the capacity of a truck, and second, the battery can be depleted at some point, making it 
impossible to continue the delivery. Checking and fixing the feasibility of a solution that breaks the capacity constraint is 
relatively straightforward, as removing some customers from the route will result in a feasible solution. On the other hand, 
fixing the feasibility of a solution that breaks the battery level constraint can be a little more complicated. In Algorithm 1, we 
present our method for inserting refueling stations into the solution to make it feasible. In this algorithm, we go through all 
the nodes in each truck and adjust the current battery level based on the type of node, i.e. if the node represents a refueling 
station we set the battery level to full capacity (Line 8), otherwise, we subtract the energy spent from the battery (Line 10). If 
the current battery level is not enough to reach the next customer, we try to add a refueling station to mend this issue (Lines 
12-25). In each step, we try to find the best possible station to insert into the current position (Line 14). If no station can be 
inserted (Line 15), i.e., the battery level is not high enough to reach any of the stations, we move to the previous node (Line 
17) and try to insert a station at that position. If a station can be inserted, battery levels are adjusted, and the algorithm continues 
from the newly inserted station (Line 24). 
 

Algorithm 1: The algorithm for fixing the feasibility of a solution 
1: procedure FIX_SOLUTION (Solution S) 
2:  for ∀𝑡𝑟𝑢𝑐𝑘 ∈ 𝑆 do 
3:   𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ← 𝐵𝐴𝑇𝑇𝐸𝑅𝑌_𝐶𝐴𝑃𝐴𝐶𝐼𝑇𝑌; 
4:   for j = 1 to size(S[truck]) do 
5:    spent ← calculate consumption between nodes j and (j − 1); 
6:    if battery ≥ spent then 
7:     if node j is a refueling station then 
8:      𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ← 𝐵𝐴𝑇𝑇𝐸𝑅𝑌_𝐶𝐴𝑃𝐴𝐶𝐼𝑇𝑌; 
9:     else 
10:      battery ← battery − spent; 
11:     end if 
12:    else 
13:     for k = j to 1 do 
14:      station ←Find the best station to add at position k; 
15:      if no station can be added then 
16:       battery ← battery + consumption (k, k − 1); 
17:       k ← k − 1; 
18:      else 
19:       Insert station at position k in S; 
20:       break; 
21:      end if 
22:     end for 
23:     battery ← recalculate battery level; 
24:     j ← k; 
25:    end if 
26:   end for 
27:  end for 
28:  return S 
29: end procedure 
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5.4. Initial solution 
 

VNS is a metaheuristic that requires an initial solution that serves as a starting point for the search. There are many different 
ways in which the initial solution can be generated. The most straightforward approach is to generate the initial solution by 
randomly assigning the customers to vehicles, and then fixing the created solution by adding trips to recharging stations as 
needed. Even though the stochastic nature of this approach is suitable for some algorithms (for example, Multi-start VND), 
generating a good initial solution raises the overall performance of VNS, therefore, we opted for a more sophisticated 
approach.  In Algorithm 2 we present our greedy approach to generating an initial solution, inspired by the procedure presented 
in Zhang et al. (2020a). The solution is first initialized by adding two depot instances into each available vehicle, representing 
the origin and the final destination of each route (Line 2). Furthermore, we initialize the set of available customers that have 
not yet been assigned to any vehicle (Line 3). We then proceed by calculating the best position for each unassigned customer 
(Line 7). The customer whose addition to the solution impacts the objective function the least is inserted into the solution at 
the best-determined position (Line 12), and the inserted customer is removed for the set of unassigned customers (Line 13). 
The method continues until all the customers are assigned to some vehicle. In the end, the solution is checked for feasibility 
and the necessary trips to refueling stations are added to the solution (Line 15). 
 

Algorithm 2: The algorithm for generating the initial solution 
1: procedure INIT_SOLUTION(Instance data D) 
2:  S ← initialize the solution by adding depot instances to each vehicle; 
3:  A ← set of all customers; 
4:  while 𝐴 ≠  ∅ do 
5:   best_customer ← −1; 
6:   for ∀𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ∈ 𝐴 do 
7:    Calculate the best position of customer in S; 
8:     if customer is better than best_customer then 
9:     best_customer ← customer; 
10:    end if 
11:   end for 
12:   Insert the best_customer into the best position in S; 
13:   𝐴 ← 𝐴 \ {𝑏𝑒𝑠𝑡_𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟}; 
14:  end while 
15:  S ← FIX_SOLUTION(S); 
16:  return S 
17: end procedure 

5.5. Determining a schedule 
 
In order to minimize the penalty cost of a solution, we need to determine the arrival and departure times for each node. We 
present our method for determining the schedule in Algorithm 3. It is important to notice that this algorithm does not have to 
find the best possible scheduling, as it is further going to be optimized in the neighborhood 𝑁ଵ during the local search. The 
basic idea behind our approach is simple. For each route, we traverse all the nodes and calculate their arrival and departure 
times. Calculating the arrival time of a node is straightforward, as it is the sum of the departure time of the previous node in 
a route and the travel time between those two nodes (Line 7). The exception is the depot node at the beginning of each route, 
whose arrival time is set to zero (Line 5). As for the departure time of each node, we choose the lowest departure time that 
allows the vehicle to arrive at the next node without creating any penalty for early arrival (Line 8). In other words, the departure 
time should be set in such a way that the vehicle arrives at the beginning of the time window of the next node or after it. 
 

Algorithm 3: The algorithm for calculating a schedule for a given solution 
1: procedure CALC_SCHEDULE(Solution S) 
2:  N ← number of routes in S 
3:  for i = 1 to N do 
4:   M ← number of nodes in route Si 
5:   𝑆௜଴ ← 0 //Depot instance 
6:   for j = 2 to M do 
7:    𝑆௜௝௔௥௥௜௩௔௟ ← 𝑆௜(௝ିଵ)ௗ௘௣௔௥௧௨௥௘ +  𝑡𝑟𝑎𝑣𝑒𝑙_𝑡𝑖𝑚𝑒(𝑆௜(௝ିଵ), 𝑆௜௝ ) 
8:    𝑆௜௝ௗ௘௣௔௥௧௨௥௘ ← max (𝑆௜௝௔௥௥௜௩௔௟ + 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑡𝑖𝑚𝑒൫𝑆௜௝൯, 𝑟𝑒𝑎𝑑𝑦൫𝑆௜(௝ାଵ)൯ − 𝑡𝑟𝑎𝑣𝑒𝑙_𝑡𝑖𝑚𝑒(𝑆௜௝ ,𝑆௜(௝ାଵ)) ) 
9:   end for 
10:  end for 
11:  return S 
12: end procedure 
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5.6. Shaking 
 
In the classic version of the VNS algorithm, the shaking procedure selects a random neighbor at the distance k from the 
incumbent solution. Our version of the shaking procedure differs from the classic version in the sense that it selects a random 
neighbor at a distance of at least k from the incumbent solution. We made this change as it allowed us to find overall better 
results, as determined experimentally. Furthermore, after extensive testing, we selected two neighborhoods to use in our 
shaking procedure, which are selected stochastically in each iteration of the algorithm. We present our shaking procedure in 
Algorithm 4. In the main loop of the algorithm (Lines 4-12), we first randomly select a neighborhood structure (Line 5) and 
the size of that neighborhood (Line 6). The size is limited by the parameter 𝑙௠௔௫. We then transform the current solution using 
the selected neighborhood structure and size (Lines 9 and 11). 
 

Algorithm 4: Shaking 
1: procedure SHAKE(Solution S, k, lmax) 
2:  i ← 0 
3:  S′ ← S 
4:  for i = 1 to k do 
5:   p ← random integer between 0 and 1 
6:   l ← random integer between 0 and lmax 
7:   switch (p)  
8:    case 0 : 
9:     S′ ← random neighbor from N9(S′ , l) 
10:    case 1 : 
11:     S′ ← random neighbor from N10(S′ , l) 
12:  end for 
13:  return S′ 
14: end procedure 

5.7. Variable neighbourhood descent 
In Algorithm 5, we present our variable neighborhood descent method, using the first eight neighborhoods from Section 5.2. 
Nonetheless, not all neighborhoods contribute equally to the search, as we will see in Section 6.4. Therefore, some 
neighborhoods can (and should) be excluded. The ordering of neighborhoods can also impact the overall performance of the 
method, but this aspect was not further examined in this publication. Considering the fact that proposed neighborhood are 
rather complex, we utilized the first improvement strategy, i.e. as soon as the local search finds a better solution in some 
neighborhood, it returns the solution to VND. The parameter 𝜀 is used in neighborhood structure N1. Even though 𝜀 is provided 
as an input parameter in our approach, this parameter can be determined dynamically using some reinforcement learning 
strategy. 
 

Algorithm 5: Variable neighborhood descent 
1: procedure VND(Solution S, Set of neighborhoods N , 𝜀) 
2:  for i = 1 to 10 do 
3:   improved ← LS(Ni , S, S′ ) // LS is the local search in neighborhood Ni 
4:   if improved then 
5:    S ← S′ 
6:    i ← 1 
7:    continue 
8:   end if 
9:  end for 
10:  return S 
11: end procedure 

5.8. General variable neighbourhood search 
 
In Algorithm 6 we provide an overview of the proposed GVNS algorithm. The input parameters are the problem instance, a 
set of neighborhoods used in VND, the standard VNS parameters kmin, kstep, and kmax used to define the number of 
transformations in the shaking procedure, an additional parameter used for shaking denoted with lmax, and parameter epsilon 
used to define the increment in the neighborhood N1. For the stopping criterion, we choose the maximum allowed CPU time. 
The algorithm starts by creating an initial solution, using the method presented in Algorithm 2 (Line 2). If the solution is 
infeasible, apply the shaking procedure to it until it becomes feasible (Lines 3-6). This step is not entirely necessary, as VND 
may be able to find a feasible solution during the local search, but this approach provided us with better performance. After 
the solution is initialized and the schedule is calculated by using Algorithm 3, we try to improve it by applying VND to it 
(Line 8). In the algorithms main loop, we apply the shaking procedure to the currently best-known solution, thus obtaining a 
new, perturbed solution. As the newly created solution may be infeasible, we repeat the shaking step until we acquire a feasible 
solution. The schedule is then recalculated, and VND is applied to the new solution. If the solution found by VND has a lower 
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value of the objective function compared to the best-known solution, it is accepted as a new best-known solution (Line 21) 
and the parameter k is set to kmin (Line 22), otherwise, k is increased by the value of kstep (Line 24). 
 

Algorithm 6: General variable neighborhood search 
1: procedure GVNS(Instance data D, Set of neighborhoods N, kmin, kstep, kmax, lmax, 𝜀) 
2:  S ← INIT_SOLUTION(D) 
3:  while S is infeasible do 
4:   S ← SHAKE(S, 1, lmax) 
5:   S ← FIX_SOLUTION(S) 
6:  end while 
7:  S ← CALC_SCHEDULE(S) 
8:  S ← VND(S, N , 𝜀) 
9:  while the stopping criterion is not met do 
10:   k ← kmin 
11:   while k ≤ kmax ∧ the stopping criterion is not met do 
12:    S′ ← SHAKE(S, k, lmax) 
13:    S′ ← FIX_SOLUTION(S′) 
14:    while S′  is infeasible do 
15:     S′  ← SHAKE(S′, 1, lmax) 
16:     S′  ← FIX_SOLUTION(S′) 
17:    end while 
18:    S′ ← CALC_SCHEDULE(S′) 
19:    S′′  ← VND(S′, N , 𝜀) 
20:    if  f(S′′) < f(S) then 
21:     S ← S′′ 
22:     k ← kmin 
23:    else 
24:     k ← k + kstep 
25:    end if 
26:   end while 
27:  end while 
28: end procedure 

6. Experimental evaluation 

In this section, we will evaluate the performance of our proposed method, comparing it to the exact solver and ALNS algorithm 
based on Zhang et al. (2020a). ALNS method that we implemented is quite similar to the one presented in the original article, 
utilizing the same insertion and removal operators, but it differs from it slightly as it uses Algorithm 2 for generating the initial 
solution and Algorithm 3 for determining the schedule of vehicles, as we found these procedures to be more suited for the soft 
windows constraint compared to the ones presented in the original publication. The experiments were conducted on a 
benchmark dataset presented in Schneider et al. (2014). The instances from this dataset were split into two groups, based on 
their size. A set of smaller instances with up to 15 customers contains 35 instances, and the set of instances with up to 100 
customers consists of 56 instances. 

6.1. Experimental setup 
The experiments were conducted on a personal laptop with an Intel i7-10750H processor and 32GB of RAM, under Ubuntu 
20.04 OS. We implemented both algorithms in the C++ programming language and compiled them with GCC 9.4.0 compiler 
with the O3 optimization flag. To test our MILP formulation, we used the CPLEX 20.1.0 commercial solver. In order to obtain 
the best possible results, we need to carefully tune the parameters of the algorithms. For the ALNS algorithm, we used the 
same values of parameters as in the original paper. For the full list of parameters and their values, please refer to Zhang et al. 
(2020a). The proposed GVNS has five parameters that need to be tuned before evaluation. First, there are kmin, kstep, and kmax 
parameters, which control the number of transformations in each iteration of the algorithm. Parameters kmin and kmax represent 
the minimal and maximal number of transformations to be conducted respectively, while kstep defines the increment in the 
number of transformations after each iteration in which the algorithm did not find a solution of better quality compared to the 
best-known solution. The lmax parameter represents the maximal size of the neighborhood used in each individual 
transformation. Lastly, the 𝜀 parameter designates the difference between the new and the old departure times in neighborhood 
N1. In order to determine the best possible values for the aforementioned parameters, we used the iRace1 package for the R 
programming language, with a budget of 2000 tests. In Table 2 we present the best-found values for each GVNS parameter, 
obtained by iRace. The first column shows the parameter in question, the second column displays the values that each 
parameter was allowed to assume during the testing, and in the last column, we provide the best-found values for each 
parameter. The parameters c1 and c2 that define the relative importance of distance and penalty in the objective function were 
both set to 1. For testing purposes, the entire interval in which the delivery takes place was divided into five equal subintervals, 

 
1 https://cran.r-project.org/web/packages/irace/index.html 
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each with its own speed multiplier. The speed multipliers were generated at random beforehand and were the same for each 
instance and each repetition. The exact multiplier values were set to 1, 0.8, 1.5, 1, and 1.2, in that order. 
 

Table 2  
The best-found values of each GVNS parameter 

Parameter Allowed values The best value 
kmin kmin ∈ {1, 2, 3, 4} kmin = 1 
kstep kstep ∈ {1, 2, 3} kstep = 3 
kmax kmax ∈ {5, 7, 9, 11, 13, 15, 20} kmax = 7 
lmax lmax ∈ {1, 2, 3, 4, 5} lmax = 3 𝜀 𝜀∈ {5, 10, 20, 30} 𝜀 = 5 

6.2. Case study I 
In the first case study, we examined the performance of our approach compared to the CPLEX and ALNS. The stopping 
criterion for all three methods was the CPU time limit, which was set to 60 minutes for CPLEX, and 10 minutes for ALNS 
and GVNS. To demonstrate the stability of the obtained results, tests for ALNS and GVNS were repeated 30 times with 
different seed values for the random number generator. As the CPLEX searches for the optimal solution in a deterministic 
manner, we did not perform any repetitions. As explained in Section 4, the MILP model requires us to create dummy nodes 
representing refueling stations by replicating actual station nodes to allow multiple visits to refueling stations. The number of 
times we replicate the station nodes should be carefully determined, as setting this parameter too low could prevent us from 
finding certain good quality solutions by making them infeasible Froger et al. (2019), while setting it too high can substantially 
increase the model complexity. For our purposes, we created dummy vertices by multiplying station nodes by 3 for instances 
with up to 10 customers, and by 6 for instances with 15 customers. These numbers were determined experimentally and 
provided us with the best results. This particular problem does not affect metaheuristics as we can model multiple visits to 
refueling stations much more efficiently. This is a clear advantage compared to MILP solvers, as the complexity of the problem 
is much less influenced by the number of refueling stations. 
 
In Table 3, we present the obtained results for each test instance, considering all three methods. The first three columns display 
the information about instances, such as name, number of customers, and number of refueling stations. The following two 
columns represent results obtained by CPLEX, the value of the objective function with a corresponding gap, and the time in 
which the CPLEX reported a solution. In columns 6-9, we present results obtained by the GVNS algorithm. More precisely, 
column six contains the average value of the objective function over 30 execution, together with the standard deviation in the 
parenthesis. Column seven shows the average time in which the best-found solution was reported, again with standard 
deviation. In columns eight and nine, we presented the value of the objective function for the best and the worst solution found 
during all 30 repetitions, together with an information on how many times GVNS obtained that particular solution. Columns 
10-13 contain the same information as the previous four columns but for the ALNS algorithm. The bolded values designate 
solutions with the best-known value of the objective function. 
 
As we can see from Table 3, GVNS found the same solution as CPLEX in 23 cases, a better solution in 10 cases, and was 
outperformed by CPLEX in 2 cases. In cases when GVNS found a better solution, the minimum difference in the objective 
function value was 0.6499%, the average difference was 7.2314%, and the maximal difference between GVNS and CPLEX 
solutions was 23.813%. On the other hand, in cases when CPLEX found a better solution than GVRP, the minimum, average, 
and maximum differences were 0.1286%, 0.5152%, and 0.9017%, respectively. These results clearly demonstrate the 
superiority of the proposed GVNS in terms of finding good quality solutions, even in a fraction of the time utilized by CPLEX. 
 
As for the comparison between GVNS and ALNS, we can observe that both algorithms managed to find solutions of the same 
quality for most instances. In fact, there are only two instances in which the best-found solution differed, and in both cases, 
GVNS provided us with a better solution. Nonetheless, looking at the number of times each algorithm managed to find the 
best-known solution over 30 repetitions, we can see that GVNS was able to find the best solution more frequently. More 
precisely, out of 33 instances for which both algorithms obtained the same best-known solution, in 18 cases the count was the 
same (usually for instances with fewer customers), and in 15 cases the GVRP found the best-known solution more frequently. 
This is to be expected as both metaheuristics are able to find a good solution in a reasonable amount of time. Furthermore, 
comparing average values of the objective function shows that GVNS and ALNS performed the same in 18 cases, and GVNS 
outperformed ALNS in 17 cases, with the maximum difference in average objective function value being 3.72%. Using the 
Wilcoxon signed-rank test with correction, we calculated the p−value = 0.00032, so with the significance level of α = 0.05, 
we conclude that there is a statistically significant difference between the average objective values of the two algorithms. 
Finally, we can observe that GVNS outperformed ALNS in terms of speed as well. For the sake of fairness, we only compared 
the average time for instances with the same average objective value. We can see that the difference in average CPU time 
needed for obtaining the best-known solution was up to 198.2935% (110.7236% on average) in favor of GVNS. With the 
p−value = 0.0000076 calculated by Wilcoxon signed-rank test with correction and α = 0.05, we can conclude that there is a 
statistically significant difference between average CPU times of GVNS and ALNS. 
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Table 3  
The obtained results for smaller-sized instances 

Instance CPLEX GVNS ALNS 

Name Cust. Stat. Obj.(gap %) Time Obj. Avg. (std) Time Avg. (std) Best (count) Worst (count) Obj. Avg. (std) Time. Avg. (std) Best (count) Worst (count) 
c101C5 5 3 247.15 (0) 14.7 247.15 (0) 0.2678 (0.2543) 247.15 (30) 247.15 (30) 247.15 (0) 0.8335 (0.3706) 247.15 (30) 247.15 (30) 
c101C10 10 5 405.9973 (28.42) 3600 394.5648 (2.2345) 226.8014 (190.6104) 393.7633 (24) 401.13 (3) 395.1857 (2.7192) 304.8418 (181.0817) 393.7633 (16) 401.13 (5) 
c103C5 5 2 165.667 (0) 6.28 165.667 (0) 0.002 (0.0005) 165.667 (30) 165.667 (30) 165.667 (0) 0.4668 (0.2785) 165.667 (30) 165.667 (30) 
c103C15 15 5 411.1223 (39.18) 3600 371.9071 (0.7842) 102.3415 (156.6711) 371.7 (10) 374.792 (2) 372.2163 (1.1716) 131.6318 (160.1343) 371.7 (9) 374.792 (5) 
c104C10 10 4 273.931 (0.01) 3600 274.3203 (0.8855) 4.7618 (7.6079) 273.931 (25) 276.267 (5) 274.9849 (3.2652) 12.2628 (8.2824) 273.931 (23) 291.531 (1) 
c106C15 15 3 275.1332 (0) 425.11 275.1332 (0) 31.0991 (23.8411) 275.1332 (30) 275.1332 (30) 275.1332 (0) 76.3916 (38.5943) 275.1332 (30) 275.1332 (30) 
c202C10 10 5 243.203 (0.01) 3600 243.203 (0) 9.4267 (12.8681) 243.203 (30) 243.203 (30) 243.6141 (1.2544) 14.4889 (12.8857) 243.203 (27) 247.314 (3) 
c202C15 15 5 376.7893 (9.01) 3600 376.7893 (0) 71.363 (96.8459) 376.7893 (30) 376.7893 (30) 377.5313 (1.9241) 125.9959 (104.8385) 376.7893 (26) 382.3544 (4) 
c205C10 10 3 228.281 (0) 15 228.281 (0) 0.0378 (0.0066) 228.281 (30) 228.281 (30) 228.281 (0) 0.5335 (0.2554) 228.281 (30) 228.281 (30) 
c208C15 15 4 300.549 (0) 1487.95 300.549 (0) 69.3003 (83.7877) 300.549 (30) 300.549 (30) 300.6855 (0.7478) 95.3886 (85.6675) 300.549 (29) 304.645 (1) 
c206C5 5 4 236.579 (0) 92.78 236.579 (0) 0.4292 (0.3674) 236.579 (30) 236.579 (30) 236.579 (0) 1.3827 (0.801) 236.579 (30) 236.579 (30) 
c208C5 5 3 236.579 (0) 58.65 236.579 (0) 0.3533 (0.3406) 236.579 (30) 236.579 (30) 236.579 (0) 1.2281 (0.6301) 236.579 (30) 236.579 (30) 
r102C10 10 4 249.1893 (11.7) 3600 249.1893 (0) 45.5037 (47.2898) 249.1893 (30) 249.1893 (30) 249.1893 (0) 128.7177 (65.7105) 249.1893 (30) 249.1893 (30) 
r102C15 15 8 424.8538 (36.64) 3600 416.1563 (3.7612) 166.441 (71.0992) 413.9341 (21) 424.8538 (3) 419.1562 (8.2498) 270.225 (99.3421) 413.9341 (16) 453.4532 (1) 
r103C10 10 3 171.7077 (0) 791.53 173.263 (0) 2.2252 (1.8091) 173.263 (30) 173.263 (30) 173.263 (0) 3.178 (2.0072) 173.263 (30) 173.263 (30) 
r104C5 5 3 136.69 (0) 47.92 136.69 (0) 0.0023 (0.0004) 136.6897 (30) 136.69 (30) 136.69 (0) 0.0525 (0.0318) 136.6897 (30) 136.69 (30) 
r105C5 5 3 156.0821 (0) 20.54 156.283 (0) 0.1269 (0.11) 156.283 (30) 156.283 (30) 156.283 (0) 1.3124 (0.5844) 156.283 (30) 156.283 (30) 
r105C15 15 6 367.0149 (32.88) 3600 342.7246 (15.8141) 264.6581 (161.3221) 336.154 (22) 388.523 (3) 355.751 (21.613) 347.4743 (142.2992) 344.156 (23) 403.643 (1) 
r202C5 5 3 128.777 (0) 5.14 128.777 (0) 0.1173 (0.0882) 128.777 (30) 128.777 (30) 128.777 (0) 0.6969 (0.2525) 128.777 (30) 128.777 (30) 
r202C15 15 6 345.2274 (19.84) 3600 369.7575 (19.1934) 90.5568 (173.7279) 342.991 (3) 414.161 (3) 370.7734 (19.1621) 63.6811 (91.9829) 344.467 (3) 418.536 (1) 
r203C5 5 4 179.056 (0) 80.03 179.056 (0) 0.6123 (0.6922) 179.056 (30) 179.056 (30) 179.056 (0) 1.5965 (0.9156) 179.056 (30) 179.056 (30) 
r203C10 10 5 218.213 (0) 606.9 239.2702 (15.8805) 43.5722 (45.4715) 218.213 (7) 270.894 (3) 244.1671 (16.065) 53.4799 (44.3986) 218.213 (4) 270.894 (5) 
r209C15 15 5 293.2 (10.92) 3600 295.1307 (5.0064) 133.3656 (169.178) 293.2 (26) 307.68 (4) 297.6247 (6.5201) 191.3249 (146.6217) 293.2 (20) 307.68 (8) 
rc102C10 10 4 423.4943 (8.71) 3600 423.4943 (0) 94.8426 (173.0076) 423.4943 (30) 423.4943 (30) 423.4943 (0) 131.4661 (99.7477) 423.4943 (30) 423.4943 (30) 
rc103C15 15 5 434.9762 (45.51) 3600 402.341 (0) 102.4502 (150.6796) 402.341 (30) 402.341 (30) 403.354 (3.8551) 127.8777 (151.8048) 402.341 (28) 417.536 (2) 
rc105C5 5 4 238.052 (0) 1372.92 238.052 (0) 0.3568 (0.9968) 238.052 (30) 238.052 (30) 238.052 (0) 1.1336 (1.5678) 238.052 (30) 238.052 (30) 
rc108C5 5 4 253.931 (11.43) 3600 253.931 (0) 6.5363 (7.9409) 253.931 (30) 253.931 (30) 253.931 (0) 11.1432 (8.633) 253.931 (30) 253.931 (30) 
rc108C10 10 4 357.799 (16.35) 3600 364.059 (22.5867) 83.1012 (145.8542) 345.927 (18) 391.257 (12) 370.7887 (23.7882) 103.11 (147.3792) 345.927 (14) 401.543 (2) 
rc108C15 15 5 413.9445 (26.23) 3600 372.2392 (2.7791) 217.0653 (176.2477) 370.4737 (19) 376.748 (8) 373.7327 (5.2261) 305.4246 (162.587) 370.4737 (15) 396.4561 (1) 
rc201C10 10 4 310.057 (0) 982.29 311.1458 (2.4763) 147.9935 (190.0385) 310.057 (25) 316.59 (5) 312.7317 (4.2272) 169.1451 (185.1627) 310.057 (20) 324.046 (2) 
rc202C15 15 5 397.1997 (35.3) 3600 399.0313 (12.9554) 217.623 (172.0473) 392.912 (10) 446.109 (2) 406.1117 (20.4693) 313.5418 (171.4261) 392.912 (8) 446.109 (6) 
rc204C5 5 4 176.394 (0) 401.35 176.394 (0) 1.7956 (2.2517) 176.394 (30) 176.394 (30) 176.394 (0) 4.6005 (2.5321) 176.394 (30) 176.394 (30) 
rc204C15 15 7 394.5283 (40.37) 3600 313.4586 (10.9739) 85.5175 (66.5296) 310.575 (28) 353.829 (2) 319.2553 (16.6798) 114.2233 (73.6352) 310.575 (23) 353.829 (5) 
rc208C5 5 3 167.983 (0) 15.59 167.983 (0) 0.0064 (0.0014) 167.983 (30) 167.983 (30) 167.983 (0) 0.0605 (0.0284) 167.983 (30) 167.983 (30) 
rc205C10 10 4 325.9774 (0) 1891.52 325.9774 (0) 10.7609 (8.401) 325.9774 (30) 325.9774 (30) 325.9774 (0) 22.3282 (12.7623) 325.9774 (30) 325.9774 (0) 
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6.3. Case study II 
 
For the second case study, we compared the performance of ALNS and GVNS on a larger set of instances, each containing 
100 customers and 21 refueling stations. CPLEX was not considered for this case study as it was unable to find a feasible 
solution in a reasonable amount of time. The stopping criterion for both algorithms was the limit of CPU time, which was set 
to 20 minutes. All the tests were repeated ten times. For this case study, we excluded neighborhood structure N1 from the 
VND. The reason for this is that it contributes very little to the performance of the algorithm, as we are going to show in 
Section 6.4. In Table 4, we presented the results obtained by GVNS and ALNS on a set of larger-sized instances. For practical 
reasons, we only included the results for 22 instances. The results for all of the tested instances can be found at 
https://www.mi.sanu.ac.rs/~luka/resources/TDEVRPTW/ resultsLargeAll.pdf . The first column contains the name of the 
instance. The following four columns show the results obtained by the ALNS method, while the last four columns display 
results obtained by the GVNS. For each algorithm, we present the objective value, the number of trucks used in a solution, 
the total distance travelled by vehicles, and the total penalty generated by missing time windows. Each instance has three rows 
associated with it. The first row shows the average values over ten independent runs, with the standard deviation provided in 
parenthesis. The second and third rows correspond to the best-found and worst-found solutions, respectively. The bolded 
fields for each instance designate solutions with the lower objective function value. We first compared best-obtained solutions 
for both algorithms, observing that GVNS provided a better solution in 52 cases, and in 4 cases both algorithms managed to 
find a solution of the same quality. The minimal, average, and maximal differences in the solution quality were 0.1439%, 
3.3175%, and 17.9404%, respectively. Using the Wilcoxon signed-rank test with the correction, we determined the p−value 
= 0.00000000036, so with the significance level of α = 0.05, we conclude that there is a statistically significant difference 
between algorithms in regard to the best-obtained solution. Comparing the average quality of the obtained solutions, we 
observed that GVNS outperformed ALNS in 55 cases and underperformed in just one instance. In situations where GVNS 
surpassed ALNS, the minimum, average, and maximum difference was 0.1092%, 3.0321%, and 28.9643%, respectively. The 
difference in average quality solution for the instance in which ALNS provided better results was 0.2877%. Moreover, we 
performed the Wilcoxon signed-rank test with the correction and obtained p−value = 0.0000000001, so we concluded with 
the significance level of α = 0.05 that GVNS and ALNS were statistically different in terms of average solution value. 
 
Table 4  
The obtained results for larger-sized instances 

In
st

an
ce

 ALNS GVNS 

Objective value Vehicles Distance Penalty Objective value Vehicles Distance Penalty 

c1
01

_2
1 2208.851 

(736.804) 
16.9 

(1.524) 
1537.326 
(64.71) 

671.526 
(686.892) 

1650.005 
(294.033) 

16.9 
(1.37) 

1446.274 
(72.064) 

203.73 
(239.524) 

1481.1 15 1480.96 0.141602 1374.14 15 1374 0.141602 
3057.56 18 1613.82 1443.74 2048.77 18 1526.09 522.685 

c1
02

_2
1 1516.38 (122.82) 

15.9 
(0.876) 

1465.95 
(51.694) 50.433 (74.846) 

1299.874 
(68.466) 

15.4 
(0.516) 

1290.616 
(55.461) 9.258 (16.67) 

1421.2 15 1421.2 0 1187.22 15 1187.22 0 

1838.37 16 1590.27 248.105 1421.19 16 1372.05 49.1373 

c1
03

_2
1 1720.493 

(628.596) 
16.5 

(0.85) 
1484.17 
(81.953) 

236.323 
(574.083) 

1541.492 
(375.653) 

16.1 
(0.876) 

1405.434 
(97.734) 

136.058 
(294.194) 

1366.7 16 1366.7 0 1243.71 14 1238.97 4.73721 

3484.82 16 1633.98 1850.85 2561.5 16 1619.95 941.55 

c1
04

_2
1 1224.964 

(32.397) 
14.3 

(0.675) 
1224.964 
(32.397) 0(0) 

1200.821 
(39.963) 

13.9 
(0.994) 

1200.521 
(40.116) 0.3 (0.949) 

1150.25 14 1150.25 0 1130.44 12 1130.44 0 
1262.35 14 1262.35 0 1242.34 15 1242.34 0 

c1
05

_2
1 1532.231 

(162.645) 
16.7 

(0.483) 
1488.046 
(60.186) 

44.184 
(135.743) 

1400.483 
(223.821) 

15.2 
(1.135) 

1313.184 
(91.429) 

87.298 
(180.895) 

1415.43 16 1415.4 0.026123 1223.34 14 1223.34 0 

1963.76 16 1533.3 430.457 1789.51 15 1359.05 430.457 

c1
06

_2
1 1469.229 

(143.815) 
15.8 

(1.033) 
1437.072 
(90.812) 32.156 (73.281) 1298.467 (71.95) 

15.1 
(1.101) 

1294.555 
(73.825) 3.911 (6.297) 

1348.12 15 1348.12 0 1231.74 14 1231.74 0 

1829.71 18 1592.43 237.284 1468.89 18 1468.89 0 

c1
07

_2
1 1319.289 

(61.044) 
14.9 

(0.876) 
1319.056 
(61.069) 0.232 (0.348) 

1246.548 
(39.162) 

14.6 
(0.516) 

1245.015 
(43.149) 1.534 (4.33) 

1265.14 15 1264.84 0.297058 1143.76 14 1129.91 13.8513 
1470.42 17 1470.42 0 1281.82 15 1281.53 0.297058 
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Table 4 
The obtained results for larger-sized instances (Continued) 

In
st

an
ce

 ALNS GVNS 

Objective value Vehicles Distance Penalty Objective value Vehicles Distance Penalty 

c1
08

_2
1 1307.453 

(42.379) 
15.5 

(0.972) 
1306.742 
(41.396) 0.711 (1.191) 

1258.402 
(32.677) 

15.1 
(0.568) 

1258.205 
(32.862) 0.197 (0.622) 

1252.46 14 1252.46 0 1212.02 15 1212.02 0 
1389.39 15 1386.21 3.17517 1319.02 16 1319.02 0 

c1
09

_2
1 1268.842 

(58.657) 
14.6 

(0.699) 
1263.632 
(48.894) 5.211 (16.478) 

1219.18 
(59.344) 

14.4 
(0.699) 

1213.969 
(49.431) 5.211 (16.478) 

1181.24 15 1181.24 0 1121.53 13 1121.53 0 
1382.98 15 1330.88 52.1069 1335.75 15 1283.64 52.1069 

c2
01

_2
1 1271.64 

(31.389) 14 (0) 
1271.64 
(31.389) 0 (0) 

1175.132 
(27.082) 

13.6 
(0.843) 

1175.132 
(27.082) 0 (0) 

1196.89 14 1196.89 0 1121.74 12 1121.74 0 
1292.61 14 1292.61 0 1187.97 14 1187.97 0 

c2
02

_2
1 1121.197 

(28.388) 
12.6 

(0.699) 
1121.197 
(28.388) 0 (0) 

1086.505 
(39.015) 

11.8 
(1.033) 

1086.505 
(39.015) 0 (0) 

1062.38 12 1062.38 0 1042.9 10 1042.9 0 

1139.43 13 1139.43 0 1139.43 13 1139.43 0 

c2
03

_2
1 1112.963 

(23.172) 
12.3 

(0.823) 
1112.963 
(23.172) 0 (0) 

1098.578 
(31.623) 

11.9 
(0.876) 

1098.578 
(31.623) 0 (0) 

1077.21 12 1077.21 0 1036.96 11 1036.96 0 
1134.68 13 1134.68 0 1134.68 13 1134.68 0 

c2
04

_2
1 1100.842 

(16.01) 
11.9 

(0.876) 
1100.842 
(16.01) 0 (0) 

1086.385 
(23.129) 

11.5 
(0.707) 

1086.385 
(23.129) 0 (0) 

1065.19 11 1065.19 0 1047.83 11 1047.83 0 

1118.63 13 1118.63 0 1118.63 13 1118.63 0 

c2
05

_2
1 1095.445 

(25.588) 
12.5 

(0.527) 
1095.445 
(25.588) 0 (0) 

1073.696 
(31.827) 12 (0.667) 

1073.696 
(31.827) 0 (0) 

1055.94 12 1055.94 0 1024.28 12 1024.28 0 

1116.72 13 1116.72 0 1116.72 13 1116.72 0 

c2
06

_2
1 1022.344 

(0.055) 10 (0) 
1022.344 
(0.055) 0 (0) 

1021.228 
(1.866) 10 (0) 

1021.228 
(1.866) 0 (0) 

1022.24 10 1022.24 0 1017.86 10 1017.86 0 
1022.37 10 1022.37 0 1022.37 10 1022.37 0 

c2
07

_2
1 1041.199 

(9.935) 
10.8 

(0.422) 
1041.199 
(9.935) 0 (0) 

1036.506 
(14.596) 

10.7 
(0.483) 

1036.506 
(14.596) 0 (0) 

1020.12 10 1020.12 0 1004.18 10 1004.18 0 
1046.07 11 1046.07 0 1046.07 11 1046.07 0 

c2
08

_2
1 1053.814 

(20.642) 
11.1 

(0.738) 
1053.814 
(20.642) 0 (0) 

1049.379 
(25.318) 

11.1 
(0.738) 

1049.379 
(25.318) 0 (0) 

1022.81 10 1022.81 0 1006.47 10 1006.47 0 

1077.61 12 1077.61 0 1077.61 12 1077.61 0 

r1
01

_2
1 1892.42 

(14.961) 
19.9 

(0.316) 
1686.072 
(12.654) 

206.344 
(10.719) 

1872.506 
(27.849) 

19.9 
(0.316) 

1682.58 
(22.528) 

189.923 
(25.032) 

1859.76 19 1652.75 207.011 1828.89 20 1643.85 185.041 
1901.18 20 1689.78 211.395 1901.18 20 1689.78 211.395 

r1
02

_2
1 1808.176 

(50.381) 
18.9 

(0.316) 
1651.975 
(25.402) 156.2 (25.665) 

1777.659 
(68.93) 19 (0.471) 

1640.069 
(66.378) 

137.587 
(48.62) 

1671.53 18 1586.02 85.51 1608.52 18 1514.8 93.717 
1832.58 19 1664.66 167.915 1832.58 19 1664.66 167.915 

r1
03

_2
1 1501.224 

(48.232) 
16.9 

(0.876) 
1439.245 
(36.443) 

61.977 
(18.068) 

1481.169 
(57.683) 

16.7 
(0.949) 

1421.912 
(43.104) 59.258 (21.4) 

1428.19 16 1388.39 39.7954 1398.92 16 1359.96 38.9554 
1556.37 18 1472.89 83.4774 1556.37 18 1472.89 83.4774 

r1
04

_2
1 1222.17 

(15.452) 
13.7 

(0.483) 
1199.449 
(13.599) 22.72 (11.432) 

1220.57 
(18.471) 

13.7 
(0.483) 

1198.065 
(15.666) 22.504 (11.24) 

1183.26 13 1180.89 2.3715 1172.74 13 1170.15 2.58221 

1230.5 14 1203.43 27.0691 1230.5 14 1203.43 27.0691 

r1
05

_2
1 1840.121 

(21.286) 19 (0) 
1680.522 
(18.17) 159.598 (10.5) 

1765.674 
(56.647) 

18.9 
(0.316) 

1626.078 
(28.465) 

139.601 
(30.432) 

1790.13 19 1631 159.127 1609.11 18 1549.59 59.5186 

1858.86 19 1687.65 171.21 1788.44 19 1633.03 155.417 
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6.4. Parameter analysis 
 
In this section, we will explore the relative influence of each neighborhood structure and each GVNS parameter on the solution 
quality. For this purpose, we utilized a gradient boosting regressor, provided in Extreme Gradient Boosting (XGBoost) library 
for Python programming language2 . In Fig. 3, we present the relative influence of each neighborhood structure considered in 
the local search step. Neighborhoods N9 and N10 were not tested as they are used only in the shaking step. It is important to 
notice that the choice of neighborhood structures is not the only factor contributing to the overall performance of the VND 
procedure, as the ordering of selected structures can have a substantial impact on solution quality. Nonetheless, the ordering 
of neighborhood structures was not examined in this paper. As we can see from Fig. 3, the neighborhood structures that 
contributed the most to the overall performance of the algorithm were N2 and N3, both of which are customer-based 
neighborhoods. This was to be expected, especially for neighborhood N3, which is the only neighborhood that can change the 
number of customers in a vehicle. Neighborhood structure N4 is also a customer-based neighborhood that contributes a lot to 
the solution quality, but it has a lower relative influence as it can be simulated by using N2. Removing a visit to a refueling 
station (N6) and exchanging one recharging station for another (N8) had a moderate influence on solution quality while moving 
the visit to the recharging station to some other position (N7) had less influence, probably because it is more likely to result in 
infeasible solutions. Surprisingly, exchanging customers between two vehicles (N5) had a somewhat low influence on the 
solution quality, but this can be due to the fact that it can be simulated using the N3 neighborhood structure. Finally, 
neighborhood structure N1 had virtually no contribution to the solution quality whatsoever. This is most likely because the 
scheduling procedure presented in Algorithm 3 is capable of finding good enough departure times, so there is rarely a need 
for further optimization. Moreover, this neighborhood structure can have a negative impact on the overall performance of the 
algorithm when applied to large instances, as it consumes much processing power without contributing to the solution quality. 
In Fig. 4, we present the relative importance of each of the five GVNS parameters used in our method. As evident, parameter 
kmax is the most important parameter, as it defines the number of transformations during the shaking step, so if not set properly 
together with the lmax parameter, the algorithm can get stuck in local optimum as some of the perspective solutions might be 
out of reach for the algorithm. Not surprisingly, the 𝜀 parameter had the least influence on the performance of GVNS, as it is 
used only to define the difference in departure times for neighborhood structure N1, and as we previously concluded, 
neighborhood N1 has the lowest impact on the performance of the algorithm. 

  
Fig. 3. Relative influences of each neighbourhood structure Fig. 4. Relative influences of each GVNS parameter 

7. Conclusion 

In this paper, we presented the electric vehicle routing problem with soft time windows and time-dependent speeds. The goal 
was to minimize the total distance travelled by all vehicles and to minimize the penalty cost for missing time windows. We 
proposed a MILP formulation, and a General Variable Neighborhood Search algorithm for finding solutions to this problem. 
The experimental evaluation was performed on a set of benchmark instances from the literature, which was split into two 
subsets based on their size. We compared our approach to the Adaptive Large Neighborhood Search algorithm with much 
success. Several real-world aspects of this problem were not considered, each presenting an opportunity for future research. 
For example, partial battery recharge is a common attribute for EVRP but was not considered in this paper. Furthermore, more 
realistic consumption models and objective functions can be developed, which would further increase the applicability of the 
problem. Finally, recharging stations differ from one another. In practice, each recharging station has a certain limit on how 
many vehicles it can serve at any moment, different recharging rates, and potentially different prices. These are all important 
aspects that can motivate further research in the area of EVRP. 
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