

* Corresponding author
E-mail: cchwu@fcu.edu.tw (C.-C. Wu)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
2023 Growing Science Ltd.
doi: 10.5267/j.ijiec.2023.2.002

International Journal of Industrial Engineering Computations 14 (2023) 265–274

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Composite heuristics and water wave optimality algorithms for tri-criteria multiple job classes and
customer order scheduling on a single machine

Lung-Yu Lia, Win-Chin Linb, Danyu Baic, Xingong Zhangd, Ameni Azzouze,f, Shuenn-Ren Chengg,
Ya-Li Wub and Chin-Chia Wub*

 Department of Computer Science and Information Engineering, Cheng Shiu University, Kaohsiung City 83347, Taiwana
Department of Statistics, Feng Chia University, Taichung, 40724, Taiwanb

cSchool of Maritime Economics & Management, Dalian Maritime University, Dalian, 116026, China
dCollege of Mathematics Science, Chongqing Normal University, Chongqing 401331, China
eSMART Lab., Institut supérieur de gestion de Tunis, Université de Tunis, Tunis, Tunisia
fTunis Business School, University of Tunis, Tunisia
gGraduate Institute of Business Administration, Cheng Shiu University, Kaohsiung City 83347, Taiwan
C H R O N I C L E A B S T R A C T

Article history:
Received May 10 2022
Accepted February 14 2023
Available online
February, 14 2023

 Among the well-known scheduling problems, the customer order scheduling problem (COSP) has
always been of great importance in manufacturing. To reflect the reality of COSPs as much as
possible, this study considers that jobs from different orders are classified in various classes. This
paper addresses a tri-criteria single-machine scheduling model with multiple job classes and
customer orders on which the measurement minimizes a linear combination of the sum of the ranges
of all orders, the tardiness of all orders, and the total completion times of all jobs. Due to the NP-
hard complexity of the problem, a lower bound and a property are developed and utilized in a
branch-and-bound for solving an exact solution. Afterward, four heuristics with three local
improved searching methods each and a water wave optimality algorithm with four variants of
wavelengths are proposed. The tested outputs report the performances of the proposed methods.

© 2023 by the authors; licensee Growing Science, Canada

Keywords:
Multiple job classes
Tri-criteria
Water wave optimality algorithm
Setup time

1. Introduction

Currently, the real manufacturing industry has been the subject of extensive study both from a theoretical and a practical point of view. Several challenges
have been raised, such as increasing product varieties, higher product customization and tremendous competition. Hence, the necessity of optimizing these
manufacturing systems has received considerable attention. Production scheduling is one of the oldest and most difficult problems in manufacturing systems.
Among the well-known scheduling problems, the customer order scheduling problem (COSP) has always been of great importance in manufacturing. The
main challenge of the COSP is to obtain the job sequences to satisfy the customer’s demand; customers order many kinds of products, which are executed in
only one machine (Della Croce et al., 2996).

The COSP mainly exists in make-to-order and make-to-assembly production systems where a single machine executes different types of products. Once the
customer asks for two different products, the order will be produced, packed and shipped together. Julien and Magazine (1990) are pioneers who introduced
the COSP into the scheduling field. Over the last decades, COSP topics have become an active research field. For the total order lead time criterion, Erel and
Gosh (2007) address the COSP and show that the problem is NP-hard for the first time. Under parallel machines and dispatched in batches, Su et al. (2013)
developed some heuristics to solve the COSP for the maximum lateness. Framinan and Perez-Gonzalez (2018) proposed two metaheuristics (Zheng, 2015;
Zheng et al., 2019), created a constructive heuristic, and provided an MIP formulation for the total tardiness COSP model. Wu et al. (2019) also applied a
branch-and-bound, some heuristics and metaheuristics to solve the COSP with learning considerations.

Regarding the real-life settings, a setup time is needed whenever the machine switches from one product to another. Job scheduling with setup costs or setup
times in many manufacturing and service environments has received increasing attention in the research community. Allahverdi and Soroush (2008)
emphasize that reducing setup costs or times may contribute to reliable services or products to be shipped in time. For more real applications of setup costs
or times, we refer readers to five articles from the literature by Yang and Liao (1999), Cheng et al. (2000), Allahverdi et al. (1999, 2008), and Allahverdi

266

(2015). Despite the importance of the setup time with job scheduling, the literature on the COSP with a setup time is very limited. To minimize the average
customer order flowtime criterion, Hazir et al. (2008) address a comparative study between four different metaheuristics to solve this problem. Recently, de
Athayde Prata et al. (2021a) proposed two mixed integer linear programming models and a fixed variable list algorithm for solving the COSP with a sequence-
dependent setup time (SDST). Furthermore, they propose a discrete differential evolution algorithm for the same problem in de Athayde Prata et al. (2021b).
To reflect the reality of the customer order scheduling problem as much as possible, this study considers that jobs from different orders are classified in
various classes. Each order consists of at least one job from each of the job classes. A setup time is needed whenever the machine switches from a job in one
class to a job in another class. The literature indicates Gupta et al. (1997), who investigated the bicriteria COSP with multiple classes and setup times for the
first time in which the makespan is the first objective and the total carrying costs of customer orders are the second objective. The carrying (holding) cost of
a customer order is computed by the difference in the time between the completion times of the first job and the last job in the customer order. Since that
study, no other research papers have considered this problem, although it is relevant to the practical importance of this production environment.

In this paper, the purpose of our investigation is to minimize a linear combination of a tri-criteria single-machine scheduling model with multiple job classes
and customer orders, where the first criterion is the sum of the holding costs of all orders, the second is the total tardiness of all orders, and the third is the
total completion times of all jobs. Given the NP-hard nature of the problem, a lower bound and property are developed and utilized in a B&B method for
finding an optimal schedule. Then, four heuristics, each along with three local improved searching methods, as well as a water wave optimality algorithm
with four variants of wavelengths are introduced to search for near optimal solutions. Then, the obtained results are analyzed and reported.

The remaining organization of this work is described as follows. Section 2 presents the notations and problem definition. Section 3 reviews one dominance
property and one lower bound in a B&B method for an exact schedule. Section 4 discusses composite heuristics and four wavelengths of water wave
optimality algorithms. Section 5 is dedicated to a discussion on the parameter settings of the proposed WWO algorithm. Section 6 presents several
computational simulations to determine the performances of the proposed methods. Conclusions and suggestions are provided in Section 7.

2. Notations and problem formulation

First, some notation used in this study is defined as follows: Oெ ={O1, O2, …, Om} denotes a set of m (customer) orders; 𝛣 ={B1, B2,…, BK} denotes a set of K types of job classes; ሼ𝑠ଵ, 𝑠ଶ … , 𝑠௄ሽ: denotes a set of K setup times for K job classes; ሼ𝑝ଵ,𝑝ଶ … , 𝑝௡ሽ: denotes a set of job processing times for 𝑛 jobs (𝑛 = 𝑚 × 𝐾); 𝜎,𝜎ᇱ: denotes two full job schedules; 𝛿, 𝛿ᇱ: denotes two partial schedules; ሼ𝑑ଵ,𝑑ଶ … ,𝑑௠ሽ: denotes a set of due dates of m orders; 𝐶௜ሺ𝜎ሻ,𝐶௝ሺ𝜎ሻ: denote the completion times of job i and job j in 𝜎; 𝐶௜ሺ𝜎ᇱሻ, 𝐶௝ሺ𝜎ᇱሻ: denote the completion times of job i and job j in 𝜎ᇱ;
[]：denotes the position in a given schedule; 𝐶௨௙(𝜎), 𝐶௨௙(𝜎ᇱ): denotes the completion time of the first job in Ou in 𝜎(𝜎ᇱ), u = 1, 2, …, m; 𝐶௨௟ (𝜎), 𝐶௨௟ (𝜎ᇱ): denotes the completion time of the last job in Ou in 𝜎(𝜎ᇱ), u= 1, 2, …, m; 𝐻𝐶௨(𝜎) = 𝐶௨௟ (𝜎) − 𝐶௨௙(𝜎): denotes the holding cost of order Oj in 𝜎, u =1, 2, …, m; 𝐶௠௔௫(𝜎) = maxሼ𝐶ଵ(𝜎),𝐶ଶ(𝜎), … ,𝐶௡(𝜎)ሽ; ∑ 𝐻𝐶௨(𝜎)௠௨ୀଵ : denotes the total holding cost for the m orders.

The considered problem can be stated as follows. Suppose that there are a set of n jobs that are grouped into a set of m orders, and each order includes K jobs
that belong to K different classes of jobs. Jobs are ready at time zero and will be operated on a single machine. No preemption is allowed during job processing.
Suppose that each job Ji has a processing time and must belong to a job class. Furthermore, an order consists of at least one job from each job class. During
the processing period, if job class a is scheduled immediately following the previous job class b, 𝑎 ≠ 𝑏, then a setup time 𝑠௔ is needed; otherwise, it does not
need a setup time. The definition of holding cost 𝐻𝐶௨(𝜎) of order u indicates the range between the completion time of the first job in order u and the
completion time of the last job from the same order. In this study, we address a multiple-class order scheduling problem to minimize a linear combination of
the total holding cost ∑ 𝐻𝐶௨(𝜎)௠௨ୀଵ , total tardiness cost ∑ 𝑇௨(𝜎)௠௨ୀଵ , and total completion times ∑ 𝐶௝(𝜎)௡௝ୀଵ of all given n (𝑛 = 𝑚 × 𝐾) jobs. For
simplification, the tri-criterion is termed h(𝜎) for schedule 𝜎; that is, ℎ(𝜎) = 𝛼 ∑ 𝐻𝐶௨(𝜎)௠௨ୀଵ + 𝛽 ∑ 𝑇௨(𝜎)௠௨ୀଵ + 𝛾 ∑ 𝐶௝(𝜎)௡௝ୀଵ .

The proposed problem is also NP-hard because for fixed 𝑚 = 1,𝛼 = 𝛽 = 0, 𝛾 = 1, (i. e. , minimize ∑ 𝐶௝(𝜎)௡௝ୀଵ only), and each class has only one job and
all processing times are equal; thus, it is an NP-hard problem (see Liaee & Emmons, 1997).

3. A lower bound and a property

To apply the B&B method to find the optimal schedule, it is necessary to determine a lower bound on a node of σ = (π,π௖), where π is the scheduled part
with 𝑛஠ jobs and π௖ is the set of 𝑛஠೎ unscheduled jobs. Let 𝑡஠ be the completion time of the last job 𝐽௅ in π and ∑ 𝐻𝐶௨௨∈஠ be the total holding cost of those
completed orders in π. For the lower bound of the holding cost in π௖, we sort the processing times of n jobs by the smallest processing times first rule, i.e., 𝑝(ଵ) ≤ 𝑝(ଶ) ≤ ⋯ ≤ 𝑝(௡) is a nondecreasing order of {𝑝ଵ, 𝑝ଶ, … , 𝑝௡}, and we record the frequency number 𝑓௜ for each order in π௖, i=1, 2, …, q, and set 1 ≤ 𝑓ଵ ≤𝑓ଶ … ≤ 𝑓௤ with q < m. Following this, we calculate the estimated completion times of jobs in π௖ as 𝐶ሾ௡ಘା௜ሿ(σ) = 𝑡஠ + ∑ 𝑝(௝)௜௝ୀଵ , i=1, 2, …, 𝑛஠೎ . It should be
noted that 𝑛஠೎ < 𝑛. Thus, we can estimate the holding cost for q orders as follows: ∑ 𝐻𝐶௨௨∈஠೎ = {𝐶ሾ௡ಘା௙భሿ(σ) − 𝐶ሾ௡ಘାଵሿ(σ) + 𝐶ሾ௡ಘା௙భା௙మሿ(σ) − 𝐶ሾ௡ಘା௙భାଵሿ(σ)+…+𝐶ൣ௡ಘା௙భା௙మା⋯ା௙೜൧(σ) − 𝐶ൣ௡ಘା௙భା௙మା⋯ା௙೜షభାଵ൧(σ)}
 = ∑ (𝐶ሾ௡ಘା∑ ௙ೡೠೡసభ ሿ(σ) − 𝐶ൣ௡ಘା∑ ௙ೡೠషభೡసబ ൧(σ)௤௨ୀଵ),
where it is assumed that 𝑓଴ = 1, the range of 𝐶ሾ௡ಘା௙భሿ(σ) − 𝐶ሾ௡ಘାଵሿ(σ) denotes the estimated holding cost of the remaindering order with 𝑓ଵ jobs, the range
of 𝐶ሾ௡ಘା௙భା௙మሿ(σ) − 𝐶ሾ௡ಘା௙భାଵሿ(σ) denotes the estimated holding cost of the remaindering order with 𝑓ଶ jobs, …, and the range of 𝐶ൣ௡ಘା௙భା௙మା⋯ା௙೜൧(σ) −𝐶ൣ௡ಘା௙భା௙మା⋯ା௙೜షభାଵ൧(σ) denotes the estimated holding cost of the remaindering order with 𝑓௤ jobs.
For the lower bound of the tardiness cost of those orders in π௖, we sort the due dates of q orders by the earliest due dates first rule, i.e., 𝑑(ଵ) ≤ 𝑑(ଶ) ≤ ⋯ ≤𝑑(௤) is a nondecreasing order of {𝑑ଵ,𝑑ଶ, … ,𝑑௤}, which can be determined as follows:
 ∑ 𝑇𝐶௨௨∈஠೎ = {max {𝐶ሾ௡ಘା௙భሿ(σ) − 𝑑(ଵ), 0} + max {𝐶ሾ௡ಘା௙భା௙మሿ(σ) − 𝑑(ଶ), 0} + ⋯+ max {𝐶ൣ௡ಘା௙భା௙మା⋯ା௙೜൧(σ) − 𝑑(௤), 0} =∑ (max {𝐶ሾ௡ಘା∑ ௙ೡೠೡసభ ሿ(σ) − 𝑑(௜), 0}௤௨ୀଵ).
For the lower bound of total completion times of those jobs in π௖, we assign the processing times of 𝑛஠೎ jobs by the smallest processing times first rule, i.e., 𝑝(ଵ) ≤ 𝑝(ଶ) ≤ ⋯ ≤ 𝑝(௡ಘ೎) is a nondecreasing order of {𝑝௜ ∈ π௖}, and we have

L.Y. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 267𝐶(௝)(𝜎)=∑ 𝑡஠ + 𝑝(௜)௝௜ୀଵ , j=1, 2, …,𝑛஠೎ ,
According to the above formulas, we have the following: ∑ 𝐶(௝)(𝜎)௡ಘ೎௝ୀଵ =𝑛஠೎ × 𝑡஠ + ∑ (𝑛஠೎ − 𝑗 + 1)𝑝(௝)௡ಘ೎௝ୀଵ
From the above, the lower bound can be obtained as follows: ൝α ෍ 𝐻𝐶௨௨ୀଵ,..,௠ + β ෍ 𝑇𝐶௨௨ୀଵ,..,௠ + 𝛾 ෍ 𝐶௜௜ୀଵ,..,௡ ൡ ≥ α෍𝐻𝐶௨௨∈஠ + β෍𝑇𝐶௨௨∈஠ + 𝛾෍𝐶௝௝∈஠

 +α෍(𝐶ሾ௡ಘା∑ ௙ೡೠೡసభ ሿ(σ) − 𝐶ൣ௡ಘା∑ ௙ೡೠషభೡసబ ൧(σ)௤
௨ୀଵ)

 +β෍max {𝐶ሾ௡ಘା∑ ௙ೡೠೡసభ ሿ(σ) − 𝑑(௨), 0}௤
௨ୀଵ +𝛾(𝑛஠೎ × 𝑡஠ + ∑ (𝑛஠೎ − 𝑗 + 1)𝑝(௝)௡ಘ೎௝ୀଵ).

Apart from that, a property is also proposed to increase the searching power of the branch-and-bound algorithm. Let 𝜎 = (π, 𝐽௜ , 𝐽௝ ,π௖) and 𝜎ᇱ = (π, 𝐽௝ , 𝐽௜ ,π௖)
present two full schedules in which job i is scheduled before job j in σ, while job j is scheduled before job i in σᇱ. Moreover, let job 𝐽௅ denote the last job in π. Assuming that jobs 𝐽௅, 𝐽௜, 𝐽௝, are in the same class, and 𝐽௜ ∈ 𝑂௨ and 𝐽௝ ∈ 𝑂௩, 𝑢 ≠ 𝑣, the following property can be obtained.

Property 1: As jobs 𝐽௅, 𝐽௜, and 𝐽௝ are in the same class, and 𝐽௜ ∈ 𝑂௨, 𝐽௝ ∈ 𝑂௩, 𝑢 ≠ 𝑣, if the first assigned job of 𝑂௨ is scheduled after the first assigned job of 𝑂௩ (in π), both jobs 𝐽௜ and 𝐽௝ are the last assigned jobs of 𝑂௨ and 𝑂௩, 𝑝௜ < 𝑝௝ and 𝑑௨ < 𝑑௩, then 𝜎 dominates 𝜎ᇱ.
Proof: Recall that the objective function of this study is ℎ(𝜎) = 𝛼 ∑ 𝐻𝐶௪(𝜎)௠௪ୀଵ + 𝛽 ∑ 𝑇௪(𝜎)௠௪ୀଵ + 𝛾 ∑ 𝐶௝(𝜎)௡௝ୀଵ .
It should be to be shown that ℎ(𝜎ᇱ) > ℎ(𝜎).
 (1) Both jobs 𝐽௜ and 𝐽௝ belong to the same class, and no additional setup times are needed to make a pairwise exchange of these two jobs. Therefore, ∑ 𝐶௝(𝜎)௡௝ୀଵ = ∑ 𝐶௝(𝜎′)௡௝ୀଵ .
 (2) Since 𝐶௨௙(𝜎ᇱ) = 𝐶௨௙(𝜎) , and 𝐶௩௙(𝜎ᇱ) = 𝐶௩௙(𝜎), the ∑ 𝐻𝐶௪(𝜎′)௠௪ୀଵ − ∑ 𝐻𝐶௨(𝜎)௠௪ୀଵ = ሾ𝐻𝐶௩(𝜎ᇱ) + 𝐻𝐶௨(𝜎ᇱ)ሿ − ሾ𝐻𝐶௨(𝜎) + 𝐻𝐶௩(𝜎)ሿ = ൣ𝐶௩௟(𝜎ᇱ) −𝐶௩௙(𝜎ᇱ) + 𝐶௨௟ (𝜎ᇱ) − 𝐶௨௙(𝜎ᇱ)൧ − ൣ𝐶௨௟ (𝜎) − 𝐶௨௙(𝜎) + 𝐶௩௟(𝜎) − 𝐶௩௙(𝜎)൧ = ሾ𝐶௩௟(𝜎ᇱ) − 𝐶௩௟(𝜎)] + [𝐶௨௟ (𝜎ᇱ) − 𝐶௨௟ (𝜎)] = 𝑝௝ − ൫𝑝௜ + 𝑝௝൯ + ൫𝑝௝ + 𝑝௜ − 𝑝௜൯ = 𝑝௝ −𝑝௜ > 0.
(3) The rest of this proof is to show that TD = ∑ 𝑇௪(𝜎′)௠௪ୀଵ − ∑ 𝑇௪(𝜎) = [𝑇௩(𝜎ᇱ) +௠௪ୀଵ 𝑇௨(𝜎ᇱ)]− [𝑇௨(𝜎) + 𝑇௩(𝜎)] ≥ 0, where 𝑇௨(𝜎) = 𝑚𝑎𝑥(𝑡గ + 𝑝௜ − 𝑑௨ , 0),𝑇௩(𝜎) = 𝑚𝑎𝑥(𝑡గ + 𝑝௜ + 𝑝௝ − 𝑑௩, 0) 𝑇௩(𝜎′) = 𝑚𝑎𝑥(𝑡గ + 𝑝௝ − 𝑑௩ , 0), 𝑇௨(𝜎′) = 𝑚𝑎𝑥(𝑡గ + 𝑝௝ + 𝑝௜ − 𝑑௨ , 0).
The time order 𝑡గ < 𝑡గ + 𝑝௜ < 𝑡గ + 𝑝௝ < 𝑡గ + 𝑝௜ + 𝑝௝ and the given condition 𝑑௨ < 𝑑௩ determine the TD values of ten situations. Three of the ten
situations are proven as follows, and the remaining proofs of others are similar.
Case (i): if𝑑௨ < 𝑡గ + 𝑝௜ < 𝑑௩ < 𝑡గ + 𝑝௝
 TD = ൣ(𝑡గ + 𝑝௝ − 𝑑௩) + (𝑡గ + 𝑝௝ + 𝑝௜ − 𝑑௨)൧ − ൣ(𝑡గ + 𝑝௜ − 𝑑௨) + (𝑡గ + 𝑝௜ + 𝑝௝ − 𝑑௩)൧= 𝑝௝ − 𝑝௜ > 0.
Case (ii): if𝑡గ + 𝑝௜ < 𝑑௨ < 𝑡గ + 𝑝௝ < 𝑑௩ < 𝑡గ + 𝑝௜ + 𝑝௝
 TD = ൣ0 + (𝑡గ + 𝑝௝ + 𝑝௜ − 𝑑௨)൧ − ൣ0 + (𝑡గ + 𝑝௜ + 𝑝௝ − 𝑑௩)൧ = 𝑑௩ − 𝑑௨ > 0.
Case (iii): if 𝑑௨ < 𝑡గ + 𝑝௜ and 𝑑௩ >𝑡గ + 𝑝௜ + 𝑝௝ TD = ൣ0 + (𝑡గ + 𝑝௝ + 𝑝௜ − 𝑑௨)൧ − [(𝑡గ + 𝑝௜ − 𝑑௨) + 0] = 𝑝௝ > 0.
Combining (1), (2), and (3), ℎ(𝜎ᇱ) > ℎ(𝜎) follows. □

4. Composite heuristics and four wavelengths of water wave optimality algorithms

 In this section, based on the problem features of the jobs class and customer order of jobs, we develop four problem-based heuristics and then improve each
by applying three local searching schemes to refine the quality of approximate solutions. Following this, we adopt four variants of wavelengths of the water
wave optimality algorithm to solve this problem as well. The details of the proposed algorithms are discussed as follows.
For the first heuristic method, in light of the concept of Gupta et al. (1997), we assign m orders according to the smallest value first principle on
{𝑂𝑃ଵ,𝑂𝑃ଶ, … ,𝑂𝑃௠}, where 𝑂𝑃௨ = ∑ 𝑝௝௝∈ைೠ , u=1, 2, …, m. In what follows, we assign the jobs in each order according to the largest value first principle to
obtain a complete schedule. We record it as the OSPT_LPT (OSL in brief). For the second heuristic, we assign m orders according to the smallest values first
principle on {𝐶𝑃ଵ,𝐶𝑃ଶ, … ,𝐶𝑃௄}, where 𝐶𝑃௔ = ∑ 𝑝௝௝∈஻ೌ +𝑠௔, a=1, 2, …, K. Next, we assort the jobs in the first class according to the largest processing time
first to yield the sequence and then assort all the jobs according to the smallest processing times first in each class for the remaining (m-1) classes to obtain
a full job schedule. We call this method CSPT_LPTSPT (CSL in brief). For the third and fourth heuristics, we assign m orders first according to the earlier
due dates of {𝑑ଵ,𝑑ଶ, … ,𝑑௠} in both heuristics. Next, we assign the jobs in each order according to the largest processing times first to obtain a complete
schedule for the third method, while we assign the jobs in each order according to the smallest processing times first to obtain a complete schedule for the
fourth method. We record them as OEDD_LPT (OEL in brief) for the third method and OEDD_SPT (OES in brief) for the fourth heuristic. To refine the
quality of the solutions, we improve each of the proposed OSL, CSL, OEL and OES by three local searching methods (Della Croce et al., 1996), including
extraction and forward-shifted reinsertion, pairwise interchange, and extraction and backward-shifted reinsertion. In total, 12 composite heuristics are
developed and termed OSL_p, OSL_f, OSL_b, CSL_p, CSL_f, CSL_b, OEL_p, OEL_f, OEL_b, OES_p, OES_f, and OES_b.

In addition, to solve the proposed problem, we apply four variants of a water wave optimization algorithm (WWOA), where each variant has its own
wavelength. In WWOA design, a wavelength presents a full job schedule. Two important factors, diversification and the intensification of searching
metaheuristics, are considered when performing a WWOA (Zheng et al., 2019). That is, diversification involves exploring low-adaptability solutions in a
large space; however, intensification involves exploiting highly adaptable solutions in a small space.

Adopting the following wavelength formulations (2), (3), (4) and (5) in Zheng et al. (2019) and considering the tri-criteria objective,ℎ(𝜎) = 𝛼 ∑ 𝐻𝐶௨(𝜎)௠௨ୀଵ +𝛽 ∑ 𝑇௨(𝜎)௠௨ୀଵ + 𝛾 ∑ 𝐶௝(𝜎)௡௝ୀଵ , four wavelength formulas are summarized as follows:
 𝜆ఙ೔ = 𝜆ఙ೔ × 𝛼ି೓൫഑೔൯ష೓೘೔೙శച೓೘ೌೣష೓೘೔೙శച, (1)

𝜆ఙ೔ = 𝜆௠௔௫ × ∑ ℎ(𝜎௜) − ℎ(𝜎௜)௜௦௜௭௘௜ୀଵ∑ ℎ(𝜎௜)௜௦௜௭௘௜ୀଵ , (2)

𝜆ఙ೔ = 𝜆௠௜௡ + (𝜆௠௔௫ − 𝜆௠௜௡) × ௛೘ೌೣି௛(ఙ೔)ାఢ௛೘ೌೣି௛೘೔೙ାఢ, (3)

and

268𝜆ఙ೔ = 𝜆௠௜௡ × 𝑏೓೘ೌೣష೓൫഑೔൯శച೓೘ೌೣష೓೘೔೙శച, (4)

where ℎ௠௜௡(ℎ௠௔௫) = 𝑚𝑖𝑛 (𝑚𝑎𝑥) {ℎ(𝜎௜),𝜎௜ ∈ Ω, 𝑖 = 1, 2, … , 𝑖𝑠𝑖𝑧𝑒}, Ω presents a set of initial generated solutions in the WWOA, α denotes the wavelength
reduction coefficient, 𝑏 = 𝜆௠௔௫/𝜆௠௜௡, and isize records the number of waves in Ω. 𝜆௠௔௫ and 𝜆௠௜௡ denote the maximum and minimum allowable wavelengths,
respectively, and 𝜖 is an extremely small number with 0 < 𝜖 <1. In particular, 𝜆௠௔௫=𝜃 × 𝑛, 𝜆௠௜௡ = 1, α=1.0026, and 0 < 𝜃 < 1 is a controllable number in
the study according to the setting in Zheng (2015), Zheng et al. (2019), and Zhao et al. (2018).

We run four WWOAs by adopting the swapping propagation operation to interchange the pth position job and the qth position job in 𝜎௜ u times, where integers
p and q (𝑝 < 𝑞) are selected randomly from a discrete uniform distribution over 1 and n (or U(1, n)), and integer u is randomly generated from U(1, 𝜆ఙ೔).
For simplification, the WWOA algorithms with wavelength formulations (1) to (4) are named WWOA1, WWOA2, WWOA3, and WWOA4, respectively.
Two more parameters, iteration and Nb, are recorded as the total number of cycles required to perform the WWOAs and the improved number after the end
of running the propagation operations of the WWOA. The procedures of WWOA are discussed as follows.

The details of the proposed WWOA:
01: Input iteration 𝜃, Nb, and isize;
02: Set α=1.0026, 𝑏 = 𝜆௠௔௫/𝜆௠௜௡, 𝜆௠௜௡ = 1, 𝜖 = 10ି଼;
03: Generate a group of initial waves {𝜎௜, i=1, …, isize} and compute each objective function value ℎ(𝜎௜), i=1, …, isize;
04: Find the best schedule 𝜎∗ with ℎ(𝜎∗) = 𝑚𝑖𝑛௜∈ஐ{ℎ(𝜎௜)};
05: j=1;
06: Do while {j <= iteration}
07: Find 𝜆ఙ೔ by Formulas (1) or (2) or (3) or (4), 𝑖 ∈ Ω;
08: i=1
09: Do while { i <= isize}
10: for each 𝜎௜;
11: Select a u ∈ U[1, 𝜆ఙ೔] and apply a swapping propagation to 𝜎௜ after u times to obtain a new 𝜎′௜;
12: Determine if ℎ(𝜎′௜) < ℎ(𝜎௜), replace 𝜎௜ by 𝜎′௜ and ℎ(𝜎௜) by ℎ(𝜎′௜);
13: Determine if ℎ(𝜎௜) < ℎ(𝜎∗), improve 𝜎௜ by a local search (e.g., pairwise interchange) method up to Nb times to find the final best one (say 𝜎௜′′), and

replace 𝜎∗ by 𝜎௜′′;
14: i=i+1
15: End while;
16: j=j+1 and update the population;
17: End while;
18: Output the final solution 𝜎∗ and ℎ(𝜎∗).

5. Tuning the parameters in the WWOA

In addition to problem-specified heuristics, to acquire (near-)optimal job sequences for an NP-hard scheduling problem, researchers often use metaheuristics,
such as, for example, genetic algorithms or simulated annealing. However, the water wave optimality algorithm is utilized in this study to produce high-
quality (low value of ℎ(𝜎)) job sequences. Parameter adjustment is an essential step before the intensive use of WWOA to obtain satisfactory job sequences.
For parameter tests, the number of jobs is set at n=12 (100) for small (large) size problems. The processing times and setup times are generated randomly
from a uniform distribution over integers 1 to 100 and over 1 to 20, respectively. The number of each test problem instance is 100. The average of error
percentages (AEP) is AEP= 100[(𝐴௞ − 𝐵௞)/𝐵௞][%], where 𝐴௞ (and 𝐵௞) is obtained from each algorithm (and the B&B method) and recorded for small-size
problems. While there is no optimal solution and its corresponding objective value is available, the mean of objective values (MOV) is recorded for large-
size problems.

5.1 Tuning parameters for the WWOA for a small-sized problem

To tune the parameters of the WWOA, n was fixed at 12 for small-size problems. In the exploration of the parameter isize, after several trials, other parameters
were fixed as lambda=0.5×12, iteration=5×12, and Nb =5. The test values of the isize are from 5 to 30 by increasing one per time. In Figure 1(a), we can see
that as isize increases, the number of AEPs decreases, and when isize is greater than approximately 26, the value of AEP is relatively stable, so we set isize
to 30. When adjusting the lambda parameter, other parameters were fixed as follows: isize=30, iteration=5×12, and Nb =5. The test values of lambda ranged
from 0.1×12 to 0.9×12 with an interval of 0.1×12. In Figure 1(b), it can be observed that as lambda increases, AEP gradually converges downward, and when
lambda is greater than 0.8×12, the value of AEP gradually stabilizes, so lambda is set to 0.8×12. In the calibration of the parameter iteration, other parameters
were fixed as isize=30, lambda=0.8×12, and Nb =5. The test values of iteration ranged from 5×12 to 25×12 by increasing one per iteration. In Fig. 1(c), we
can see that as the iteration increases, the AEP gradually converges downward, and when the iteration is greater than approximately 22×12, the value of the
AEP is relatively stable, so we set the iteration to 22×12. In the alignment of the Nb parameter, the other parameters are fixed at isize=30, lambda=0.8×12,
and iteration=22×12. The test values of Nb ranged from 1 to 10, with an interval of 1. Fig. 1(d) shows that when Nb is greater than approximately 7, AEP
generally converges, so Nb is set to 9. As obtained from the parameter exploration, the parameters for the small size job are decided as (isize, lambda, iteration,
Nb) and (30, 0.8×12=9.6, 22×12=264, 9), respectively, for later simulation computation experiments.

Fig. 1. Calibration of the parameters of the WWOA for small jobs

L.Y. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 269

5.2 Tuning parameters for the WWOA for a large-sized problem

To tune the WWOA parameters, n was fixed at 100 for large problems. In the exploration of the parameter isize, other parameters were fixed as
lambda=0.1×100, iteration=0.5×100, and Nb =1. The test values of isize ranged from 5 to 95, with a spacing of 5. In Fig. 2(a), we can see that as isize
increases, the MOV (mean of objective values) converges downward, and when isize is greater than approximately 65, the value of MOV gradually stabilizes,
so the selected value of isize is 65. In the adjustment of the lambda parameter, other parameters were fixed as follows: isize=65, iteration=0.5×100, and Nb
=1. The test values of lambda ranged from 0.1×100 to 0.9×100, with an interval of 0.1×100. It is known that in Figure 2(b), as lambda increases, MOV
converges downward, so lambda is set to 0.9×100. In the adjustment of the parameter iteration, other parameters were fixed as isize=65, lambda=0.9×100,
and Nb =1. The test values of iteration ranged from 0.5×100 to 20×100 by incensement of 0.5×100 per trail. In Figure 2(c), we can see that as the iteration
increases, the MOV converges downward, and when the iteration is greater than approximately 8×100, the value of the MOV gradually stabilizes, so the
value of iteration is set at 8×100. In the adjustment of the parameter Nb, other parameters were fixed as follows: isize=65, lambda=0.9×100, and
iteration=8×100. The test values of Nb ranged from 1 to 10 by an increment of one per trial. In Fig. 2(d), we can see that the MOV is stable for the test range,
and Nb is finally selected to be 6. As obtained from the parameter exploration for the large size job, the parameters for the large size job are decided as (isize,
lambda, iteration, Nb) and (65, 0.9×100=90, 8×100=800, 6), respectively, for subsequent computation experiments.

Fig. 2. Calibration of the parameters of the WWOA for a large job

6. Simulation report and statistical analysis

This section reports the results of carrying out two simulation sets to evaluate the performance of the proposed B&B method, 12 heuristics and four WWWO
algorithms. All programs were coded in Fortran (Compaq Visual version 6.6) and executed on a PC with a 3.00-GHz Intel(R) Core(TM) i7-9700 CPU and
32.0-GB RAM in Windows 10. The test instances were generated by problem properties, i.e., the combinations of parameters, such as setup time, number of
job classes (K) and number of orders (m). Regarding the set of simulations for a small number of jobs, the job size was set to n (=K*m) = 8, 10 and 12. We
generated the job processing times from a uniform distribution U(1, 100). The due dates of the jobs following Fisher (1976) were generated from a uniform
distribution 𝑇 × 𝑈(1 − 𝜏 − 𝑅/2, 1 + 𝜏 + 𝑅/2), in which we let 𝑇 = ∑ 𝑝௝௡௝ୀଵ be the sum of the processing times of the 𝑛 jobs, and 𝜏 and R represent the tardiness
factor and range of the due dates, respectively. Furthermore, the six cases of (τ, R) were (0.50, 0.25), (0.5, 0.50), (0.25, 0.25), (0.25, 0.50), (0.25, 0.75), and
(0.25, 0.75). There are three different types of weights (α, β, 𝛾), which were set to (1:1:1), (1:2:3), and (3:2:1). Regarding the setup times, there were two
types: one followed U(1, 10), and the other followed U(1, 20). In addition, for each n, the combination of the number of orders and the number of classes
(mo*mk) was set differently. There were 2, 2, and 4 combinations for n=8, 10, 12, respectively. A collection of 100 tested instances was generated randomly
for each case of the aforementioned parameters. Consequently, 28,800 (=∑ (𝜏 ∗ 𝑅 ∗ weight ∗ (mo ∗ mk) ∗ setup ∗ 100)௡ = (2*3*3*2*2 + 2*3*3*2*2 +
2*3*3*4*2) *100) problem instances were tested. In addition, as the number of searched nodes exceeded 109, the B&B method jumped to the next set of
data. Pertaining to the set of simulations for large numbers of jobs, the same parameter combination was used as the small number of jobs, except for the
numbers of jobs n (were set at 50 and 80) and the combination of the number of orders and number of classes ((mo*mk), 4 (8) combinations for n=50 (80),
respectively). A collection of 100 problem instances was generated randomly for each combination. There were 43,200 (=∑ (𝜏 ∗ 𝑅 ∗ weight ∗ (mo ∗ mk) ∗௡setup ∗ 100) = (2*3*3*4*2 + 2*3*3*8*2) *100) problem instances that were tested for a large number of jobs.

6.1 Small-size simulation results

In this section, the criterion average error percentage (abbr. AEP) assesses the power of searching (near) optimal solutions for the proposed 12 heuristics and
the four WWOAs (WWOA1, WWOA2, WWOA3, WWOA4). The AEP is defined as 100[(𝐴௞ − 𝐵௞)/𝐵௞][%] , where 𝐴௞ is received from each
heuristic/algorithm and 𝐵௞ is received from the B&B method. Regarding the obtained results of the B&B method, Table 1 delivers its performance. The mean
of the nodes increased as the number of jobs increased, as displayed in Column 3 of Table 1. In addition, most generated test instances obtained the solution
within 109 nodes. The average CPU times (in seconds) presented in Table 1 increased trivially as the number of jobs increased.

Table 1
Performance of the branch-and-bound method

n τ node CPU time total
8 0.25 13345.3 0.05 1800

 0.5 13667.6 0.06 1800
10 0.25 857868.3 3.74 1800
 0.5 897994.7 3.97 1800
12 0.25 68567401.8 411.50 3600
 0.5 74437881.8 444.20 3600
 R
8 0.25 13683.2 0.06 1200

 0.5 13325.4 0.05 1200
 0.75 13510.8 0.06 1200
10 0.25 886928.2 3.86 1200
 0.5 882504.5 3.92 1200
 0.75 864361.8 3.80 1200
12 0.25 72602054.6 436.80 2400
 0.5 71277073.4 424.50 2400
 0.75 70628797.4 422.30 2400
 weight node CPU time total

270

8 1:1:1 13913.2 0.06 1200
 1:2:3 8449.8 0.04 1200
 3:2:1 18156.3 0.07 1200
10 1:1:1 861976.0 3.92 1200
 1:2:3 394033.8 2.12 1200
 3:2:1 1377784.7 5.54 1200
12 1:1:1 67107408.3 422.40 2400
 1:2:3 22539483.9 170.80 2400
 3:2:1 124861033.3 690.30 2400
 mo×mk
8 2×4 17125.5 0.06 1800

 4×2 9887.4 0.05 1800
10 2×5 1236287.3 4.90 1800
 5×2 519575.7 2.81 1800
12 2×6 128840598.9 660.80 1800
 3×4 72676883.8 445.60 1800
 4×3 46571209.8 323.90 1800
 6×2 37921874.8 281.20 1800
 setup
8 U(1,10) 13446.6 0.05 1800

 U(1,20) 13566.3 0.06 1800
10 U(1,10) 871116.0 3.89 1800
 U(1,20) 884747.0 3.83 1800
12 U(1,10) 71899465.7 432.70 3600
 U(1,20) 71105817.9 423.00 3600
 mean 35974180.4 214.91

Table 2 summarizes the CPU time and number of node results of the B&B for each of the Factors n, τ, R, weight, and setup.
Moreover, for the summaries of (mo*mk), see Table 1. The mean nodes and mean CPU times grow dramatically as the number
of jobs (n) increases, which is one property of NP-hard problems.

Table 2
Summary of the performance of the branch-and-bound method

n node CPU R node CPU
8 13506.44 0.06 0.25 36526180.13 219.36
10 877931.49 3.86 0.5 35862494.15 213.25
12 71502641.79 427.87 0.75 35533866.85 212.13

mean 35974180.38 214.91 mean 35974180.38 214.91
τ setup

0.25 34501504.30 206.72 U(1,10) 36170873.49 217.36
0.5 37446856.46 223.11 U(1,20) 35777487.26 212.47

mean 35974180.38 214.91 mean 35974180.38 214.91
weight
1:1:1 33772676.44 212.22
1:2:3 11370362.82 85.95
3:2:1 62779501.88 346.57
mean 35974180.38 214.91

The performances in terms of the AEPs of the proposed 12 heuristics and four WWO algorithms are presented in Table 3. Overall, the means of AEP are 0.16,
0.13, 0.13, and 0.13 for WWOA1, WWOA 2, WWOA3, and WWOA 4, respectively, and the group of heuristics that has the largest AEP is (OES_b, OES_f,
OES_p) with AEP values of (20.01, 19.22, 18.01) for a small-size number of job cases (n=8, 10, 12). The WWO algorithms perform better than all of the
other 12 problem-based heuristics.

Table 3
AEP of 12 heuristics and 4 WWO algorithms for small n=8, 10, 12

n τ

CS
L_

b

CS
L_

f

CS
L_

p

O
EL

_b

O
EL

_f

O
EL

_p

O
ES

_b

O
ES

_f

O
ES

_p

O
SL

_b

O
SL

_f

O
SL

_p

W
W

O
A

1

W
W

O
A

2

W
W

O
A

3

W
W

O
A

4

8 0.25 19.80 13.31 14.71 17.54 16.22 15.33 13.60 13.00 12.62 6.17 6.07 5.35 0.05 0.04 0.04 0.04
 0.5 18.97 12.88 14.21 17.35 16.07 15.22 13.45 12.82 12.53 5.94 5.87 5.19 0.04 0.03 0.03 0.04

10 0.25 21.94 15.64 17.18 20.79 19.82 18.49 15.16 14.72 14.30 8.39 8.36 7.27 0.15 0.13 0.13 0.12
 0.5 21.49 15.32 16.73 20.14 19.24 17.93 14.67 14.30 13.88 7.96 7.97 6.92 0.14 0.13 0.13 0.13

12 0.25 24.06 19.66 19.40 21.32 20.86 19.52 15.41 15.46 14.94 9.34 9.43 8.36 0.25 0.18 0.17 0.18
 0.5 23.54 19.25 18.97 20.81 20.36 19.05 15.10 15.17 14.63 8.92 9.00 8.00 0.22 0.17 0.16 0.17
 R
8 0.25 19.52 13.21 14.56 17.83 16.55 15.72 13.84 13.25 12.92 6.13 6.07 5.37 0.05 0.03 0.03 0.04
 0.5 19.27 13.12 14.36 17.30 16.01 15.09 13.42 12.76 12.42 6.03 5.91 5.21 0.04 0.03 0.04 0.04
 0.75 19.36 12.96 14.45 17.20 15.87 15.01 13.33 12.70 12.38 6.01 5.93 5.23 0.04 0.04 0.04 0.05

10 0.25 21.74 15.70 17.10 20.29 19.40 18.05 14.78 14.42 14.01 8.08 8.01 7.01 0.14 0.13 0.13 0.12
 0.5 21.82 15.43 16.96 20.72 19.72 18.43 15.12 14.64 14.21 8.22 8.21 7.11 0.15 0.12 0.12 0.12
 0.75 21.59 15.30 16.81 20.38 19.48 18.16 14.83 14.48 14.04 8.22 8.27 7.17 0.15 0.13 0.13 0.14

12 0.25 23.84 19.52 19.23 21.21 20.72 19.40 15.39 15.43 14.92 9.06 9.15 8.13 0.24 0.17 0.17 0.18
 0.5 23.81 19.47 19.21 21.07 20.60 19.29 15.22 15.27 14.73 9.19 9.25 8.22 0.24 0.18 0.17 0.18
 0.75 23.74 19.38 19.12 20.92 20.49 19.16 15.16 15.25 14.70 9.13 9.25 8.19 0.22 0.16 0.17 0.17
 weight
8 1:1:1 16.98 10.00 11.90 17.68 15.37 15.00 13.27 11.73 11.82 5.54 4.92 4.48 0.02 0.01 0.02 0.02
 1:2:3 11.72 6.06 8.18 22.26 21.27 19.00 13.53 13.00 12.15 10.63 11.18 9.68 0.00 0.00 0.00 0.00
 3:2:1 29.44 23.23 23.29 12.39 11.80 11.82 13.79 13.99 13.75 1.99 1.80 1.65 0.10 0.09 0.09 0.11

L.Y. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 271

10 1:1:1 18.96 12.09 14.22 20.73 18.97 18.07 14.60 13.44 13.37 7.94 7.34 6.50 0.07 0.04 0.05 0.05
 1:2:3 13.50 8.07 10.20 25.67 25.28 22.39 15.44 15.41 14.34 13.32 14.08 12.08 0.01 0.01 0.01 0.01
 3:2:1 32.69 26.27 26.44 14.99 14.35 14.17 14.70 14.69 14.56 3.26 3.07 2.70 0.36 0.33 0.33 0.32

12 1:1:1 19.83 15.06 15.45 20.98 19.83 18.98 14.65 14.00 13.85 8.63 8.23 7.47 0.14 0.09 0.09 0.10
 1:2:3 14.05 9.63 10.81 27.48 27.77 24.78 17.19 17.74 16.55 14.94 15.89 13.76 0.04 0.02 0.02 0.02
 3:2:1 37.51 33.68 31.30 14.73 14.22 14.09 13.92 14.20 13.96 3.82 3.53 3.32 0.52 0.41 0.40 0.42
 mo*mk
8 2*4 11.25 11.31 8.60 16.20 15.40 14.45 8.03 8.63 8.14 9.65 9.18 8.07 0.00 0.00 0.00 0.00
 4*2 27.51 14.88 20.32 18.69 16.89 16.10 19.03 17.18 17.01 2.46 2.76 2.47 0.08 0.07 0.07 0.08

10 2*5 11.23 10.58 8.64 19.62 19.12 17.45 8.21 8.80 8.35 13.34 13.06 11.36 0.01 0.01 0.01 0.01
 5*2 32.20 20.38 25.27 21.30 19.95 18.98 21.61 20.22 19.83 3.01 3.27 2.83 0.28 0.24 0.25 0.24

12 2*6 10.93 9.93 8.51 22.72 22.40 20.37 8.48 9.07 8.61 16.91 16.73 14.75 0.04 0.02 0.02 0.02
 3*4 20.64 18.61 16.69 18.97 18.84 17.58 12.43 13.02 12.47 9.55 9.67 8.75 0.07 0.04 0.04 0.04
 4*3 27.52 24.25 21.95 19.19 18.89 17.80 16.34 16.56 15.97 6.47 6.64 5.96 0.20 0.13 0.12 0.14
 6*2 36.10 25.04 29.60 23.39 22.30 21.39 23.76 22.61 22.09 3.58 3.83 3.26 0.63 0.51 0.49 0.50
 setup

8 U(1,10) 20.55 14.14 14.84 17.26 15.83 15.03 13.35 12.58 12.48 5.67 5.52 4.79 0.03 0.02 0.03 0.03
 U(1,20) 18.21 12.05 14.07 17.63 16.46 15.52 13.71 13.23 12.67 6.44 6.42 5.75 0.05 0.04 0.04 0.05
1
0

U(1,10) 23.02 16.76 17.47 20.04 19.01 17.80 14.34 13.88 13.70 7.73 7.68 6.63 0.12 0.11 0.11 0.11
U(1,20) 20.41 14.19 16.44 20.88 20.05 18.62 15.48 15.14 14.48 8.62 8.66 7.57 0.17 0.14 0.14 0.14

1
2

U(1,10) 25.33 21.10 20.08 20.59 20.00 18.78 14.70 14.64 14.35 8.36 8.41 7.46 0.19 0.14 0.13 0.15
U(1,20) 22.27 17.81 18.29 21.54 21.21 19.79 15.81 15.99 15.22 9.89 10.02 8.90 0.28 0.21 0.21 0.21

 mean 22.17 16.87 17.45 20.01 19.22 18.01 14.74 14.51 14.06 8.12 8.14 7.18 0.16 0.13 0.13 0.13

Table 4 summarizes the results in terms of AEP for levels of the Factors n, τ, R, weight, and setup; for (mo×mk), see Table 3. It can be observed that the AEP
of all algorithms increases slightly as n increases from 8 to 12. Furthermore, Fig. 3 displays the violin plots of AEP (distributions) for the 12 heuristics and
four WWO algorithms. Regarding the CPU times, 16 heuristics/algorithms cost less than 1 second.

Table 4
Summary of AEP of 12 heuristics and 4 WWO algorithms for small n

n CSL_b CSL_f CSL_p OEL_b OEL_f OEL_p OES_b OES_f OES_p OSL_b OSL_f OSL_p WWOA1 WWOA2 WWOA3 WWOA4
8 19.38 13.09 14.46 17.44 16.15 15.27 13.53 12.91 12.58 6.06 5.97 5.27 0.04 0.03 0.04 0.04

10 21.72 15.48 16.95 20.46 19.53 18.21 14.91 14.51 14.09 8.17 8.17 7.10 0.14 0.13 0.13 0.13
12 23.80 19.46 19.19 21.07 20.61 19.28 15.25 15.31 14.79 9.13 9.21 8.18 0.23 0.17 0.17 0.18

mean 22.17 16.87 17.45 20.01 19.22 18.01 14.74 14.51 14.06 8.12 8.14 7.18 0.16 0.13 0.13 0.13
tao

0.25 22.46 17.07 17.67 20.24 19.44 18.21 14.89 14.66 14.20 8.31 8.33 7.33 0.17 0.13 0.13 0.13
0.5 21.89 16.68 17.22 19.77 19.01 17.81 14.58 14.36 13.92 7.93 7.96 7.03 0.16 0.12 0.12 0.13

mean 22.17 16.87 17.45 20.01 19.22 18.01 14.74 14.51 14.06 8.12 8.14 7.18 0.16 0.13 0.13 0.13
R

0.25 22.24 16.98 17.53 20.14 19.35 18.14 14.85 14.63 14.20 8.08 8.09 7.16 0.17 0.13 0.12 0.13
0.5 22.18 16.87 17.43 20.04 19.24 18.02 14.74 14.49 14.02 8.16 8.16 7.19 0.17 0.13 0.13 0.13

0.75 22.11 16.75 17.38 19.86 19.08 17.87 14.62 14.42 13.96 8.12 8.17 7.19 0.16 0.12 0.13 0.13
mean 22.17 16.87 17.45 20.01 19.22 18.01 14.74 14.51 14.06 8.12 8.14 7.18 0.16 0.13 0.13 0.13

weight
1:1:1 18.90 13.05 14.25 20.09 18.50 17.76 14.29 13.29 13.22 7.68 7.18 6.48 0.09 0.06 0.06 0.06
1:2:3 13.33 8.35 10.00 25.72 25.52 22.74 15.84 15.97 14.90 13.46 14.26 12.32 0.02 0.01 0.01 0.01
3:2:1 34.29 29.21 28.08 14.21 13.65 13.54 14.08 14.27 14.06 3.22 2.98 2.75 0.38 0.31 0.30 0.32
mean 22.17 16.87 17.45 20.01 19.22 18.01 14.74 14.51 14.06 8.12 8.14 7.18 0.16 0.13 0.13 0.13
setup
(1,10) 23.56 18.28 18.12 19.62 18.71 17.60 14.27 13.94 13.72 7.53 7.51 6.58 0.13 0.10 0.10 0.11
(1,20) 20.79 15.47 16.77 20.40 19.73 18.43 15.20 15.09 14.40 8.71 8.78 7.78 0.19 0.15 0.15 0.15
mean 22.17 16.87 17.45 20.01 19.22 18.01 14.74 14.51 14.06 8.12 8.14 7.18 0.16 0.13 0.13 0.13

Fig. 3. Violin plots of the AEP distribution for 12 heuristics and 4 WWO algorithms

Statistical evidence to verify whether the differences among the 12 heuristics and four WWOA algorithms are important is discussed in the following. First,
an analysis of a variance (ANOVA) method and a linear model on AEPs were executed in SAS (version 9.4). However, the normality hypothesis was violated

272

according to the Kolmogorov-Smirnov normality test (with a p-value that is smaller than 0.01, and the value of the D statistic is 0.0706). Therefore, on the
significance level of α=0.05, the Freidman test (with p-value <0.0001 and with value of the chi-square statistic equal to 3006.5 and degrees of freedom 15)
was executed and affirmed that AEPs are from different distributions based on the AEP ranks obtained on the 288 (n×τ×R×weight×(mo×mk)×setup) blocks
of test instances.

The WNMT (or Wilcoxon–Nemenyi–McDonald–Thompson) was utilized to determine 120 pairwise differences among the 12 heuristics and four WWOAs
(see Holland et al., 2014). Table 5 (Column 2) reveals the obtained results of the AEP’s rank across the 288 blocks for the 12 heuristics and four WWO
algorithms. The rank sums of WWOA1 to WWOA4 are 997.0, 661.0, 678.0, and 700.0, respectively. There is no statistically significant difference among
the four WWO algorithms at a significance level of 0.05, but the WWOA group is considerably better than any of the 12 heuristics. WWOA2 has the smallest
AEP and rank sum for a small number of jobs.

Table 5
Rank sums of AEP and RPD for 12 heuristics and 4 WWO algorithms to make multiple comparisons.

Algorithm Small n (288 blocks)
rank-sum

Large n (432 blocks)
rank-sum Algorithm Small n (288 blocks)

rank-sum
Large n (432 blocks)
rank-sum

CSL_b 3715.0 4966.0 OES_p 2751.5 3785.0
 CSL_f 2960.0 4997.0 OSL_b 2271.5 4840.0

CSL_p 3015.0 3857.0 OSL_f 2363.0 4084.0
OEL_b 4010.0 5370.0 OSL_p 1943.0 3091.0

 OEL_f 3692.0 5683.0 WWOA1 997.0 2324.0
OEL_p 3374.0 4432.0 WWOA1 661.0 697.0
OES_b 3059.0 4363.0 WWOA1 678.0 721.0
OES_f 2978.0 4229.0 WWOA1 700.0 1313.0

1.As |pairwise rank-sum difference| > 383.0*(small n), 469.1*(large n) indicates that the compared heuristic/algorithm is significant at 0.05.
2.The approximate values marked in * are calculated from a formula in Holland et al. (2014), Page 316.

6.2 Large size simulation results

With regard to large-size problems, a collection of one hundred tested instances were randomly generated for each case of parameters (n, τ, R, weight, mo×mk,
and setup); in total, 43,200 problem instances were tested. The number of jobs was fixed at n = 50 and 80. Due to the complexity of this problem, especially
for the large size instances, the criterion (or relative percent deviation RPD, defined as RPD =100[(𝐴௞ − 𝐵∗)/𝐵∗][%]) is applied to assess the relative
behavior of the 12 heuristics and four WWOAs, where 𝐴௞ is received from each algorithm and 𝐵∗ is the best founded value among Aks, all the proposed 12
heuristics, and four WWOAs. Table 6 exhibits the average RPDs for the four WWOAs and 12 heuristics. Overall, in Table 6, WWOA1-WWOA4 produced
RPD values 8.06, 0.37, 0.37 and 0.51, respectively, while the 12 heuristics produced RPD values from 22.60 to 33.42. Table 7 summarizes the average RPD
for different levels of the Factors n, τ, R, weight, and setup; for (mo×mk), see Table 6.

Table 6
RPD of 12 heuristics and 4 WWO algorithms for large n=50, 80

n τ

CS
L_

b

CS
L_

f

CS
L_

p

O
EL

_b

O
EL

_f

O
EL

_p

O
ES

_b

O
ES

_f

O
ES

_p

O
SL

_b

O
SL

_f

O
SL

_p

W
W

O
A

1

W
W

O
A

2

W
W

O
A

3

W
W

O
A

4

50 0.25 31.03 29.75 24.01 33.06 32.82 26.42 27.63 22.56 21.45 27.14 21.67 19.80 6.69 0.41 0.42 0.53
 0.5 30.50 29.41 23.74 32.57 32.91 26.12 27.19 22.35 21.19 26.91 21.51 19.60 6.60 0.40 0.42 0.53

80 0.25 30.96 30.10 24.99 33.84 33.64 27.50 29.03 24.22 23.11 27.93 23.19 21.57 8.79 0.34 0.34 0.48
 0.5 30.84 29.80 24.75 33.60 33.19 27.29 28.83 24.07 22.93 27.71 23.02 21.39 8.75 0.37 0.37 0.52
 R

50 0.25 30.76 29.52 23.81 32.85 32.41 26.29 27.42 22.37 21.33 26.94 21.48 19.68 6.62 0.39 0.41 0.53
 0.5 30.68 29.52 23.85 32.73 33.01 26.16 27.33 22.43 21.20 27.04 21.65 19.66 6.67 0.43 0.41 0.54
 0.75 30.85 29.70 23.97 32.86 33.17 26.37 27.48 22.55 21.43 27.10 21.64 19.76 6.65 0.40 0.43 0.53

80 0.25 30.91 29.90 24.81 33.69 33.20 27.38 28.90 24.14 22.99 27.80 23.09 21.45 8.75 0.33 0.34 0.48
 0.5 30.77 29.98 24.90 33.81 33.59 27.48 29.03 24.22 23.11 27.85 23.13 21.53 8.82 0.38 0.38 0.54
 0.75 31.01 29.98 24.91 33.65 33.45 27.33 28.86 24.09 22.94 27.80 23.10 21.46 8.73 0.35 0.34 0.48
 weight

50 1:1:1 26.35 27.63 21.82 30.93 33.63 26.94 25.33 22.50 21.57 27.64 21.70 20.22 5.89 0.22 0.23 0.33
 1:2:3 20.93 29.69 22.66 32.47 41.75 34.88 26.08 29.60 29.24 35.75 29.66 28.02 4.65 0.14 0.15 0.22
 3:2:1 45.02 31.42 27.14 35.05 23.21 16.99 30.82 15.26 13.16 17.70 13.42 10.87 9.39 0.85 0.88 1.04

80 1:1:1 26.45 28.08 22.90 31.78 33.90 28.17 26.84 24.50 23.47 28.57 23.48 22.17 7.79 0.20 0.20 0.32
 1:2:3 21.50 30.87 24.76 34.33 44.08 37.29 28.72 33.11 32.43 37.70 32.59 30.96 6.38 0.14 0.15 0.22
 3:2:1 44.74 30.90 26.95 35.06 22.27 16.73 31.23 14.83 13.15 17.18 13.24 11.31 12.13 0.71 0.71 0.95
 mo×mk

50 2×25 6.91 25.83 9.82 26.78 45.32 43.41 11.94 15.33 29.52 44.29 28.56 41.01 3.05 0.08 0.08 0.10
 5×10 20.79 23.11 17.72 26.50 29.67 25.06 21.26 19.83 20.51 25.45 20.73 20.78 6.77 0.28 0.29 0.46
 10×5 38.83 29.19 27.33 33.52 25.36 18.10 31.59 22.13 16.63 18.74 17.36 11.49 8.89 0.32 0.33 0.52
 25×2 56.54 40.19 40.64 44.46 31.11 18.52 44.85 32.52 18.63 19.64 19.71 5.51 7.87 0.94 0.96 1.04

80 2×40 6.57 28.99 11.08 29.67 51.74 50.19 13.25 18.03 34.48 50.78 33.10 48.23 3.79 0.07 0.07 0.09
 4×20 14.23 24.78 16.49 27.88 38.73 35.54 19.97 23.20 28.28 35.89 28.15 32.54 6.53 0.13 0.14 0.23
 5×16 17.01 23.94 17.55 27.51 34.89 31.19 21.40 23.06 25.66 31.38 25.57 27.63 7.24 0.19 0.19 0.30
 8×10 25.08 24.56 20.96 28.75 28.89 23.87 25.28 22.46 20.89 24.16 21.15 19.23 9.19 0.30 0.30 0.52
 10×8 30.48 26.37 23.70 30.67 27.34 21.61 28.09 22.66 19.45 21.98 19.84 16.33 10.30 0.30 0.31 0.56
 16×5 43.80 32.01 30.78 36.98 26.25 18.73 35.74 24.19 17.80 19.06 18.18 11.53 11.54 0.32 0.32 0.53
 20×4 49.42 35.32 34.57 40.19 26.59 18.01 39.42 25.40 17.47 18.43 17.93 9.75 11.60 0.38 0.38 0.56
 40×2 60.57 43.65 43.84 48.12 32.90 20.02 48.31 34.17 20.09 20.88 20.94 6.60 9.97 1.12 1.11 1.21
 setup

50 U(1,10) 32.78 32.27 20.62 31.05 31.32 18.78 30.83 20.75 19.01 32.05 20.94 18.16 6.18 0.44 0.45 0.54
 U(1,20) 28.75 26.89 27.13 34.58 34.40 33.77 23.99 24.15 23.63 22.01 22.24 21.24 7.11 0.37 0.38 0.52

80 U(1,10) 32.96 31.99 21.87 32.01 31.37 19.77 31.64 21.91 19.99 31.74 22.11 19.46 7.86 0.36 0.36 0.47
 U(1,20) 28.83 27.92 27.87 35.43 35.46 35.02 26.23 26.38 26.04 23.90 24.10 23.50 9.68 0.34 0.35 0.53
 mean 30.85 29.83 24.54 33.42 33.23 27.02 28.42 23.58 22.45 27.56 22.60 20.89 8.06 0.37 0.37 0.51

L.Y. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 273

Table 7
Summary of AEP of 12 heuristics and 4 WWO algorithms for large n

n CSL_b CSL_f CSL_p OEL_b OEL_f OEL_p OES_b OES_f OES_p OSL_b OSL_f OSL_p WWOA1 WWOA2 WWOA3 WWOA4
50 30.77 29.58 23.88 32.82 32.86 26.27 27.41 22.45 21.32 27.03 21.59 19.70 6.65 0.41 0.42 0.53
80 30.90 29.95 24.87 33.72 33.42 27.40 28.93 24.15 23.02 27.82 23.11 21.48 8.77 0.35 0.35 0.50
τ

0.25 30.98 29.99 24.67 33.58 33.37 27.14 28.56 23.67 22.55 27.67 22.68 20.98 8.09 0.36 0.36 0.50
0.5 30.72 29.67 24.41 33.26 33.09 26.90 28.28 23.49 22.35 27.44 22.52 20.79 8.03 0.38 0.38 0.52
R

0.25 30.86 29.77 24.48 33.41 32.94 27.02 28.41 23.55 22.44 27.52 22.56 20.86 8.04 0.35 0.36 0.50
0.5 30.74 29.83 24.55 33.45 33.40 27.04 28.46 23.62 22.48 27.58 22.63 20.91 8.10 0.40 0.39 0.54

0.75 30.96 29.89 24.59 33.39 33.36 27.01 28.40 23.57 22.44 27.57 22.61 20.89 8.04 0.36 0.37 0.50
weight
1:1:1 26.41 27.93 22.54 31.49 33.81 27.76 26.34 23.83 22.84 28.26 22.89 21.52 7.16 0.21 0.21 0.33
1:2:3 21.31 30.48 24.06 33.71 43.30 36.49 27.84 31.94 31.36 37.05 31.61 29.98 5.81 0.14 0.15 0.22
3:2:1 44.83 31.07 27.01 35.05 22.58 16.82 31.10 14.97 13.15 17.35 13.30 11.16 11.22 0.76 0.76 0.98
Setup

U(1,10) 32.90 32.08 21.45 31.69 31.36 19.44 31.37 21.52 19.67 31.84 21.72 19.03 7.30 0.39 0.39 0.49
U(1,20) 28.80 27.57 27.63 35.15 35.10 34.60 25.48 25.64 25.24 23.27 23.48 22.74 8.82 0.35 0.36 0.53
mean 30.85 29.83 24.54 33.42 33.23 27.02 28.42 23.58 22.45 27.56 22.60 20.89 8.06 0.37 0.37 0.51

To verify whether the differences among the 12 heuristics and four WWOA algorithms are statistically significant, first, an analysis of a variance (ANOVA)
method on RPDs was executed. However, the Kolmogorov-Smirnov normality test confirmed that the validity of the normality hypothesis was also violated
for the linear model based on the fact that its p-value was smaller than 0.01 and the value of the D statistic was 0.0891. Therefore, the Freidman test was
executed based on ranks of RPD on the 432 (n×τ×R× weight×(mo×mk)×setup) test instances. We observed that the p-value < 0.0001 (with a value of the chi-
square statistic of 3940.2 and degrees of freedom of 15). The obtained results confirm that RPD does not come from the same distribution at the level of
significance of 0.05.

Fig. 4. Boxplots of the RPD distribution for 12 heuristics and 4 WWO algorithms

Furthermore, to make 120 pairwise differences among the 12 heuristics and four WWO algorithms, the WNMT procedure was employed. Table 5 (Column
3) reveals sums of the RPD ranks across the 432 blocks for the 12 heuristics and four WWO algorithms. The rank sums of WWOA1 to WWOA4 are 2324.0,
697.0, 721.0, and 1313.0, respectively. As presented in Table 5 (Column 3), WWOA2 and WWOA3 are positioned in the best obtained results group, while
OEL_b and OEL_f, with rank sums of 5370.0 and 5683.0, are situated in the worst obtained results group. Moreover, any one of the WWOAs is pairwise
considerably better than any of the 12 heuristics. WWOA2 has the smallest RPD and rank sum for a large number of jobs. In addition, Figure 4 shows the
violin plots (distributions) of RPD for the 12 heuristics and four WWOAs.

7. Conclusion

The customer order scheduling problem is used to satisfy the demand of customers who order many kinds of products. From a time aspect, it is necessary to
ship finished products to customers at an early date. However, processing various jobs in succession on one machine requires a setup time if the job classes
are different. In this study, we discuss the customer order scheduling problem with jobs belonging to different classes. To balance the costs incurred by
holding the finished jobs (products), tardiness, and total production completion time, the aim is to find an optimal schedule of jobs for an objective function
that is a linear combination of holding cost, total tardiness, and total completion time. The branch-and-bound method with a dominance property is employed
to produce solutions for a small number of jobs; it performs well up to n=12 jobs, which consist of different combinations of the number of job classes and
number of customers. For a relatively large number of jobs, say n=50, 80, four problem-based heuristics, each along with three local improved searching
methods, and a water wave optimality algorithm with four variants of wavelengths, are proposed for finding near-optimal solutions. The water wave
optimality with the second wavelength formula (WWOA2) performed best among all 16 heuristics or algorithms regardless of the number of jobs. For future
research work on this topic, we can consider multiple machine manufacturing processes with multiple job classes and customer orders. Moreover, multiple
machines may be arranged in parallel or in flow-shop environments. The corresponding author will provide the Fortran programming codes as well as relative
datasets upon request.

Acknowledgments

We would like to thank the editors and referees for their positive comments and useful suggestions. This paper was supported in part by the Ministry of
Science and Technology of Taiwan, MOST 110-2221-E-035-082- MY2, and in part by the National Natural Science Foundation of China, grant number
72271048.

References

Allahverdi, A., & Soroush, H. M. (2008). The significance of reducing setup times/setup costs. European Journal of Operational Research, 187(3), 978-984.
Allahverdi, A., Ng, C. T., Cheng, T. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup times or costs. European journal of operational

research, 187(3), 985-1032.
Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Journal of Operational Research, 246(2),

345-378.

274

Allahverdi, A., Gupta, J. N., & Aldowaisan, T. (1999). A review of scheduling research involving setup considerations. Omega, 27(2), 219-239.
Cheng, T.C.E., Gupta, J.N.D., & Wang, G. (2000). A review of flowshop scheduling research with setup times. Production and Operations Management,

9(3), 262–282.
de Athayde Prata, B., Rodrigues, C. D., & Framinan, J. M. (2021a). Customer order scheduling problem to minimize makespan with sequence-dependent

setup times. Computers & Industrial Engineering, 151, 106962.
de Athayde Prata, B., Rodrigues, C. D., & Framinan, J. M. (2021b). A differential evolution algorithm for the customer order scheduling problem with

sequence-dependent setup times. Expert Systems with Applications, 116097.
Della Croce, F., Narayan, V., & Tadei, R. (1996). The two-machine total completion time flow shop problem. European Journal of Operational Research,

90, 227–237.
Erel, E., & Ghosh, J. B. (2007). Customer order scheduling on a single machine with family setup times: Complexity and algorithms. Applied Mathematics

and Computation, 185, 11–18.
Fisher, M. L. (1976). A dual algorithm for the one-machine scheduling problem. Mathematical Programming, 11(1), 229–251.
Framinan, J. M., & Perez-Gonzalez, P. (2018). Order scheduling with tardiness objective: Improved approximate solutions. European Journal of Operational

Research, 266(3), 840–850.
Gupta, J. N., Ho, J. C., & van der Veen, J. A. (1997). Single machine hierarchical scheduling with customer orders and multiple job classes. Annals of

Operations Research, 70, 127–143.
Hazır, Ö., Günalay, Y., & Erel, E. (2008). Customer order scheduling problem: a comparative metaheuristics study. The International Journal of Advanced

Manufacturing Technology, 37(5-6), 589–598.
Holland, M. D., Wolfe, A., & Chicken, E. (2014). Nonparametric Statistical Methods, 3rd edition. Wiley, Hoboken.
Julien, F. M., & Magazine, M. J. (1990). Scheduling customer orders: An alternative production scheduling approach. Journal of Manufacturing and

Operations Management, 3, 177–199.
Liaee, M. M., & Emmons, H. (1997). Scheduling families of jobs with setup times. International Journal of Production Economics, 51(3), 165–176.
Su, L. H., Chen, P. S., & Chen, S. Y. (2013). Scheduling on parallel machines to minimize maximum lateness for the customer order problem. International

journal of systems science, 44(5), 926–936.
Wu, C. C., Lin, W. C., Zhang, X., Chung, I. H., Yang, T. H., & Lai, K. (2019). Tardiness minimisation for a customer order scheduling problem with sum-of-

processing-time-based learning effect. Journal of the Operational Research Society, 70(3), 487–501.
Yang, W. H., & Liao, C.J. (1999). Survey of scheduling research involving setup times. International Journal of Systems Science, 30(2), 143–155.
Zhao, F., Liu, H., Zhang, Y., Mac, W., & Zhang, C. (2018) A discrete Water Wave Optimization algorithm for no-wait flow shop scheduling problem. Expert

Systems with Applications, 91, 347–363.
Zheng, Y. J. (2015). Water wave optimization: A new nature-inspired metaheuristic. Computers and Operations Research, 55(1), 1–11.
Zheng, Y. J., Lu, X. Q., Du, Y. C., Xue, Y., & Sheng, W. G. (2019). Water wave optimization for combinatorial optimization: Design strategies and applications.

Applied Soft Computing, 83, 105611.

© 2023 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

