

* Corresponding author
E-mail liyuanzhen@lcu.edu.cn (Y.-Z. Le)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
2024 Growing Science Ltd.
doi: 10.5267/j.ijiec.2023.12.007

International Journal of Industrial Engineering Computations 15 (2024) 553–568

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

An improved iterated greedy algorithm for distributed mixed no-wait permutation flowshop
problems with makespan criterion

Chuan-Chong Lia, Yuan-Zhen Lia* and Lei-Lei Menga

aSchool of Computer Science, Liaocheng University, Shandong Liaocheng, 252000, P.R. China
C H R O N I C L E A B S T R A C T

Article history:
Received July 20 2023
Received in Revised Format
October 12 2023
Accepted December 26 2023
Available online
December 26 2023

 The distributed permutation flowshop scheduling is a critical issue in various industries, involving
jobs allocation and scheduling among multiple flowshops. This paper extends the research to
explore the Distributed Mixed No-Wait Permutation Flowshop Scheduling Problems
(DMNWPFSP) with minimizing makespan. The innovation lies in an optimized mathematical
model, hybrid heuristic algorithms, an improved iterated greedy algorithm (IIG), and high-quality
solutions. Extensive experimental results demonstrate the effectiveness and superiority of the
proposed IIG in terms of scheduling quality, computational efficiency, and robustness compared to
existing approaches. The outcomes of this work contribute to the field of distributed flowshop
scheduling, providing valuable insights for practitioners seeking to enhance production efficiency
and competitiveness.

© 2024 by the authors; licensee Growing Science, Canada

Keywords:
Distributed flowshop
scheduling
Flowshop
Iterated greedy algorithm
Mixed no-wait

1. Introduction

In the era of globalization, industrial collaboration has become increasingly diversified (De Giovanni & Pezzella, 2010). The
development of technology has fundamentally transformed the landscape of manufacturing. These technologies offer
unprecedented connectivity, real-time data exchange, and intelligent decision-making capabilities. Companies are changing
their production strategies to enhance competitiveness and mitigate risks. The traditional centralized production model has
transitioned into distributed manufacturing, with numerous factories established globally. Distributed manufacturing offers
scalability, flexibility, and high reliability, optimizing resource utilization for geographically dispersed enterprises and
factories (Lu, Liu, Zhang, & Yin, 2022). Scheduling plays a crucial role in various industries and has a significant impact on
operational efficiency and overall performance. Efficient scheduling minimizes makespan, improves resource utilization, and
ensures timely task completion (Jia, Fuh, Nee, & Zhang, 2007) with limited resources, interdependencies, and coordination
among stages. Researchers develop various algorithms to optimize scheduling based on criteria like makespan, throughput,
and workload balance (Li, Pan, Gao, et al., 2021). Effective scheduling optimizes resources, streamlines processes, and
enhances competitiveness (Yang, Wang, & Xu, 2022). One of the extensively researched subjects is the distributed
permutation flowshop scheduling problem(DPFSP), which has a wide range of application backgrounds (Pan, Gao, Xin-Yu,
& Jose, 2019). One prominent variant for the DPFSP is the DMNWPFSP, which has garnered significant interest from
researchers and practitioners (Pan, Fatih Tasgetiren, & Liang, 2008; Shao, Shao, & Pi, 2021). In actual manufacturing process,
both waiting and no-wait constraints need to be considered simultaneously (Cheng, Ying, Li, & Hsieh, 2019). This unique
characteristic presents new challenges in scheduling and resource allocation, necessitating innovative approaches to optimize
production efficiency and meet real-world production requirements (Allahverdi, Ng, Cheng, & Kovalyov, 2008). In the canned
food processing industry, operations such as procurement, sorting, trimming, cleaning, peeling, and shelling are typically
carried out in the early stage. These operations are all regular operation and there can be waiting between them. Other
operations such as adding syrup, degassing, sealing, sterilizing, and refrigerating are usually performed after the ingredients

554

have undergone preliminary processing and are placed into cans. These operations need to be carried out immediately after
the preliminary processing to ensure the quality and safety of the ingredients. Another example is the pharmaceutical industry,
where the production of medications typically involves multiple processes, including raw material mixing, reactions, filtration,
drying, granulation, packaging, etc. Some processes need to be no-waiting to ensure the quality and safety of the medications.
For example, processes such as mixing, reactions, filtration, and drying need to be performed sequentially without waiting. It
is important to note that whether a factory needs to adopt a mixed no-wait processing approach depends on its specific
circumstances and requirements. The above example serves as an illustration, and actual decisions should be based on
comprehensive evaluations of factors such as production processes, resource utilization, cost-effectiveness, and technological
feasibility (Li, Pan, & Mao, 2016; Li, Pan, He, et al., 2022).
This study focuses on the DMNWPFSP with the criterion of completion time (Wang, Li, Ruiz, & Sui, 2018). In this study, we
introduce a mixed integer linear programming (MILP) model aimed at addressing the challenges posed by DMNWPFSP. The
MILP model provides a systematic and rigorous approach to addressing the complexity of the problem. An improved iterative
greedy algorithm (IIG) is proposed, which significantly improves the effectiveness of the heuristic algorithm. Notably,
enhancements are observed in the generation of initial solutions, the utilization of evolutionary strategies, and the
implementation of local search operations. As a result of these improvements, the IIG algorithm produces high-quality
solutions, which is a key advance in solving DMNWPFSP. And the algorithm was verified through experimentation.
Experimental results show that the IIG algorithm performs well under the DMNWPFSP instance and can efficiently find high-
quality solutions. This further solidifies the practicality and usefulness of the algorithm in practical applications.

In Section 2 of this paper, a comprehensive review of the literature related to DMNWPFSP is presented. Section 3 introduces
the DMNWPFSP, providing its definition, examples, and highlighting its key characteristics. Following that, Section 3
provides a detailed description of the improved Iterated Greedy (IG) algorithm. In Section 4, we discuss the fine-tuning of
parameters for the IIG algorithm to achieve optimal performance. To assess its effectiveness, Section 5 presents a thorough
comparison of the IIG algorithm against four state-of-the-art approaches. Lastly, Section 6 concludes this paper by
summarizing the main findings and offers valuable suggestions for future research directions.

2. Literature Review

Although not been extensively studied, the DMNWFSP is an extension of the DPFSP and the No-Wait Permutation Flowshop
Scheduling Problem (NWPFSP), both of which have been well-researched. Therefore, we will focus on DPFSP and NWFSP
in this section. The DPFSP deals with a scenario where f identical factories are organized in flowshops configuration with m
machines. A crucial challenge is to determine the allocation of n jobs to the appropriate factory and their processing sequence
in each factory. Nader and Ruiz (Naderi & Ruiz, 2010) first studied the DPFSP. They proposed 6 MILP models, 2 assignment
rules, and 14 heuristic algorithms. Gao and Chen (2011) proposed a GA-based algorithm for the DPFSP. It minimizes
makespan using specialized operators and efficient local search. Extensive experiments on Taillard instances (TAILLARD,
1990) show significant improvements over existing methods. Gao et al. (2013) introduce an advanced Tabu search algorithm
which utilizes a novel Tabu strategy and enhanced local search. It is worth noting that the Tabu search algorithm exhibits
higher efficiency compared to the hybrid genetic algorithm (Gao & Chen, 2011). Victor and Jose (Fernandez-Viagas &
Framinan, 2014) presented a bounded-search iterated greedy algorithm for solving the DPFSP. Wang et al. (2016) introduced
a hybrid discrete cuckoo search (HDCS) algorithm for DPFSP. It uses permutation encoding and a specialized variable
neighborhood search (VNS) for efficient exploration. Simulations confirm the HDCS's effectiveness compared to existing
algorithms on various instances. Wang et al. (2013) introduced an Estimation of Distribution Algorithm for the DPFSP. They
developed a probabilistic model to characterize the solution space and effectively explored high-quality solutions by updating
the model using improved solutions. Deng and Wang (2017) introduced the Competitive Memetic Algorithm (CMA) as a
solution to the multi-objective DPFSP. The CMA utilizes two populations, objective-specific operators, and a competitive
mechanism. Pan et al. (2019) proposed four intelligent optimization algorithms and three heuristics to solve the DPFSP with
minimizing the total flowtime. Meng et al. (2022) and Meng, Zhang, Ren, Zhang, & Lv (2020) utilized their proposed MILP
models and constraint programming approaches to address the minimization of makespan in the distributed flexible job shop
scheduling problems (DFJSP) and the distributed hybrid flow shop scheduling (DHFSP) with sequence-dependent setup times.
In their study, Li et al. (2021) explored the DPFSP with mixed no-idle constraints. They also introduced a total delay rule to
address the problem (Li, Pan, Ruiz, & Sang, 2022). Their research aims to find efficient algorithms to solve these complex
scheduling problems. Additionally, Rossi and Nagano (2021) proposed a MILP formulation in their work. Their algorithm
employs an IG strategy designed to optimize the solution to the problem and provides an efficient solution.

The NWFSP is a significant variant of the flowshop scheduling problem and has become a hot topic (Pei, Zhang, Zheng, &
Wan, 2019). Researchers are devoted to solving the NWFSP by developing innovative algorithms and heuristic methods to
improve production efficiency and resource utilization. The findings in this field provide valuable guidance for scheduling
decisions in practical production scenarios. RöCK proof that the NWPFSP is NP-hard when the number of machines exceed
2. As the scale of the problem increases, traditional methods such as branch and bound or mixed integer programming become
impractical. To address this, researchers have devised efficient heuristic algorithms. Aldowaisan and Allahverdi (2004)
introduced novel heuristics for the m-machine no-wait flowshop problem with total completion time criterion. Subsequently,
a hybrid discrete particle swarm optimization (HDPSO) algorithm (Pan, Wang, Tasgetiren, & Zhao, 2007) was proposed for
the NWPFSP. It combines a simplified calculation method for makespan, and a fusion of discrete particle swarm optimization
(DPSO) and local search. Experimental results demonstrate the superiority of HDPSO over single DPSO and existing HPSO

C.-C. Li et al. / International Journal of Industrial Engineering Computations 15 (2024) 555

algorithms in terms of quality, robustness, and efficiency. A Discrete Harmony Search (DHS) algorithm (Gao, Pan, & Li, 2011)
was proposed to minimize total flow time for the NWPFSP. It incorporates a new heuristic for harmony initialization and
novel pitch adjustment rules. Experimental results validate DHS's effectiveness in solving the NWPFSP. Ye et al. (2017)
presented an average idle time heuristic to optimize the NWPFSP with makespan criterion. Deng et al. (2020) formulated the
NWPFSP based on the total process time criterion, and proposed a population-based iterated greedy algorithm (PBIG) to solve
the sorting subproblem. Recently, to effectively solve the distributed heterogeneous NWPFSP, Li et al. (2021) proposed four
neighborhood search operators and used them in the discrete artificial bee colony algorithm for searching neighborhoods in
the employed bee stage and the onlooker bee stage. Miyata and Nagano (2021) introduced the distributed wait-free flowshop
scheduling problem with sequence-dependent setup time and maintenance operations to minimize makespan. Allali et al.
(2022) presented three naturally inspired meta-heuristics: genetic algorithm, artificial bee colony algorithm and migratory
bird optimization algorithm for the distributed NWPFSP.

From the above overview, DPFSP and NWPFSP are studied by many people. However, there are no research on the DPFSP
considering mixed no-wait constraints. In this paper, the DMNWPFSP is studied. A mathematical model is established, and a
heuristic algorithm is proposed. This paper presents the IIG algorithm and validates its practicality. To assess the high
efficiency of the IIG algorithm, we conducted a comparative study with four state-of-the-art algorithms from the existing
literature.

3. Problem Description

The DMNWFSP can be succinctly explained as follows. A total of n jobs are required to be processed, which will be distributed
among f factories with the same series of processing machines. The key objective is to determine the optimal job assignment
for each factory for efficient scheduling. In each factory, a job is processed along the same route, for example, following the
same route from machine 1 to machine 𝑚.In DMNWFSP, the processing time required by job 𝑗 (where 𝑗 belongs to the set {1,2, … ,𝑛}) on machine 𝑖 (where 𝑖 belongs to the set {1,2, … ,𝑚}) is denoted by 𝑃௜,௝. Due to production process limitations,
machines are divided into two types: no-wait machines and regular ones. The set of regular machines is denoted as 𝕄𝑤, and
the number of regular machines is denoted as ξ= |𝕄௪|. Regular machines divide no-wait machines into several groups, which
is denoted as ∪௥ୀଵ௤ 𝕄௥. In the context of the problem, we define 𝕄௥ as the rth group of no-wait machines, and q denotes the
number of such no-wait machine groups. A no-wait machine group consists of at least two machines, i.e., |𝕄𝑟| ≥ 2, 𝑟 ∈{1,2, … , 𝑞}. It is obvious that 𝕄௥ ∩𝕄௥ᇲ = ∅(𝑟 ≠ 𝑟′). For example，assume 𝑀ଶ and 𝑀ଷ, 𝑀଺–𝑀଼, are no-wait machines in a
ten-machine DMNWFSP. Therefore, the machine group can be divided into 𝕄ଵ = {𝑀ଶ,𝑀ଷ} , 𝕄ଶ = {𝑀଺,𝑀଻,𝑀଼} , 𝕄௪ ={𝑀ଵ,𝑀ସ,𝑀ହ,𝑀ଽ,𝑀ଵ଴}.
Table 1 lists of Symbols.

Table 1
Symbol definition.

Notations
n Total number of jobs.
m Number of machines per factory.
f Number of factories.
j Index for jobs, 𝑗 ∈ {1,2, … ,𝑛}.
i Index for machines, 𝑖 ∈ {1,2, … ,𝑚}.
k Index for factories,𝑘 ∈ {1,2, … ,𝑓}. 𝑱 The set of jobs, 𝐽 = {𝐽ଵ, 𝐽ଶ, … , 𝐽௡}. 𝑴 The set of machines, 𝑀 = {𝑀ଵ,𝑀ଶ, … ,𝑀௠}. 𝑭 The set of factories, 𝐹 = {𝐹ଵ,𝐹ଶ, … ,𝐹௙}.
l Index for job positions in each factory, 𝑙 ∈ {1,2, … ,𝑛௞}. 𝑶𝒊,𝒋 The operation of job j on machine i. 𝑷𝒊,𝒋 The processing time of 𝑂௜,௝. 𝕄𝒘 Set of regular machines.
ξ Number of regular machines, ξ = |𝕄௪|. 𝒒 Number of no-wait machine groups. 𝕄𝒓 The 𝑟௧௛ group of no-wait machines, 𝑟 = {1,2, … ,𝑞}. 𝕄𝒂 The set of the first machine in all no-wait machine group, 𝕄௔ = {𝕄[ଵ]ଵ ,𝕄[ଵ]ଶ , …𝕄[ଵ]௥ }. 𝑪𝒊,𝒌,𝒍 The completion time of the job in position l on machine i in factory k. 𝑪𝒎𝒂𝒙 The completion time of a scheduling.
Decision variables 𝑿𝒋,𝒌,𝒍 Binary variable: This binary variable takes the value 1 if job j is assigned to location l in factory

k; otherwise, it takes the value 0.

556

3.1 The Mixed-Integer Linear Programming Model

To solve DMNWFSP, we propose the MILP model.

Objective: 𝑚𝑖𝑛 𝐶௠௔௫ (1)

subject to:

෍ ෍ 𝑋௝,௞,௟ = 1௙௞ୀଵ௡௟ୀଵ ,∀𝑗 (2)

෍ 𝑋௝,௞,௟௡௝ୀଵ ≤ 1,∀𝑙, 𝑘 (3)

𝐶ଵ,௞,ଵ = ෍ 𝑋௝,௞,ଵ௡௝ୀଵ 𝑃ଵ,௝ ,∀𝑗,𝑘 (4)

𝐶௜,௞,௟ ≥ 𝐶௜,௞,௟ିଵ + ෍ 𝑋௝,௞,௟௡௝ୀଵ 𝑃௜,௝ ,∀𝑖,𝑘, 𝑙 > 1 (5)

𝐶௜,௞,௟ ≥ 𝐶௜ିଵ,௞,௟ + ෍ 𝑋௝,௞,௟௡௝ୀଵ 𝑃௜,௝ ,∀𝑀௝ ∈ 𝕄௪ ∪𝕄௔ (6)

𝐶௜,௞,௟ = 𝐶௜ିଵ,௞,௟ + ෍ 𝑋௝,௞,௟௡௝ୀଵ 𝑃௜,௝ ,∀𝑀௝ ∈ 𝑀 −𝕄௪ −𝕄௔ (7)

𝐶௠௔௫≥𝐶௜,௞,௟ ,∀𝑖,𝑘, 𝑙 (8) 𝐶௜,௞,௟ > 0,∀𝑖,𝑘, 𝑙 (9) 𝑋௝,௞,௟ ∈ {0,1},∀𝑗,𝑘, 𝑙 (10)

The goal is to minimize 𝐶௠௔௫, which is described by Eq. (1). Constraint set (2) ensures that each job occurs only once in all
factories. Constraint set (3) ensure that each position is occupied by at most one job. Constraint set (4) represents the
completion time of the job at the first position on the first machine. The constraint set (5) enforces that a job can only start
processing on a particular machine after a previous job on the same machine has completed. This ensures that jobs are
sequenced correctly on individual machines. The set of constraints (6) specifies that each operation of a job must start only
after its previous operation has completed. This ensures that jobs are processed in the correct sequence and follow their specific
route through the machine. The constraint set (7) guarantees that there is no waiting time between any two consecutive no-
waiting machines. This restriction plays an important role in satisfying the problem properties. Constraint set (8) defines the
completion time of a schedule. Constraint sets (9) and (10) define the value ranges of the intermediate and decision variables.

3.2 An Illustrative Example

We consider an example in which there are two factories (f = 2), four machines (m = 4), and eight jobs (n = 8). Where 𝕄ଵ ={𝑀ଶ,𝑀ଷ}, 𝕄୵ = {𝑀ଵ,𝑀ସ}. The feasible solution of DMNWFSP is as follows: For factory 1, the job schedule is x1,1,1= x3,1,2
= x5,1,3= x7,1,4=1, while the other decision variables for that factory are set to zero. This means that jobs 1, 3, 5, and 7 are
processed sequentially in factory 1. Likewise, for factory 2, the job schedule is x2,2,1 = x4,2,2= x6,2,3 = x8,2,4=1, and all other
decision variables for factory 2 are zero. Therefore, jobs 2, 4, 6, and 8 are processed sequentially in factory 2. Among them,
the time of 𝑶𝒊,𝒋 is shown in Table 2. By implementing this solution, we ensure that the constraints are met.

Table 2
Processing times Pi,j of jobs on machines 1-4

 J1 J2 J3 J4 J5 J6 J7 J8
M1 3 3 3 6 6 5 6 5
M2 2 3 2 5 7 3 5 5
M3 4 4 5 5 5 2 4 4
M4 7 5 5 2 5 2 4 4

In Fig. 1, the Gantt chart illustrates the DMNWPFSP constraints. When processing jobs on 𝑀ଶ(𝕄[ଵ]ଵ) and 𝑀ଷ(𝕄[ଶ]ଵ), there

C.-C. Li et al. / International Journal of Industrial Engineering Computations 15 (2024) 557

cannot be jobs waiting for processing, that is, the waiting time between machines is 0. As a result, the makespan of the
scheduling is calculated as 𝐶ସ,ଵ,ହ + 𝑝ସ,଻ = 29 + 4 =33.

P1,2

P2,1

P1,3

M2

M1

0 5 10 15 20 25 30

Factory F1

P2,7P2,3 P2,5

C4,3,8=32

Factory F2

P1,5 P1,7

P2,2

P1,4

P2,8P2,4

P1,6 P1,8

P1,1

5 10 15 20 25 30 35

35

P2,6

M3

M4

M1

P3,2

P4,2

P3,4

P4,4

P3,8

P4,8

P3,1

P4,1

P3,3

P4,3

P3,5

P4,5

P3,7

P4,7

M2

M3

M4

P3,6

P4,6

32

33

C4,1,7=33

Fig. 1. Gantt chart of a solution for the illustrative example

3.3 Proposed Metaheuristics

The Iterated Greedy algorithm (IG) has shown good performance for various scheduling problems and their variants (Deng
et al., 2020; Ruiz, Pan, & Naderi, 2019; Glass et al., 1994). The IG is a simple but effective algorithm with two solutions: the
best solution and the current solution. Some researchers have proposed IG methods to solve the DPFSP and achieved good
results (Li et al., 2019; Li, Pan, Ruiz, et al., 2022). We have made appropriate modifications on the basic IG algorithm based
on the characteristics of the considered problem. Generally, the IG is divided into four stages: initialization stage, destruction
stage, construction stage, and acceptance criterion. In the first stage, we first generate an initial solution using the heuristic
algorithms described in Section 3.5. Then, we perform subsequent operations on this initial solution. During the two-step
process of the second and third stages of the algorithm, certain elements are selected and removed from the current solution
and temporarily stored, which is known as the destruction stage. The extracted elements are then reinserted into a solution
containing only some of the elements. This reinsertion takes place according to predefined rules, and this process is called the
construction stage. Once the construction is complete, acceptance criteria come into play. The acceptance criteria evaluate the
new solution obtained in the current iteration and determines what to do with it. Depending on the circumstances, the algorithm
may choose to accept the new solution as is or discard it entirely. In addition, in order to enhance the prevent from falling into
local optimum, local search operators based on shift, swap and hybrid operators are introduced. This local search operator
enables the algorithm to explore different regions of the solution space, thereby improving the quality of the obtained solutions.
In the following sections, these modifications will be elaborated to gain a comprehensive understanding of their respective
roles in enhancing the effectiveness of the algorithm.

3.4 Solution Representation

A reasonable solution representation should be able to fully express the constraints of the problem and the structure of the
solution, while reducing the complexity of the search space as much as possible (Pan, Gao, Xin-Yu, et al., 2019). A two-
dimensional array is used to represent jobs assigned to factories (Pan, Gao, Wang, et al., 2019). The array contains f rows,
each representing job sequences 𝜋௞ = (𝜆௞) assigned to factory k. Jobs within each sequence are arranged in the order of
processing. Hence, a solution is denoted as 𝑠𝑜𝑙 = (𝜋ଵ,𝜋ଶ, … ,𝜋௙), using a sequence-based notation commonly employed in
scheduling literature due to its intuitive and easily programmable nature (Pan, Zhao, & Qu, 2008). The solution for the example
in section 3.2 can be expressed as 𝑠𝑜𝑙 = (𝜋ଵ,𝜋ଶ), where 𝜋ଵ = (1,3,5,7), and 𝜋ଶ = (2,4,6,8).

3.5 Heuristic Algorithm

The quality of randomly generated solutions is generally not high. Heuristics based on the problem characteristics are crucial.
The Distributed SDH+Dipak algorithm (DSD) shown in Algorithm 1 combines the initialization method of the SDH
algorithm with the Dipak algorithm (Trietsch & Baker, 1993). The job with the largest standard deviation of all machining
times is inserted preferentially in the SDH+Dipak algorithm to ensure the quality of the initial solution. First, the standard
deviation 𝜎௝ of each job at all machining times is calculated (Line 1). 𝑃ത௝ is the average processing time of job j on all machine,
calculated as the total processing time of job j divided by the number of machines. A temporary job permutation λ is obtained
according to the non-descending order of 𝜎௝ (Line 2). The first f jobs in λ are put into f empty factories (Lines 3 and Lines 4).
The remaining jobs in λ are removed in turn and try to insert the optimal location (Lines 5-18). When there are two or more

558

jobs in each factory, except for the newly inserted job in factory k, all jobs in that factory are inserted into the best position
among the other π௞∗ positions (Lines 14-17). Finally, the completion time 𝐶𝑚𝑎𝑥 are updated.

Algorithm 1. 𝐃𝐒𝐃

1: Compute 𝜎௝ = ට∑ (௉೔,ೕି௉ണതതത)೘೔సభ ௠ for each job 𝑗 ∈ 𝑁;
2: Generate job permutation λ=(𝜆ଵ,𝜆ଶ,…,𝜆௡) according to non-descending order of 𝜎௝;
3: π=(𝜋ଵ,𝜋ଶ,…,𝜋௙),where 𝜋௞ = (𝜆௞) , 𝑘 = 1,2, … ,𝑓;
4: Remove jobs 𝜆ଵ,𝜆ଶ,…,𝜆௙ from 𝜆;
5: 𝐖𝐡𝐢𝐥𝐞 sizeof(𝜆) > 0 𝐝𝐨 //SDH+Dipak enumeration procedure
6: Extract the first job 𝑗 from 𝜆;
7: 𝐟𝐨𝐫 𝑘 = 1 to 𝑓 𝐝𝐨
8: Test job 𝑗 at all possible positions of 𝜋௞;
9: Δ௞ = minimum increase of makespan;
10: ξ௞ = position resulting in Δ௞;
11: 𝐞𝐧𝐝𝐟𝐨𝐫
12: 𝑘∗ = arg (min௞ୀଵ ଶ ௙ Δ௞);
13: Insert job 𝑗 at position ξ௞∗ of π௞∗;
14: 𝐈𝐟 sizeof(𝜋௞) > 2 𝐝𝐨
15: All job except 𝑗 in factory 𝑘∗ are extracted sequentially, try to insert into other
 positions in factory 𝑘∗ and inserted into the best position;
16: 𝐞𝐧𝐝𝐢𝐟
17： 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
18: return 𝑠𝑜𝑙 = (𝜋ଵ,𝜋ଶ, … ,𝜋௙);

The DNEH algorithm (Pan, Gao, Wang, et al., 2019) can also generate high-quality initial solutions which is shown in
Algorithm 2. Initially, the total processing times for each job on every machine, denoted as 𝑇𝑖 , are computed (line 1).
Subsequently, a temporary job arrangement λ, is created based on the non-descending order of 𝑇𝑖 (line 2). The first f jobs from
λ are then chosen and allocated to f available factories, resulting in the formation of 𝜋௞ (lines 3 and 4). The remaining jobs in
λ are sequentially removed and inserted in their best positions (Lines 5-14). Finally, the completion time 𝐶𝑚𝑎𝑥 is updated
accordingly.

In the IIG algorithm, the parameter "𝑖𝑛𝑖𝑡" determines which heuristic algorithm to use. Specifically, when 𝑖𝑛𝑖𝑡 = 0, the DNEH
algorithm is used, and when 𝑖𝑛𝑖𝑡 = 1, the DSD algorithm is employed for initialization.

3.6 Reference-based Local Search

RLS (Reference Local Search) is a reference-based local search algorithm that has demonstrated favorable performance in
solving diverse problems (Pan, Gao, Wang, et al., 2019; Pan & Ruiz, 2014). This method employs local search techniques to
explore new solutions within a confined search space, thereby avoiding the exhaustive exploration of the entire solution space.
After obtaining the initial solution via a heuristic algorithm, RLS extracts jobs one by one according to the job order given in
sol and reinserts them in all possible locations to form a new solution. Until all jobs have been tried and no further
improvements can be made.

Algorithm 2. 𝐃𝐍𝐄𝐇
1: Compute 𝑇௜ = ∑ 𝑃௝,௜௠௜ୀଵ for each job 𝑖 ∈ 𝑁;
2: Generate job permutation λ=(𝜆ଵ,𝜆ଶ,…,𝜆௡) according to non-descending order of 𝑇௜;
3: π=(𝜋ଵ,𝜋ଶ,…,𝜋௙),where 𝜋௞ = (𝜆௞),𝑘 = 1,2, … ,𝑓;
4: Remove jobs 𝜆ଵ,𝜆ଶ,…,𝜆௙ from 𝜆;
5: 𝐖𝐡𝐢𝐥𝐞 sizeof(𝜆) > 𝟎 𝐝𝐨
6: Extract the first job 𝑗 from 𝜆;
7: 𝐟𝐨𝐫 𝑘 = 1 to 𝑓 𝐝𝐨
8: Test job 𝑗 at all possible positions of 𝜋௞;
9: Δ௞ = minimum increase of makespan;
10: ξ௞ = position resulting in Δ௞;
11: endfor
12: 𝑘∗ = arg (min௞ୀଵ ଶ ௙ Δ௞);
13: Insert job 𝑗 at position ξ௞∗ of π௞∗ ;
14: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
15： return 𝑠𝑜𝑙 = (𝜋ଵ,𝜋ଶ, … ,𝜋௙);

C.-C. Li et al. / International Journal of Industrial Engineering Computations 15 (2024) 559

Algorithm 3. RLS(𝑠𝑜𝑙)
1: 𝜆 = ∅;
2: 𝐟𝐨𝐫 𝑘 = 1 to 𝑓 𝐝𝐨
3: Append all jobs in factory 𝑘 to 𝜆;
4: 𝐞𝐧𝐝𝐟𝐨𝐫
5: 𝐶ounter = 0; 𝑗 = 1;
6: 𝐖𝐡𝐢𝐥𝐞 𝐶ounter < 𝑛 𝐝𝐨
7: 𝑠𝑜𝑙ିఒೕ = partial solution generated by extracting job 𝜆௝ from 𝑠𝑜𝑙;
8: 𝑠𝑜𝑙ᇱ = best solution generated after reinserting job 𝜆௝ to 𝑠𝑜𝑙ିఒೕ;
9: 𝐢𝐟 𝐶௠௔௫(𝑠𝑜𝑙′) < 𝐶௠௔௫(𝑠𝑜𝑙) 𝐭𝐡𝐞𝒏
10: 𝑠𝑜𝑙 = 𝑠𝑜𝑙′; Counter = 0;
11: 𝐞𝐥𝐬𝐞
12: Counter = Counter + 1;
13: 𝐞𝐧𝐝𝐢𝐟
14: 𝑗 = (𝑗 + 1)%𝑛 + 1;
15： 𝒆𝐧𝐝𝐰𝐡𝐢𝐥𝐞
16: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑜𝑙 = (𝜋ଵ,𝜋ଶ, … ,𝜋௙);

3.7 Destruction Stage

The destruction stage is used to perturb solutions to provide diversity. In general, the IG algorithms randomly select jobs from
the current solution to remove during the destruction stage. This paper proposes a novel removal strategy for key factories,
defined as those with the longest completion time. The strategy involves randomly selecting half 𝑑/2 of the jobs from the
critical factory and half 𝑑/2 of the jobs from the remaining factories, and then removing these selected jobs from the solution.
The removed jobs are placed in a temporary sequence 𝜔. For this process, please refer to Algorithm 4.

Algorithm 4. Destruction(𝑠𝑜𝑙,𝑑)
1: ω = ∅;
2： Find the critical factory 𝐹௖ with the maximum makespan in 𝑠𝑜𝑙;
3: Randomly extract 𝑑 2⁄ jobs in factory 𝐹௖;
4: Append these 𝑑 2⁄ jobs to ω;
5: 𝐖𝐡𝐢𝐥𝐞 sizeof(ω) < 𝑑 𝐝𝐨
6: Randomly select a factory 𝑘;
7: Randomly extract a job 𝐽௝ in factory 𝑘;
8: Append job 𝐽௝ to ω;
9: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
10: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑜𝑙 and ω;
3.8 Construction Stage

During the reconstruction phase, the jobs in the temporary sequence 𝜔 are sorted according to the sorting method in the
Algorithm 1. Then, each job in the sequence 𝜔 is inserted into the solution one by one. Finally, we choose the best positions
p, where each job is inserted to minimize the increase in makespan, and repeat this process until all removed jobs are inserted.
The details of this stage are presented in Algorithm 5.

Algorithm 5. Construction(𝑠𝑜𝑙,ω)

1: Compute 𝜎௝ = ට∑ (௉೔,ೕି௉ണതതത)೘೔సభ ௠ for job 𝑗 in ω;
2: Generate job permutation λ=(𝜆ଵ,𝜆ଶ,…,𝜆ୢ) according to non-descending order of 𝜎௝;
3: 𝐟𝐨𝐫 𝑠𝑡𝑎𝑟𝑡 = 1 to sizeof(ω) 𝐝𝐨
4: Extract the first job 𝑗 from 𝜆;
5: 𝐟𝐨𝐫 𝑘 = 1 to 𝑓 𝐝𝐨
6: Test job 𝑗 at all possible positions of 𝜋௞;
7: Δ௞ = minimum increase of makespan;
8: ξ௞ = position resulting in Δ௞;
9: 𝐞𝐧𝐝𝐟𝐨𝐫
10: 𝑘∗ = arg (min௞ୀଵ ଶ ௙ Δ௞);
11: Insert job 𝑗 at position ξ௞∗ of π௞∗;
12: 𝐞𝐧𝐝𝐟𝐨𝐫
13: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑜𝑙;

560

3.9 Local Search
High-quality local search leads to better solutions without searching the entire solution space. Based on the characteristics of
the DMNWPFSP and the characteristics of the IG algorithm, we define two operators, namely, Shift and Swap.

（1） The operation process of Shift can be shown by Algorithm 6. It randomly selects a job 𝑗ଵ in the critical factory 𝐹௖
and moves job 𝑗ଵ to another randomly selected position p in all factories.

（2） The Swap operator shown in Algorithm 7 randomly selects a job 𝑗ଵ in the critical factory 𝐹௖ and another random
job 𝑗ଶ in all factories and then swaps jobs 𝑗ଵ and 𝑗ଶ.

To search across a wider range of regions, the LocalSearchShift algorithm (presented in Algorithm 8) and the
LocalSearchSwap algorithm (presented in Algorithm 9) are proposed to repeatedly operater (Shift and Swap) on the solution
sol. After each operation, the current solution is compared with the old one. If the new solution is better, the local search will
save it as the current best solution. Otherwise, the solution sol will continue to be operated on until the loop ends after
OperNumber times, where OperNumber is a parameter.

Algorithm 8 LocalSearchShift(𝑠𝑜𝑙)
1: 𝐟𝐨𝐫 𝑖 = 0 to OperNumber 𝐝𝐨 to
2: 𝑠𝑜𝑙ᇱ = 𝑠𝑜𝑙;
3: 𝑠𝑜𝑙′ = Shift(𝑠𝑜𝑙′); %(use Algorithm 6)
4: if 𝐶௠௔௫(𝑠𝑜𝑙′) < 𝐶௠௔௫(𝑠𝑜𝑙) 𝐝𝐨
5: 𝑠𝑜𝑙 = 𝑠𝑜𝑙ᇱ;
6: 𝐞𝐧𝐝𝐢𝐟
7: 𝐞𝐧𝐝𝐟𝐨𝐫

As shown in Algorithm 10, Hybrid Local Search (HLS) is a combination of shift and swap operators used in the local search
algorithm to maintain diversity during the search. The algorithm randomly selects between LocalSearchShift and
LocalSearchSwap algorithms for neighborhood search with a probability of 0.5 for each. This allows the search to explore
different neighborhood structures and can avoid getting stuck in local optima. By using a combination of operators, the
algorithm can exploit the strengths of each operator while minimizing their weaknesses. Overall, the use of HLS can improve
algorithm performance

Algorithm 6. Shift(𝑠𝑜𝑙)
1： Find the critical factory 𝐹௖ with the maximum makespan in 𝑠𝑜𝑙;
2: Randomly select a job 𝑗ଵ in factory 𝐹௖;
3: Randomly select a factory 𝑘
4: Randomly select a position 𝑝 in factory 𝑘;
5: Shift job 𝑗ଵ to position 𝑝;
6: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑜𝑙;

Algorithm 7. Swap(𝑠𝑜𝑙)
1: Find the critical factory 𝐹௖ in 𝑠𝑜𝑙;
2: Randomly select a job 𝑗ଵ in factory 𝐹௖;
3: Randomly select a factory 𝑘;
4: Randomly select a job 𝑗ଶ in factory 𝑘;
5: Swap job 𝑗ଵ and job 𝑗ଶ;
6: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑜𝑙;

Algorithm 9. LocalSearchSwap(𝑠𝑜𝑙)
1: 𝐟𝐨𝐫 𝑖 = 0 to OperNumber 𝐝𝐨 to
2: 𝑠𝑜𝑙ᇱ = 𝑠𝑜𝑙;
3: 𝑠𝑜𝑙′ = Swap(𝑠𝑜𝑙′); %(use Algorithm 7)
4: if 𝐶௠௔௫(𝑠𝑜𝑙′) < 𝐶௠௔௫(𝑠𝑜𝑙′) 𝐝𝐨
5: 𝑠𝑜𝑙 = 𝑠𝑜𝑙ᇱ;
6: 𝐞𝐧𝐝𝐢𝐟
7: 𝐞𝐧𝐝𝐟𝐨𝐫

C.-C. Li et al. / International Journal of Industrial Engineering Computations 15 (2024) 561

3.10 Acceptance Criteria
Acceptance criteria play a vital role in determining whether to accept a new solution as a starting point for the next iteration.
In the case of the constant temperature T (Stützle) simulated annealing algorithm, if the objective function value is inferior,
the acceptance criterion shown in Equation (11) is applied.
 𝑇 = 𝑇𝑒𝑚𝑝𝐹𝑎𝑐𝑡𝑜𝑟× ∑ ∑ 𝑷𝒊,𝒋௠௜ୀଵ௡௝ୀଵ10 × 𝑚 × 𝑛

)11(

where TempFactor is the control parameter.

3.11 Flow Chart for the IIG Algorithm
The specific process of the IIG algorithm is summarized in Fig. 2.

Set the parameters of the IIG algorithm

An initial solution sol is obtained using heuristic algorithm

Is the stopping criterion satisfied?

[sol’,ω]=Destruction(sol,d)

sol’=Construction(sol',ω)

Perform HLS to sol’
AcceptanceCriteria(sol’, sol)

N

Y

End

solbest=sol

Perfrom RLS to sol

Fig. 2. The flowchart of the IIG for the DMNWPFSP

Algorithm 10.HLS(𝑠𝑜𝑙)
1: r=(double)random(0,1);
2: if r < 0.5 do
3: LocalSearchShift(𝑠𝑜𝑙); %(use Algorithm 8)
4: Else
5: LocalSearchSwap(𝑠𝑜𝑙); %(use Algorithm 9)
6: endif

Algorithm 11. AcceptanceCriterion(𝑠𝑜𝑙′, 𝑠𝑜𝑙)
1: 𝐢𝐟 𝐶௠௔௫(𝑠𝑜𝑙ᇱ) < 𝐶௠௔௫(𝑠𝑜𝑙) 𝐝𝐨
2: 𝑠𝑜𝑙 = 𝑠𝑜𝑙ᇱ;
3: 𝐢𝐟 𝐶௠௔௫(𝑠𝑜𝑙ᇱ) < 𝐶௠௔௫(𝑠𝑜𝑙௕௘௦௧) 𝐝𝐨
4: 𝑠𝑜𝑙௕௘௦௧ = 𝑠𝑜𝑙ᇱ;
5: 𝐞𝐧𝐝𝐢𝐟
6: else
7: 𝐢𝐟 rand(0,1) < exp ((𝐶௠௔௫(𝑠𝑜𝑙) − 𝐶௠௔௫(𝑠𝑜𝑙ᇱ)/𝑇)) 𝐝𝐨 %(Calculate T use Formula (11))
8: 𝑠𝑜𝑙 = 𝑠𝑜𝑙ᇱ;
9: 𝐞𝐧𝐝𝐢𝐟
10: 𝐞𝐧𝐝𝐢𝐟
11: 𝐫𝐞𝐭𝐮𝐫𝐧;

562

Step 1: Set parameters, including d, TempFactor , Init and OperNumber;
Step 2: An initial solution (denoted as 𝑠𝑜𝑙) is generated.
Step 3: Perform Reference-based local search to the solution 𝑠𝑜𝑙.
Step 4: The optimal solution 𝑠𝑜𝑙௕௘௦௧ is recorded.
Step 5: Destruction: remove 𝑑 jobs, put them in 𝜔, and store the new solution in 𝑠𝑜𝑙′。
Step 6: Construction: insert the jobs in 𝜔 into 𝑠𝑜𝑙′.
Step 7: Perform HLS to 𝑠𝑜𝑙′.
Step 8: Acceptance Criterion: decide whether to accept the new solution.
Step 9: If the stop condition is met, the IIG algorithm ends; otherwise, it returns to step 5.

4. Experimental Calibration
For achieving the best performance of the IIG algorithm, we conducted calibration experiments to fine-tune its parameters.
We utilized the testing methodology proposed in the literature (Cheng, Ying, Chen, & Lu, 2018) to generate instances for
evaluation. A test instance consisted of n jobs and f factories, with m machines in each factory, where f∈{2, 4, 6}, n∈{20,
50, 100, 200, 500} and m∈{5, 10, 20}. Below are the families of no-wait machines of the seven types generated from the
paper (Pan & Ruiz, 2014). 1) Series 1: The top 50% of machines are subject to no-wait constraints, while the remaining 50%
operate as regular machines. 2) Series 2: The bottom 50% of machines are assigned no-wait constraints. 3) Series 3: Machines
are alternately assigned regular constraints and no-wait constraints in a sequential manner. 4) Series 4: 25% of machines are
randomly selected and given no-wait constraints. 5) Series 5: 50% machines are randomly selected, no waiting time for
operation. 6) Series 6: 75% of machines are randomly assigned with no-wait constraints. 7) Series 7: All machine constraints
are no-wait. In each instance, the no-wait machine group categories were randomly generated to maximize the accuracy of
the experiment.

Table 3 provides details of the example parameters used in the experiments. The IIG algorithm was implemented using
Microsoft Visual Studio 2019 and the C++ programming language, with all optimization flags enabled. The computer used
for the experiments runs on the Windows 10 Pro operating system and is equipped with a quad-core Intel i7-12700 2.1 GHz
processor and 16 GB of RAM. Using Relative Percentage Increment (RPI) as an indicator allows us to intuitively select the
most suitable algorithm or optimize parameters to obtain better solutions. RPI is calculated using the following Eq. (12):

𝑅𝑃𝐼 = 𝐶௠௔௫ − 𝐶௠௔௫∗𝐶௠௔௫∗ × 100%
)12(

The parameter settings mentioned above include two parameters: 𝐶௠௔௫ and 𝐶௠௔௫∗. Here, 𝐶௠௔௫ represents the performance
metric of the algorithm on a specific instance, while 𝐶௠௔௫∗ represents the best value of that metric achieved by optimizing or
tuning on the same instance. This RPI measure allows for a more comprehensive assessment of the algorithm's performance
(Li, Gao, Meng, Jing, & Zhang, 2023).
Table 3
Parameters of instances.

The IIG involves four parameters that may affect its performance: d, TempFactor, Init and OperNumber. The value of d
represents the number of jobs removed in Section 3.7. TempFactor represents the probability of accepting a solution in Section
3.10. The Init parameter indicates the selection of the DNEH heuristic algorithm, or the DSD heuristic algorithm described in
Section 3.5. OperNumber represents the number of times the selected operator is applied as described in Section 3.9. For the
IIG algorithm, we first determine an approximate range for the four parameters through preliminary experiments.
Subsequently, we conduct calibration experiments to find the optimal value for each parameter. The four parameters of the
IIG algorithm are set as follows: d: 2, 4 and 6, TempFactor: 0.4, 0.6 and 0.8, Init: 0 and 1 and OperNumber: 50, 60 and 70.
Therefore, there are 3×3×2×3 = 54 configurations for the IIG algorithm.

In the calibration experiment, there are three values for variable f (2, 4, 6), and nine combinations for variables m and n: 50×5,
50×10, 50×20, 100×5, 100×10, 100×20, 200×5, 200×10, and 200×20. There are total of 3×9=27 combinations. Five instances
are generated for each combination. Finally, we obtained a total of 3×9×5=135 benchmark instances. These 135 instances
calibrated the proposed IIG algorithm. For each instance, the experiment was run two times independently. The CPU time,
when the IIG algorithm terminates, was v×m×n ms, where v=90. Therefore, there are 135×2×54 = 14580 RPI results. In the
experiments presented in this paper, we employed the method of experimental design and analysis of variance (ANOVA) (Li,
Pan, & Tasgetiren, 2014; Zhang et al., 2020) to analyze the obtained results. ANOVA is a widely-used statistical technique for
comparing the average differences among multiple groups. Our focus in the analysis was on the algorithm type, rather than
the problem size factors (n, f, and m). In ANOVA, the algorithm type is considered as the controlled factor, while the variables

Number of jobs n {20,50,100,200,500}
Number of machines m {5,10,20}
Number of factories f {2,4,6}
The processing time of 𝑂௜,௝ 𝑃௜,௝ [0,100]
Seven different families of no-wait machines Family௫ {1,2,3,4,5,6,7}

C.-C. Li et al. / International Journal of Industrial Engineering Computations 15 (2024) 563

f and m are treated as uncontrolled variables. The ANOVA results are shown in Table 4, d, TempFactor , Init and OperNumber
cause the response variables to differ statistically significantly; that is, to optimize and improve the performance of the IIG
algorithm, it is crucial to carefully select and adjust these parameters.

Table 4
ANOVA table for the experiment on tuning the parameters of IIG

2 4 6
(a)d

0.79

0.99

1.19

1.39

1.59

RP
I

0 1
(c)Init

1.13

1.15

1.17

1.19

1.21

RP
I

50 60 70
(d)OperNumber

1.13

1.14

1.15

1.16

1.17

1.18

1.19

RP
I

0.4 0.6 0.8
(b)TempFcator

1

1.1

1.2

1.3

1.4

Fig. 3. Means and 95.0% Tukey HSD confidence intervals

It can be seen from Fig. 3 (a) that the optimal value of d should be 4. Fig. 3 (b) shows that TempFactor should be fixed to 0.6.
As illustrated in Fig. 3 (c), when comparing the performance of the DSD algorithm and the DNEH algorithm, it is observed
that the DSD algorithm is more effective in solving the DMNWPFSP problem. Therefore, the parameter selection of Init
should be 1. The number of operations on the selection factor during the local search, should be 60, as shown in Fig. 3 (d).
According to the analysis of the experimental results, the four parameters of the IIG algorithm are set as follows: d = 4,
TempFactor = 0.6, Init = 1 and OperNumber = 60.

5. Experimental Results

The proposed IIG algorithm was evaluated by a large number of numerical comparisons. In the final experiment, f∈{2, 4, 6}
and there are 12 combinations of 20×5, 20×10, 20×20, 50×5, 50×10, 50×20, 100×5, 100×10, 100×20, 200×10, 200×20,
500×20 for n and m. Each combination contained ten instances, which resulted in a total of 12×10×3=360 instances. The
dataset and the kind of no-wait machine group for the final experiment were generated using the methods in Section 4. We
compared the proposed IIG with EA (Fernandez-Viagas, Perez-Gonzalez, & Framinan, 2018), IG (Pan, Gao, Wang, et al.,
2019), DABC (Pan, Gao, Wang, et al., 2019), and ILS (Pan, Gao, Wang, et al., 2019). All algorithms are coded using the same
environment as Section 4. We note that the four competitive algorithms compared did not consider the mixed no-wait
constraint, and their initial optimization goal was not the completion time. Therefore, we made necessary modifications to
these algorithms to fit the DMNWPFSP. In addition, we only made changes to the necessary code to try to maintain all details
of the competitive algorithms to ensure and achieve the performance they should have. The parameters of all competitive
algorithms are tabulated in Table 5.

Table 5
Parameter setting for IG, ILS, DABC, and EA.

EA γ = 5;
DABC PS = 5; 𝛯 = 0;
ILS τ = 3; a = 0; ϖ = 20; 𝛯 = 0; β = 0.7;
IG d =7; a = 0; β= 0.6;

Source Sum of Squares Df Mean Square F-Ratio p-Value
Main effects
A:d 959.084 2 479.542 1113.50 0.0000
B:TempFactor 173.222 2 86.6108 201.11 0.0000
C:Init 5.69317 1 5.69317 13.22 0.0003
D:OperNumber 0.78477 2 0.392385 0.91 0.4021
RESIDUAL 6275.59 14572 0.430661
TOTAL (CORRECTED) 7414.37 14579

564

In the experiments conducted in this paper, we utilized the same operating environment as described in Section 4. All
algorithms ran the same termination time and output results. The termination time was v×m×n ms, where v took the 3 values
of 30, 60 and 90, and m and n please refer to Table 1, respectively. The comparison of the results of all algorithms under these
three termination conditions comprehensively demonstrated the performance of all algorithms. All algorithms independently
ran five times to solve each of the 360 instances. Therefore, 360× 5 × 3 × 5= 27000 tests are conducted. The RPI was used as
a performance indicator for comparison.

In Tables 6, 7, and 8, we provide the average (ARPI) values for the algorithms. Specifically, Table 6 shows the values obtained
by the algorithm by plant, machine, and job classification at a termination time of 30mn ms. The IIG algorithm exhibits
superior performance, as indicated by its high ARPI value. This is followed by the IG algorithm, which ranks second in terms
of ARPI. Furthermore, it can also be seen that the IIG algorithm consistently exhibits superior performance across different
categories.

Table 6
ARPI value at 30mn ms termination time (The optimal ARPI is in bold)

type DABC EA ILS IG IIG
f=2 2.606 2.525 2.842 1.955 0.653
f=4 3.049 3.182 3.825 2.631 0.657
f=6 3.522 3.489 4.302 3.183 0.787

n=20 0.849 0.388 0.584 0.203 0.073
n=50 2.749 2.880 3.731 2.333 0.724
n=100 4.219 4.391 5.091 3.525 0.926
n=200 4.673 4.926 5.602 4.403 1.092
n=500 3.912 3.957 4.456 4.085 1.034
m=5 2.665 2.693 3.267 2.203 0.597

m=10 3.347 3.361 3.961 2.772 0.769
m=20 3.065 3.051 3.646 2.676 0.703

MEAN 3.059 3.065 3.656 2.590 0.699

In our study, we conducted a multivariate analysis of variance to assess the significance of various factors presented in Table
6. These factors include algorithm type, the size of the job, number of machines and factories.

Fig. 4 presents the statistics for multiple comparisons at a termination time of 30mn ms. The results of our analysis indicate
significant differences in the ARPI values among different algorithms. Specifically, the IIG algorithm demonstrated the highest
performance, followed by the IG algorithm. In the study, we observed that although the ILS algorithm is relatively weak,
compared with the other two algorithms, the performance gap was not statistically significant. These findings provide valuable
insights for further exploration of algorithm performance and demonstrate the utility of the IIG algorithm for the problems
under consideration.

DABC EA IG IIG ILS
（d）Algorithm

0

1

2

3

4

RP
I

（a）Factories

0

1

2

3

4

5

RP
I

2 4 6

Algorithm
DABC
EA
IG
IIG
ILS

（b）Jobs

-0.1

0.9

1.9

2.9

3.9

4.9

5.9

RP
I

20 50 100 200 500

Algorithm
DABC
EA
IG
IIG
ILS

（c）Machines

0

1

2

3

4

5

RP
I

5 10 20

Algorithm
DABC
EA
IG
IIG
ILS

Fig. 4. Means plot, interaction, and 95% Tukey HSD intervals at t=30mn ms

Tables 7 and 8 show the ARPI values of various factors at termination time of 60mn and 90mn ms, respectively. Figs 8 and
9 illustrate the mean and interaction plots at termination times of 60mn ms and 90mn ms, respectively. The ranking of
all algorithms is still maintained, with IIG continuing to outperform other comparison algorithms by a significant margin.
The ARPI differences of all algorithms are still significant.

C.-C. Li et al. / International Journal of Industrial Engineering Computations 15 (2024) 565

Table 7
ARPI value at 60mn ms termination time (The optimal ARPI is in bold)

type DABC EA ILS IG IIG
f=2 2.350 2.249 2.557 1.631 0.375
f=4 2.790 2.864 3.560 2.287 0.382
f=6 3.270 3.162 4.105 2.874 0.455

n=20 0.773 0.335 0.431 0.125 0.030
n=50 2.492 2.344 3.359 1.976 0.467
n=100 3.764 3.967 4.802 3.110 0.567
n=200 4.388 4.659 5.392 3.872 0.585
n=500 3.772 3.841 4.332 3.794 0.487
m=5 2.380 2.330 3.003 1.918 0.371

m=10 3.079 3.010 3.706 2.411 0.453
m=20 2.837 2.814 3.411 2.354 0.385

MEAN 2.803 2.758 3.408 2.264 0.404

DABC EA IG IIG ILS
（d）Algorithm

0

1

2

3

4

R
PI

（a）Factories

0

1

2

3

4

5

R
PI

2 4 6

Algorithm
DABC
EA
IG
IIG
ILS

（b）Jobs

-0.1

0.9

1.9

2.9

3.9

4.9

5.9

R
PI

20 50 100 200 500

Algorithm
DABC
EA
IG
IIG
ILS

（c）Machines

0

1

2

3

4

RP
I

5 10 20

Algorithm
DABC
EA
IG
IIG
ILS

Fig. 5. Means plot, interaction, and 95% Tukey HSD intervals at t=60mn ms

DABC EA IG IIG ILS
（d）Algorithm

0

1

2

3

4

RP
I

（a）Factories

0

1

2

3

4

5

RP
I

2 4 6

Algorithm
DABC
EA
IG
IIG
ILS

（b）Jobs

-0.2

0.8

1.8

2.8

3.8

4.8

5.8

RP
I

20 50 100 200 500

Algorithm
DABC
EA
IG
IIG
ILS

（c）Machines

0

1

2

3

4

RP
I

5 10 20

Algorithm
DABC
EA
IG
IIG
ILS

Fig. 6. Means plot, interaction, and 95% Tukey HSD intervals at t=90mn ms

Table 8
ARPI value at 90mn ms termination time (The optimal ARPI is in bold)

type DABC EA ILS IG IIG
f=2 2.219 2.095 2.391 1.437 0.241
f=4 2.651 2.667 3.377 2.113 0.246
f=6 3.129 2.970 3.976 2.699 0.288

n=20 0.750 0.314 0.331 0.083 0.020
n=50 2.403 2.034 3.146 1.803 0.334
n=100 3.494 3.716 4.599 2.868 0.389
n=200 4.193 4.492 5.253 3.558 0.326
n=500 3.668 3.749 4.240 3.618 0.216
m=5 2.235 2.102 2.818 1.753 0.262

m=10 2.927 2.815 3.534 2.230 0.289
m=20 2.716 2.672 3.278 2.163 0.231

MEAN 2.666 2.577 3.248 2.083 0.258

566

CPU

0

1

2

3

4

RP
I

30 60 90

Algorithm
DABC
EA
IG
IIG
ILS

CPU

1.5

1.9

2.3

2.7

3.1

RP
I

30 60 90

Factories
2
4
6

CPU

1.7

1.9

2.1

2.3

2.5

2.7

2.9

RP
I

30 60 90

Machines
5
10
20

CPU

0

1

2

3

4

5

R
PI

30 60 90

Jobs
20
50
100
200
500

Fig. 7. Interaction of CPU time and various influencing factors and 95% Tukey HSD intervals

Fig. 7 presents the performance comparison of all algorithms under different termination times. As the problem complexity
rises, particularly for larger instances, the algorithm's performance typically declines due to the increased complexity of the
search space, making it more challenging to find optimal solutions. However, the results clearly demonstrate that with longer
termination times, all algorithms achieve improved performance. Notably, the proposed IIG algorithm consistently
outperforms the four contrasting algorithms in solving the DMNWPFSP with makespan criterion, even with longer
termination times. This highlights the excellent performance and superiority of the IIG algorithm in solving the complexity
of DMNWPFSP and obtaining high-quality solutions.

CPU

0

0.3

0.6

0.9

1.2

1.5

1.8

R
PI

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Algorithm
DABC
EA
IG
IIG
ILS

CPU

0

0.5

1

1.5

2

2.5

3

RP
I

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Algorithm
DABC
EA
IG
IIG
ILS

CPU

0

1

2

3

4

5

6

RP
I

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Algorithm
DABC
EA
IG
IIG
ILS

CPU

0

1

2

3

4

RP
I

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Algorithm
DABC
EA
IG
IIG
ILS

CPU

0

0.5

1

1.5

2

2.5

3

R
PI

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Alg
ABCO
EA
IG
IIG
ILS

（a）20×5×2

（c）100×10×4

（b）50×5×2

（d）200×10×4

（e）500×20×6

Fig. 8. Evolutionary curve for all algorithms.

To further demonstrate how the IIG algorithm evolves over time and how its performance changes, we conducted a series of
experiments and analyzed the IIG algorithm evolution curve. To ensure the fairness and practicality of the experiments, we
designed 5 different combinations of n×m×f with different scales, which are 20×5×2, 50×5×2, 100×10×4, 200×10×4, and
500×20×6, respectively. We generated 10 instances for each combination. All algorithms run independently 5 times to solve
each instance. We used CPU time to measure the efficiency of the IIG algorithm. Fig. 8 shows the changing trend of the
average RPI value of all algorithms. As the scale of the instances increases, the time taken by all algorithms to reach a relatively
stable peak performance also increases. Moreover, the superior performance of the IIG algorithm becomes more and more
evident as compared to the other algorithms. Therefore, in our experiments, we set the CPU termination time of the algorithm
to three different values: v∈{30, 60, 90}. For the largest instance of 500×20×6, all algorithms can reach a relatively stable
performance at v=90.

C.-C. Li et al. / International Journal of Industrial Engineering Computations 15 (2024) 567

6. Conclusions

This paper introduces an IIG algorithm designed to address the challenges of the DMNWPFSP. The algorithm incorporates
critical factory destruction and employs an iterative local search mechanism. Initially, the unique characteristics of the
DMNWPFSP are thoroughly examined, and a location-based mathematical model is formulated to describe it. Subsequently,
the IIG algorithm utilizes the DSD heuristic algorithm to generate a better initial solution. Then, by utilizing the framework
of the IG algorithm and integrating a powerful local search mechanism, the solution space is thoroughly explored, enhancing
its ability to find better solutions. The efficacy of the IIG algorithm is extensively evaluated through a series of numerical
experiments. Performance evaluation and comparison show that the IIG algorithm achieves better solutions, demonstrating
its superiority in solving the given problem and outperforming the other four recently proposed algorithms. Furthermore, the
IIG algorithm consistently produces high-quality feasible solutions, even under varying stopping conditions.

Future research in the field of DPFSP should prioritize gaining a comprehensive understanding of the problem, as well as the
development of advanced evolutionary algorithms and the design of metaheuristic algorithms tailored specifically for DPFSP.
In terms of algorithms, future work should be combined with other algorithms to improve exploration capabilities.
Furthermore, the problem can be extended to the distributed flexible flowshop.

Acknowledgments
This research is partially supported by the National Natural Science Foundation of China 52205529, the Natural Science
Foundation of Shandong Province (ZR2021QE195), and the Discipline with Strong Characteristics of Liaocheng University
--Intelligent Science and Technology under Grant 319462208.

References

Aldowaisan, T., & Allahverdi, A. (2004). New heuristics for m-machine no-wait flowshop to minimize total completion time. Omega,

32(5), 345-352.
Allahverdi, A., Ng, C. T., Cheng, T. C. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup times or costs.

European Journal of Operational Research, 187(3), 985-1032.
Allali, K., Aqil, S., & Belabid, J. (2022). Distributed no-wait flow shop problem with sequence dependent setup time: Optimization

of makespan and maximum tardiness. Simulation Modelling Practice and Theory, 116.
Cheng, C.-Y., Ying, K.-C., Chen, H.-H., & Lu, H.-S. (2018). Minimising makespan in distributed mixed no-idle flowshops.

International Journal of Production Research, 57(1), 48-60.
Cheng, C.-Y., Ying, K.-C., Li, S.-F., & Hsieh, Y.-C. (2019). Minimizing makespan in mixed no-wait flowshops with sequence-

dependent setup times. Computers & Industrial Engineering, 130, 338-347.
De Giovanni, L., & Pezzella, F. (2010). An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling

problem. European Journal of Operational Research, 200(2), 395-408.
Deng, G., Su, Q., Zhang, Z., Liu, H., Zhang, S., & Jiang, T. (2020). A population-based iterated greedy algorithm for no-wait job

shop scheduling with total flow time criterion. Engineering Applications of Artificial Intelligence, 88.
Deng, J., & Wang, L. (2017). A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling

problem. Swarm and Evolutionary Computation, 32, 121-131.
Fernandez-Viagas, V., & Framinan, J. M. (2014). A bounded-search iterated greedy algorithm for the distributed permutation

flowshop scheduling problem. International Journal of Production Research, 53(4), 1111-1123.
Fernandez-Viagas, V., Perez-Gonzalez, P., & Framinan, J. M. (2018). The distributed permutation flow shop to minimise the total

flowtime. Computers & Industrial Engineering, 118, 464-477.
Gao, J., & Chen, R. (2011). A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem. International

Journal of Computational Intelligence Systems, 4(4), 497-508.
Gao, J., Chen, R., & Deng, W. (2013). An efficient tabu search algorithm for the distributed permutation flowshop scheduling

problem. International Journal of Production Research, 51(3), 641-651.
Gao, K.-z., Pan, Q.-k., & Li, J.-q. (2011). Discrete harmony search algorithm for the no-wait flow shop scheduling problem with

total flow time criterion. The International Journal of Advanced Manufacturing Technology, 56(5-8), 683-692.
Glass, C. A., Gupta, J. N. D., & Potts, C. N. (1994). Lot streaming in three-stage production processes. European Journal of

Operational Research, 75, 378-394.
Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., & Zhang, Y. F. (2007). Integration of genetic algorithm and Gantt chart for job shop scheduling

in distributed manufacturing systems. Computers & Industrial Engineering, 53(2), 313-320.
Li, J.-Q., Pan, Q.-K., & Tasgetiren, M. F. (2014). A discrete artificial bee colony algorithm for the multi-objective flexible job-shop

scheduling problem with maintenance activities. Applied Mathematical Modelling, 38(3), 1111-1132.
Li, J.-Q., Pan, Q.-K., & Mao, K. (2016). A Hybrid Fruit Fly Optimization Algorithm for the Realistic Hybrid Flowshop Rescheduling

Problem in Steelmaking Systems. IEEE Transactions on Automation Science and Engineering, 13(2), 932-949.
Li, W., Li, J., Gao, K., Han, Y., Niu, B., Liu, Z., & Sun, Q. (2019). Solving robotic distributed flowshop problem using an improved

iterated greedy algorithm. International Journal of Advanced Robotic Systems, 16(5).
Li, H., Li, X., & Gao, L. (2021). A discrete artificial bee colony algorithm for the distributed heterogeneous no-wait flowshop

scheduling problem. Applied Soft Computing, 100.
Li, Y.-Z., Pan, Q.-K., Li, J.-Q., Gao, L., & Tasgetiren, M. F. (2021). An Adaptive Iterated Greedy algorithm for distributed mixed

no-idle permutation flowshop scheduling problems. Swarm and Evolutionary Computation (Vol. 63).

568

Li, Y.-Z., Pan, Q.-K., Gao, K.-Z., Tasgetiren, M. F., Zhang, B., & Li, J.-Q. (2021c). A green scheduling algorithm for the distributed
flowshop problem. Applied Soft Computing, 109.

Li, Y.-Z., Pan, Q.-K., He, X., Sang, H.-Y., Gao, K.-Z., & Jing, X.-L. (2022). The distributed flowshop scheduling problem with
delivery dates and cumulative payoffs. Computers & Industrial Engineering, 165.

Li, Y.-Z., Pan, Q.-K., Ruiz, R., & Sang, H.-Y. (2022). A referenced iterated greedy algorithm for the distributed assembly mixed no-
idle permutation flowshop scheduling problem with the total tardiness criterion. Knowledge-Based Systems (Vol. 239).

Li, Y.-Z., Gao, K., Meng, L., Jing, X.-L., & Zhang, B. (2023). Heuristics and metaheuristics to minimize makespan for flowshop
with peak power consumption constraints, International Journal of Industrial Engineering Computations, 14(2), 221-238.

Lu, C., Liu, Q., Zhang, B., & Yin, L. (2022). A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of
distributed hybrid flowshop. Expert Systems with Applications, 204.

Meng, L., Gao, K., Ren, Y., Zhang, B., Sang, H., & Chaoyong, Z. (2022). Novel MILP and CP models for distributed hybrid flowshop
scheduling problem with sequence-dependent setup times. Swarm and Evolutionary Computation, 71.

Meng, L., Zhang, C., Ren, Y., Zhang, B., & Lv, C. (2020). Mixed-integer linear programming and constraint programming
formulations for solving distributed flexible job shop scheduling problem. Computers & Industrial Engineering, 142.

Miyata, H. H., & Nagano, M. S. (2021). Optimizing distributed no-wait flow shop scheduling problem with setup times and
maintenance operations via iterated greedy algorithm. Journal of Manufacturing Systems, 61, 592-612.

Naderi, B., & Ruiz, R. (2010). The distributed permutation flowshop scheduling problem. Computers & Operations Research, 37(4),
754-768.

Pan, Q.-K., Fatih Tasgetiren, M., & Liang, Y.-C. (2008). A discrete particle swarm optimization algorithm for the no-wait flowshop
scheduling problem. Computers & Operations Research, 35(9), 2807-2839.

Pan, Q.-K., Gao, L., Wang, L., Liang, J., & Li, X.-Y. (2019). Effective heuristics and metaheuristics to minimize total flowtime for
the distributed permutation flowshop problem. Expert Systems with Applications, 124, 309-324.

Pan, Q.-K., Gao, L., Xin-Yu, L., & Jose, F. M. (2019). Effective constructive heuristics and meta-heuristics for the distributed
assembly permutation flowshop scheduling problem. Applied Soft Computing, 81.

Pan, Q.-K., & Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling
problem. Omega, 44, 41-50.

Pan, Q.-K., Wang, L., Tasgetiren, M. F., & Zhao, B.-H. (2007). A hybrid discrete particle swarm optimization algorithm for the no-
wait flow shop scheduling problem with makespan criterion. The International Journal of Advanced Manufacturing Technology,
38(3-4), 337-347.

Pan, Q.-K., ZHAO, B.-H., & Qu, Y.-g. (2008). Heuristics for the No-Wait Flow Shop Problem with Makespan Criterion. Chinese
Journal of Computers, 31(7), 1147-1154.

Pei, Z., Zhang, X., Zheng, L., & Wan, M. (2019). A column generation-based approach for proportionate flexible two-stage no-wait
job shop scheduling. International Journal of Production Research, 58(2), 487-508.

RöCK, H. (1984). The Three-Machine No-Wait Flow Shop Is NP-Complete. Journal of the ACM, 31(2), 336-345.
Rossi, F. L., & Nagano, M. S. (2021). Heuristics and iterated greedy algorithms for the distributed mixed no-idle flowshop with

sequence-dependent setup times. Computers & Industrial Engineering, 157.
Ruiz, R., Pan, Q.-K., & Naderi, B. (2019). Iterated Greedy methods for the distributed permutation flowshop scheduling problem.

Omega, 83, 213-222.
Shao, W., Shao, Z., & Pi, D. (2021). Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem.

Computers & Operations Research, 136.
Stützle, T. Applying Iterated Local Search to the Permutation Flow Shop Problem. Technical Report AIDA-98-04, FG Itellektik, FB

Informatik, TU Darmstadt.
TAILLARD. (1990). Some efficient heuristic methods for the flow shop sequencing problem. European Journal of Operational

Research, 47(1), 65–74.
Trietsch, D., & Baker, K. R. (1993). Basic Techniques for Lot Streaming. Operations Research, 41(6), 1065-1076.
Wang, J., Wang, L., & Shen, J. (2016). A Hybrid Discrete Cuckoo Search for Distributed Permutation Flowshop Scheduling Problem.

IEEE Congress on Evolutionary Computation, 2240-2246.
Wang, S.-y., Wang, L., Liu, M., & Xu, Y. (2013). An effective estimation of distribution algorithm for solving the distributed

permutation flow-shop scheduling problem. International Journal of Production Economics, 145(1), 387-396.
Wang, Y., Li, X., Ruiz, R., & Sui, S. (2018). An Iterated Greedy Heuristic for Mixed No-Wait Flowshop Problems. IEEE Trans

Cybern, 48(5), 1553-1566.
Yang, S., Wang, J., & Xu, Z. (2022). Real-time scheduling for distributed permutation flowshops with dynamic job arrivals using

deep reinforcement learning. Advanced Engineering Informatics, 54.
Ye, H., Li, W., & Abedini, A. (2017). An improved heuristic for no-wait flow shop to minimize makespan. Journal of Manufacturing

Systems, 44, 273-279.
Zhang, B., Pan, Q.-K., Gao, L., Meng, L.-L., Li, X.-Y., & Peng, K.-K. (2020). A Three-Stage Multiobjective Approach Based on

Decomposition for an Energy-Efficient Hybrid Flow Shop Scheduling Problem. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 50(12), 4984-4999.

© 2024 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

