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 As the expert gear of the emergency rescue system, drones are frequently utilized to distribute 
supplies following a calamity. The cost and effectiveness of rescue efforts as well as equitable 
distribution should be taken into account when allocating emergency supplies to disaster-affected 
areas. This work explores the emergency material allocation problem for truck-drone joint 
transportation with dynamic energy restrictions based on taking the fairness of emergency material 
allocation into consideration. In order to guarantee the equitable distribution of materials, the 
psychological stress experienced by the victims at each catastrophe site is measured using the 
relative deprivation cost. An adaptive large-scale neighborhood search method serves as the 
foundation for the creation of a two-stage heuristic algorithm, which reduces the overall cost of the 
system. The integer programming model MIP is built for this purpose. The research findings can 
serve as a useful guide for developing a just and effective emergency drone rescue system, and the 
testing results demonstrate the viability and effectiveness of the two-stage heuristic algorithm. 
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1. Introduction 
 

Given the unique circumstances, such as the post-disaster traffic impediment or the isolation of the disaster-hit site, the truck 
transport alone cannot effectively complete the material distribution task at the demand point following an earthquake, flood, 
or any other natural disaster or public health incident. As a result, a post-disaster emergency logistics system based on truck 
travel has formed, supplemented by air transport. Drones, which are specialized equipment used in emergency rescue 
operations, depend on ground control systems to plan routes that would enable them to fly steadily and precisely inside a 
limited area, allowing them to deliver emergency supplies to victims at the catastrophe site (Poikonen & Campbell, 2021). 
The distribution of emergency supplies in disaster areas is a vital component of humanitarian relief efforts. While supplies are 
being distributed, victims of the psychological trauma brought on by the incident cannot be overlooked (Holguín-Veras et al., 
2013). Ethical and efficient decision-making regarding the distribution of supplies can help lessen the suffering of disaster 
victims (Gutjahr & Nolz, 2016). Based on this, this paper will investigate how to set up a truck-drone joint transport emergency 
material deployment program that works well in the post-disaster emergency logistics scenario. The goal is to ensure that 
victims of the disaster receive emergency supplies while also having their psychological trauma fairly mitigated. 
 
Drones have started to become a vital component of the commercial logistics system in recent years. "Amazon Prime Air," 
the company's first commercial drone delivery initiative, was unveiled by Amazon in 2013 (D’Andrea, 2014). Businesses 
have introduced drone delivery business strategies in the ten years that have passed. The American professor Wohlsen (2014) 
notes that parcel transportation could become more affordable and faster than ever before if vehicles and drones are paired for 
distribution. Additionally, using a truck and drone combination to distribute non-contact materials in the wake of natural 
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disasters or public health emergencies has proven to be a successful strategy for helping the government and nonprofits meet 
package delivery demands while addressing the difficulties posed by disasters. Drones can provide non-contact, differential 
distribution in this emergency by replacing rescuers; this has surely expedited the development of drone distribution inside 
the emergency logistics system (Chowdhury et al.,2021). According to the information that is currently available, trucks and 
drones work well together, and each has advantages of its own. The truck has moderate speed, a big weight, muscular 
endurance, and so on. In contrast, the drone has high speed, a tiny load, and poor endurance. Since they are not constrained 
by traffic congestion or road networks, drones typically travel at a higher speed than trucks. Nevertheless, the drones can only 
transport one or more goods at a time due to their very small payload capacities. The fact that they depend on comparatively 
tiny battery-powered aircraft, which have a shorter range than fuel- or high-capacity battery-powered vehicles, is more 
significant. Given the truck and drone's complementary qualities, integrating drones into the "last mile" distribution network 
is probably going to result in more synergy. When both are used together, operating time can be greatly shortened, and 
distribution efficiency is raised. 
 
Early on in natural disasters, there has been a marked increase in the need for emergency supplies at all disaster-affected 
locations. Victims' psychological trauma also increases, albeit to varying degrees, during the process of distributing emergency 
supplies by drone. In a systematic study of the theory of relative deprivation in humanitarian relief, José Holguín-Veras et al. 
(2012) noted that when deciding how to deploy emergency response materials, it is important to consider the victims' relative 
sense of deprivation at each disaster site. They also used a tool called the “Deprivation Cost” to calculate the psychological 
trauma that victims at each disaster site would suffer because of not receiving emergency response materials in a timely 
manner. One important factor in reducing the pain of catastrophe victims is the equitable distribution of emergency supplies. 
Further investigation by Gutjahr and Fischer (2018) shown that injustice frequently occurs because of the relentless pursuit 
of “minimization of the cost of deprivation” in disaster-affected areas. Zhu et al. (2019) propose “Relative Deprivation Cost” 
as a means of measuring the psychological trauma that victims of disasters experience at different disaster-affected points 
because of not receiving emergency materials in a timely manner. They argue that the principle of fairness in humanitarian 
relief should be reflected in the decision-making process by lowering the total value of the relative deprivation cost in the 
disaster-affected areas. In conclusion, the current state of truck-drone joint transportation makes it relatively uncommon to 
take into account the fair allocation of emergency supplies path planning problem. For this reason, this paper studied the issue 
of fair allocation of emergency supplies in the truck-drone joint transportation by stages in conjunction with the drone energy 
consumption estimation model. The present study differs in that it: 1) examines the use of truck transport drones and drones 
carrying multiple emergency supplies to achieve multiple distribution disaster sites; 2) constructs a mixed integer 
programming model (MIP) taking into account the constraints of truck capacity, drone energy consumption, and load; and 3) 
designs a two-stage heuristic algorithm, TD-TSH, based on large-scale neighborhood search algorithm to solve the 
combinatorial optimization problem. 
 
2. Related Works 
 
This study mainly involves the following two different dimensions that is, the truck-drone combined transportation 
optimization and the decision-making objective of post-disaster emergency logistics path optimization. 
 
2.1 Truck-Drone Combined Transportation Optimization 
 
It is necessary to consider the load capacity constraints of drones when trucks and drones jointly undertake the task of 
emergency material distribution. Murray et al. (2015) studied the cooperative distribution of single drone and single truck and 
constructed the FSTSP (Flying Sidekick TSP) model and PDSTSP (Parallel Drum Scheduling TSP) model based on the TSP 
(Traveling Salesman Problem) model. The load level of the drone plays an essential role in both models. Agatz et al. (2018) 
proposed the TSPD (Traveling Salesman Problem with Drones) model based on FSTSP; a fundamental assumption is that 
drones can be released or recovered by trucks at the exact location. Wang and Sheu (2019) extended the model based on the 
research of Murry and constructed the path planning model of multi-drone and multi-truck cooperative distribution as VRPD 
(Vehicle Routing Problem with Drones) model. Given the specific number of drones and the speed of drones, the vital 
influence of drone load capacity on flight path decision-making was studied. 
 
As drones are usually powered by batteries, the endurance limit of drones is often considered when they undertake the task of 
emergency material distribution. Dorling et al. (2016) put forward the drone energy consumption estimation model through 
the experimental method. The dynamic load data of drones and their lifetime are linked together. The impact of the weight of 
the drone battery, the weight of loaded goods, and the number of drones on the total distribution cost and the total distribution 
time are studied. Jeong et al. (2019) proposed the FSTSP-ECNZ (FSTSP that implements energy summation and no-fly zone) 
model based on it. The influence of no-fly zone on drone distribution path is further studied while considering the influence 
of drone load weight on drone energy consumption. 
 
For the cooperative problem of single-truck and multi-drones, the relevant research can be traced back to the truck-drone path 
problem with relay location introduced by Mourelo Ferrandez et al. (2016). The dynamic truck-drone distribution network 
was transformed into a static relay location problem without fixed cost, and the problem was solved by K-means clustering 
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and genetic algorithm. One fundamental assumption is that trucks wait in place until the fleet returns to the following relay 
site after releasing the drone fleet at one relay site. Under the same assumptions, Chang and Lee (2018) proposed a non-linear 
programming model. Relay location is selected based on K-Means clustering, and it is verified that adding shift weight is 
effective in generating the truck path with drones. Similarly, Moshref-Javadi et al. (2020) introduced the Multi-trip Traveling 
Repairman Problem with Drones (MTRPD) to minimize the customer waiting time, Vu et al. (2022) proposed the two-echelon 
routing problem with trucks and drones (2ER-TD) to minimize the delivery operation time of trucks and drones. Based on the 
above research, this paper studies the coordination problem of single-truck and multi-drone, adding the dynamic energy 
consumption constraints of drones and designing more realistic conditions of the truck-drone joint transport of emergency 
supplies allocation problem. 
 
2.2 Decision-making Objective of Post-disaster Emergency Logistics Path Optimization 
 
Economic cost reduction or distribution distance cost reduction are typically the main goals of the conventional decision-
making processes employed in commercial logistics path optimization. However, path decision-making frequently needs to 
take rescue efficiency, rescue efficiency, and whether the rescue is fair into consideration. This is because the relevant literature 
on the disaster emergency logistics rescue path decision is based on the humanitarian aspects of disaster relief (Huang, 2012). 
Rescue efficiency is a conventional goal of decision-making, mostly determined by the financial implications of the rescue. 
For instance, the effectiveness of rescue operations is frequently assessed using the cost of resource allocation and the cost of 
road transport (Rodríguez-Espíndola et al., 2018; Moreno et al., 2020), which is quite like the general commercial logistics 
industry's performance evaluation index. 
 
Rescue efficiency, which primarily includes the post-disaster rescue response time, the viability of the rescue plan, and the 
decrease in casualties in the disaster area, is a crucial criterion to assess the effectiveness or impact of path optimization. To 
assess the benefits of the medical vehicle relief approach, Xiang and Zhuang (2016) suggested lowering both the overall 
waiting time and the anticipated death rate of the catastrophe victims. As a shared goal of the rescue decision, Sun et al. (2021) 
focused on decreasing the severity of minor and severe post-disaster injuries and minimizing the total system expenses of the 
rescue operation. The “cost of deprivation” idea was first presented by Pérez-Rodríguez and Holguín-Veras (2016) in order to 
measure the psychological and physical harm that people experience as a result of a lack of resources or assistance. Social 
cost minimization—that is, the cost of logistics, the cost of deprivation, and other costs—is taken into consideration while 
making decisions in the emergency that follows a tragedy. This approach may be more effective for path optimization. Based 
on the notion of deprivation cost, Wang et al. (2017) proposed the “deprivation level” and used a digital evaluation scale to 
estimate the function of the deprivation level. A typical S-type logistic growth function is suggested as an expression for the 
deprivation level based on the examination of the data provided by the interviewees, which can be integrated into the 
humanitarian logistic optimization model to consider human suffering better. 
 
In order to maximize the post-disaster emergency logistics path, it is becoming increasingly important to prioritize equitable 
rescue. In order to ensure that catastrophe victims receive equal treatment with other individuals, the evaluation of the fairness 
of rescue decision-making should center on whether emergency resources can be used or allocated in a balanced way 
throughout the rescue operations (Yu et al., 2018, 2019). The current study measures fairness from several aspects using the 
minimum and maximum fair value, numerical proportional fairness, absolute deprivation, Gini index, and other various 
quantitative methodologies (Nair et al., 2018; McCoy & Lee, 2014). According to Balcik and Beamon (2008), one of the most 
important decision objectives for catastrophe emergency path optimization is to minimize unmet demand. Najafi et al. (2013) 
proposed that because the material satisfaction rate is easy to quantify, it can also be used to measure the fair. Kilic et al. (2014) 
measured the fairness of treatment standards by reflecting the degree of health inequalities between various service objects in 
the priority of emergency path options. In conclusion, the pertinent literature on post-disaster emergency logistics path 
optimization frequently ignores the severity of the victims' poverty, their suffering, and their negative emotions in favor of 
quantitative numerical indicators or economic cost as a means of gauging fairness. A key indicator of justice is the 
psychological stress victims experience as they wait for assistance. At the same time, studies have shown that minimizing the 
cost of deprivation alone will lead to great inequality (Gutjahr & Fischer, 2018). These studies provide a new perspective that 
considers the extent of trauma experienced by victims and further measures the relationship between efficiency, effectiveness, 
and fairness. 
 
3. Problem Description and Mathematical model 
 
Considering the truck capacity, drone load, endurance, and the fairness of the emergency material allocation scheme, this 
study uses the single truck-multi drone combined transport mode; the specific distribution process is shown in Fig. 1. The 
truck leaves the distribution center, traverses all stops, and eventually returns to the distribution center. When the truck reaches 
a parking point, the drones are released to carry out the emergency material distribution work to the disaster-affected sites 
around. After the drone completes the distribution task, the emergency material is recovered into the truck, the battery is 
changed, and the truck moves to the next parking point to continue the emergency material distribution work until the 
distribution work of all the disaster-affected sites is completed. 
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Fig. 1. Illustration of the Combined Transportation Process 

 
3.1 Parameter Definition and Model Assumptions 
 
Note that the set of all disaster sites in the affected area is 𝑁 ൌ ሼ1, 2,൉൉൉,𝑛ሽ, the two-dimensional coordinate of the disaster 
sites is (𝐴௭,𝐵௭ሻ, ∀𝑧 ∈ 𝑁, and the number of disaster sites is 𝑛. The cluster centers, the truck stops, are grouped into 𝐽 ൌ ሼ𝑛 ൅1,𝑛 ൅ 2,൉൉൉,𝑛 ൅ 𝑚ሽ, and the number of the cluster centers is 𝑚. The disaster sites and cluster centers are grouped as 𝑉 ൌ 𝑁 ∪𝐽 ൌ ሼ1,2,൉൉൉,𝑛 ൅ 1,𝑛 ൅ 2,൉൉൉,𝑛 ൅𝑚ሽ, with a total of 𝑛 ൅ 𝑚 nodes. The distribution center is denoted as 𝑂, then the distribution 
center and the cluster centers are denoted as set 𝐽ᇱ ൌ 𝐽 ∪ ሼ𝑂ሽ. Note that emergency materials collection is 𝐷 ൌ ሼ1,2,൉൉൉, 𝑠ሽ, and 
the unit weight of emergency material 𝑑  is 𝑔ௗ ,∀𝑑𝜖𝐷 . The demand for emergency material 𝑑  at disaster site 𝑖  is 𝑄௜ௗ ,∀𝑖 ∈𝑁,𝑑 ∈ 𝐷. The distribution of emergency material 𝑑 to disaster site 𝑖 is 𝑞௜ௗ , 𝑞௜ௗ ≤ 𝑄௜ௗ ,∀𝑖 ∈ 𝑁,𝑑 ∈ 𝐷. The total emergency 
material assigned to disaster site 𝑖 is 𝑤௜ ,𝑤௜ ൌ ∑ 𝑔ௗ𝑞௜ௗௗ∈஽ ,∀𝑖 ∈ 𝑁. The unit path cost of the truck is 𝐶௧௥௨௖௞. The unit path cost 
of the drone is 𝐶ௗ௥௢௡௘, and the maximum safe load of the drone is 𝑊. The launch cost incurred after one drone is put into 
service is L, and the reception cost after one drone is put into service is R. The battery capacity of the drone is 𝐸, and the 
battery energy consumption parameter is 𝜂. Set a maximum positive number to M. The decision variables are as follows: 
Decision variables (𝑎௭, 𝑏௭ሻ, ∀𝑧 ∈ 𝐽; 
 
Decision variables 
 𝑥௜௝௠ ൌ ൜1, 𝑡ℎ𝑒 𝑑𝑟𝑜𝑛𝑒 𝑡𝑎𝑘𝑒𝑠 𝑜𝑓𝑓 𝑓𝑟𝑜𝑚 𝑚 𝑎𝑛𝑑 𝑝𝑎𝑠𝑠𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑖 𝑡𝑜 𝑗,∀𝑖, 𝑗 ∈ 𝑉,𝑚 ∈ 𝐽0,𝑜𝑡ℎ𝑒𝑟𝑠 ; 
 

Decision variables 𝑦௜௝ ൌ ൜1, 𝑡ℎ𝑒 𝑡𝑟𝑢𝑐𝑘 𝑔𝑜𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑖 𝑡𝑜 𝑗,∀𝑖, 𝑗 ∈ 𝐽ᇱ0, 𝑜𝑡ℎ𝑒𝑟𝑠 ; 

 
Auxiliary decision variables 𝑓௜ ൐ 0,∀𝑖 ∈ 𝐽 , avoiding truck sub-loop. Auxiliary decision variables 𝑡௜௝௧௥௨௖௞ ≥ 0,∀𝑖, 𝑗 ∈ 𝐽ᇱ 
present the time required for the truck to travel from 𝑖 to 𝑗. Auxiliary decision variables 𝑠௜௧௥௨௖௞ ≥ 0,∀𝑖, 𝑗 ∈ 𝐽ᇱ present the time 
point of truck arrives 𝑖. Auxiliary decision variables 𝑢௜௠,∀𝑖 ∈ 𝑉,𝑚 ∈ 𝐽, avoiding drone sub-loop. Auxiliary decision variables 𝑤௜௝ ≥ 0,∀𝑖, 𝑗 ∈ 𝑉,𝑚 ∈ 𝐽 present the residual load of the drone from 𝑖 to 𝑗. Auxiliary decision variables 𝑡௜௝ௗ௥௢௡௘ ≥ 0,∀𝑖, 𝑗 ∈ 𝑉 
present the time required for drone from 𝑖 to 𝑗.Auxiliary decision variable 𝑏௜௠ ൐ 0,∀𝑖 ∈ 𝑉,𝑚 ∈ 𝐽 represents the remaining 
battery capacity of the drone serving the disaster site 𝑖 after the truck arrives at cluster center 𝑚. Auxiliary decision variables 𝑠௜௠ௗ௥௢௡௘ ൐ 0,∀𝑖 ∈ 𝑉,𝑚 ∈ 𝐽 represent the time node when the drone arrives at the disaster site 𝑖 after the truck arrives at the 
cluster center 𝑚. Auxiliary decision variables 𝑇௠ ൐ 0,𝑚 ∈ 𝐽 represent the time node after the truck reaches the cluster center 𝑚. The research model assumes the following conditions: 1) the number of drones is limited due to the limited capacity of the 
truck, and all drones are homogeneous; 2) the emergency material demand of each disaster site is known and only served by 
one drone once; 3) the drones can bear the emergency material weight required by the disaster site, without overloading and 
unpacking; 4) the drones are launched and retrieved from the truck, and return to the truck after one distribution, and replace 
the back-up battery; 5) the drones are not considered the service time of the disaster site, and the drones fly at a stable speed, 
assuming fixed air and gravity fluid density; 6) the psychological trauma generated by the inequity phenomenon at each 
disaster site can be quantified by the economic loss (Pérez-Rodríguez & Holguín-Veras 2016). 
 
3.2 Mixed Integer Programming Model 
 
The energy consumption estimation model of drones is assumed to be a quasi-linear relationship function between power 𝑃 
and load 𝑤 (Jeong et al., 2019). An energy consumption estimation formula for drone emergency material delivery tasks in 
humanitarian rescue scenarios is constructed. The drone flight time is introduced, and then the power consumption of the 
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drone from the flight process 𝑒௜௝ is expressed as: 
 𝑒௜௝ = 𝑃൫𝑤௜௝௞൯ 𝑙௜௝ 𝑣⁄ = ൫𝛽଴ + 𝛽ଵ𝑤௜௝௞൯𝑙௜௝ 𝑉ௗ௥௢௡௘⁄  (1) 

Among them, 𝛽଴  and 𝛽ଵ  are the relevant parameters of power function after linearization, 𝑤௜௝௞  is the total weight of the 
remaining materials during the delivery of the drone 𝑘 from 𝑖 to 𝑗, 𝑙௜௝ is the distance between 𝑖 and 𝑗, 𝑉ௗ௥௢௡௘ is the drone's 
stable flight speed. When the drone battery capacity 𝐸 is fixed, the maximum flight distance of the drone 𝑅௫ can be determined 
by the formula above, which can be expressed as: 
 𝑅௫ = 𝜂𝐸 ∗ 𝑉ௗ௥௢௡௘2(𝛽଴ + 𝛽ଵ ∗ 𝑊) (2) 

 
Among them, 𝜂 is the drone battery energy consumption parameters, and 𝐸 is the drone battery capacity. To approximately 
describe the psychological trauma caused by the lack of emergency supplies in each disaster site, referring to the linearization 
processing of the deprivation cost function by Biswal et al. (2018), then the deprivation cost 𝐷𝐶௜ with penalty cost 𝜔 caused 
by disaster sites 𝑖 can be expressed as: 
 𝐷𝐶௜ = ෍෍[𝜔𝑞௜ௗ𝑠௜௠ௗ௥௢௡௘ + 𝜔(𝑄௜ௗ − 𝑞௜ௗ) ∗ 𝑇௠]௠∈௃ௗ∈஽ ,∀𝑖 ∈ 𝑁 (3) 

 
Among them,  𝑠௜௞ indicates the time point after the drone 𝑘 reaches disaster site 𝑖, and 𝑇௠is the complete process time of the 
distribution task. The deprivation cost of disaster sites is composed of two parts: one is the cost of psychological trauma 
suffered by the disaster victims from waiting until receiving the emergency materials 𝜔𝑞௜ௗ𝑠௜௠ௗ௥௢௡௘, and the other is the cost of 
psychological trauma accumulated by the disaster victims who still do not receive the required emergency materials after the 
entire process of distribution task 𝜔(𝑄௜ௗ − 𝑞௜ௗ) ∗ 𝑇௠. To reflect the fairness principle of humanitarian relief, the "relative 
deprivation cost" is proposed to measure the degree of psychological trauma differentiation of the victims in different disaster-
affected sites due to the failure to receive emergency response materials in time, and it is used as the difference index to 
measure the fairness of distribution programs. Therefore, the relative deprivation cost 𝑅𝐷𝐶௜ of the disaster-affected site 𝑖 can 
be expressed as: 𝑅𝐷𝐶௜ = 𝐷𝐶௜ − min(𝐷𝐶௜) ,∀𝑖𝜖𝑁 (4) 

The objective function is as follows: 
 𝑚𝑖𝑛 ቐ 𝐶௧௥௨௖௞෍෍ 𝑙௜௝௝∈௃ᇲ௜∈௃ᇲ 𝑦௜௝ + 𝐶ௗ௥௢௡௘෍෍෍ 𝑙௜௝𝑥௜௝௠௠∈௃௝∈௏௜∈௏ + (𝐿 + 𝑅)෍෍෍𝑥௜௝௠௠∈௃௝∈ே௜∈௃ + ෍𝑅𝐷𝐶௜௜∈ே ቑ (5) 

 
The total cost in Eq. (5) includes the truck path cost, the drone path cost, the fixed cost of the drone launch and reception, and 
the relative deprivation cost to measure fairness. The constraints of the model are as follows: The formula (6) represents the 
relative deprivation cost of each disaster site, which measures the fair difference. The formula (7) represents the deprivation 
cost of each disaster site disaster victim, which is caused by not receiving emergency supplies. 
 𝑅𝐷𝐶௜ = 𝐷𝐶௜ − min(𝐷𝐶௜) ,∀𝑖𝜖𝑁 (6) 𝐷𝐶௜ = ෍෍[𝜔𝑞௜ௗ𝑠௜௠ௗ௥௢௡௘ + 𝜔(𝑄௜ௗ − 𝑞௜ௗ) ∗ 𝑇௠]௠∈௃ௗ∈஽ ,∀𝑖 ∈ 𝑁 (7) 

 
Formula (8) indicates that the round-trip distance from any disaster site to a truck stop is in the flight range of a drone. 
 𝑙௜௠ = ඥ(𝐴௜ − 𝑎௭)ଶ + (𝐵௜ − 𝑏௭)ଶ ≤ 𝑅௫ ,∀𝑧 ∈ 𝐽,∃𝑖 ∈ 𝑁 (8) 
 

The formula (9-10) indicates that any truck stop can be divided into paths: the truck arrives at each stop once and leaves after 
the drone completes the task. The formula (11) guarantees that the truck must return to the distribution center to avoid 
generating sub-circuits. The formula (12) indicates that the truck capacity is limited and limits the maximum number of drones. 
 ෍𝑦௜௝௜∈௃ᇲ = 1,∀𝑖 ∈ 𝐽ᇱ, 𝑖 ≠ 𝑗 (9) 



  

 

462෍𝑦௜௝௝∈௃ᇲ = 1,∀𝑖 ∈ 𝐽ᇱ, 𝑖 ≠ 𝑗 (10) 𝑓௜ − 𝑓௝ + (𝑛 + 2) ∗ 𝑦௜௝ ≤ 𝑛 + 1,∀𝑖, 𝑗 ∈ 𝐽 (11) ෍𝑥௠௝௠௝∈ே ≤ 𝐾 (12) 

 
Formula (13-14) indicates that each disaster site is evenly distributed to the path: the disaster site is served once by the drone, 
and the drone must leave after serving. Formula (15) ensures that the path flow of the drone is balanced: each disaster site has 
access to the other. Formula (16-17) ensures that each disaster site only belongs to a truck stop point service and excludes 
other situations. Formula (18-19) ensures that the weight of the drone is reduced during the flight process while avoiding the 
drone sub-loop. 
 ෍෍𝑥௜௝௞௝∈௏௠∈௃ = 1,∀𝑖 ∈ 𝑁 (13) ෍෍𝑥௜௝௞௜∈௏௠∈௃ = 1,∀𝑗 ∈ 𝑁 (14) ෍𝑥௜௝௠௜∈௏ = ෍𝑥௝௜௠௜∈௏ ,∀𝑗 ∈ 𝑉,𝑚 ∈ 𝐽 (15) 𝑥௝௜௠ = 0,∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝐽,𝑚 ∈ 𝐽, 𝑗 ≠ 𝑚 (16) 𝑥௜௝௠ = 0,∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝐽,𝑚 ∈ 𝐽, 𝑗 ≠ 𝑚 (17) 

𝑢௝௠ ≥ 𝑢௜௠ + 𝑤௝ −𝑀൫1 − 𝑥௜௝௠൯,∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁,𝑚 ∈ 𝐽 (18) 

𝑤௜ ≤ 𝑢௜௠ ≤ 𝑊,∀𝑖 ∈ 𝑉,𝑚 ∈ 𝐽 (19) 

The formula (20-21) represents the dynamic counterweight constraint during the drone distribution process, and the formula 
(22-24) represents the drone battery capacity constraint. 
 𝑤௜௝ ≤ 𝑊 ∗෍𝑥௜௝௠௠∈௃ ,∀𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗 (20) ෍𝑤௝௜௝∈௏ −෍𝑤௜௝௝∈௏ = 𝑤௜ ,∀𝑖 ∈ 𝑁 (21) 

0 < 𝑏௜௠ ≤ 𝜂𝐸,∀𝑖 ∈ 𝑉,𝑚 ∈ 𝐽 (22) 𝑏௠௠ = 𝜂𝐸 ∗෍𝑥௠௝௠,∀𝑚 ∈ 𝐽௝∈ே  (23) 

𝑏௝௠ ≥ 𝑏௜௠ − 𝑒௜௝ − 𝜂𝐸൫1 − 𝑥௜௝௠൯,∀𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗,𝑚 ∈ 𝐽 (24) 

 
The formula (25-28) indicates that the truck arrives at each truck stop in sequence constraints. 
 𝑠ை௧௥௨௖௞ = 𝑇௦௧௔௥௧ (25) 𝑡௜௝௧௥௨௖௞ = (𝑙௜௝ 𝑉௧௥௨௖௞) ∗⁄ 𝑦௜௝ ,∀𝑖, 𝑗 ∈ 𝐽ᇱ (26) 

𝑠௝௧௥௨௖௞ ≥ 𝑠௠௧௥௨௖௞ + 𝑡௠௝௧௥௨௖௞ − 𝑀൫1 − 𝑦௠௝൯,∀𝑚 ∈ 𝐽\{𝑛 + 𝑚}, 𝑗 ∈ 𝐽 (27) 

𝑠௝௧௥௨௖௞ ≤ 𝑠௠௧௥௨௖௞ + 𝑡௠௝௧௥௨௖௞ + 𝑀൫1 − 𝑦௠௝൯,∀𝑚 ∈ 𝐽\{𝑛 + 𝑚}, 𝑗 ∈ 𝐽 (28) 

 
The formula (29-31) represents the time sequence constraints of the drone reaching the disaster site. 
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𝑠௝௠ௗ௥௢௡௘ ≥ 𝑠௜௠ௗ௥௢௡௘ + 𝑡௜௝ௗ௥௢௡௘ − 𝑀൫1 − 𝑥௜௝௠൯,∀𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗,𝑚 ∈ 𝐽 (31) 

The formula (32-37) represents the decision variables of the model. (𝑎௭,𝑏௭), ∀𝑧 ∈ 𝐽 (32) 

𝑇௠ = 𝑚𝑎𝑥൫𝑠௜௠ௗ௥௢௡௘൯ ൐ 0 ,∀𝑖 ∈ 𝑁,𝑚 ∈ 𝐽 (33) 

𝑓௜ ൐ 0,∀𝑖 ∈ 𝐽; 𝑠௜௧௥௨௖௞ ≥ 0,∀𝑖 ∈ 𝐽ᇱ (34) 𝑦௜௝ ∈ {0,1}, 𝑡௜௝௧௥௨௖௞ ≥ 0,∀𝑖, 𝑗 ∈ 𝐽ᇱ (35) 𝑥௜௝௠ ∈ {0,1},𝑤௜௝ ≥ 0, 𝑡௜௝ௗ௥௢௡௘ ≥ 0,∀𝑖, 𝑗 ∈ 𝑉,𝑚 ∈ 𝐽 (36) 

𝑢௜௠ ≥ 0, 𝑏௜௠ ൐ 0, 𝑠௜௠ ൐ 0,∀𝑖 ∈ 𝑉,𝑚 ∈ 𝐽 (37) 

 
3.3 Double-Level Programming Mathematical Model 
 
Benders Decomposition was proposed by BnnoBRs (1962) and used to solve large-scale mixed integer programming 
problems. The basic idea is to decompose a large-scale problem into a central problem and sub-problem by fixing the value 
of complicating variables and adding optimal cuts or feasible cuts to the main problem through the sub-problem (Poojari & 
Beasley, 2009; Alfandari et al., 2022), the main problem and sub-problem, respectively, and finally achieve the convergence 
of the solution. The mixed integer programming model of this problem is analyzed. It is found that the problem can be 
transformed into a double-level programming problem when the truck stops (𝑎௭, 𝑏௭) is fixed. The upper-level problem is a 
location-truck routing problem (LTRP), which determines the locations of the stops that the trucks need to traverse and the 
optimal traversal routes. The lower-level problem is a multi-depot drone routing problem (MDDRP), which determines the 
optimal routes for drones to distribute goods from the stops to the disaster sites. The decision-making process of the problem 
is shown in Fig. 2. Fig. 2 (a) to Fig. 2 (b) is the location process of the truck stops. Fig. 2 (b) to Fig. 2 (c) is the decision-
making process of the truck optimal distribution path, which will determine the order of truck distribution: trucks from the 
distribution center traverse all the truck stops and finally return to the distribution center. When the truck stops (𝑎௭,𝑏௭) are 
fixed, the process is the decision-making process of the upper-level problem. Fig. 2 (c) to Fig. 2 (d) is the decision-making 
process of the drone dispatching and distribution; in this process, after the truck reaches a stop point, the drone is released to 
carry out the material distribution task at the disaster-affected site, and when all the drone distribution tasks are finished, the 
truck starts to go to the next stop point to continue the drone dispatching and material distribution work. When the truck stops (𝑎௭, 𝑏௭) are fixed, the process is the decision-making process of the lower-level problem. 
 

 
 

Fig. 2. Schematic diagram of the decision-making process 
 
The mathematical model of the upper-level problem LTRP is: 𝑚𝑖𝑛 ቐ 𝐶௧௥௨௖௞෍෍ 𝑙௜௝௝∈௃ᇲ௜∈௃ᇲ 𝑦௜௝ቑ (38) 

subject to: 
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(8) ~ (12); (25) ~ (28); (33) ~ (35)  

The mathematical model of the upper-level problem MDDRP is: 
 𝑚𝑖𝑛 ቐ෍෍෍𝑙௜௝𝑥௜௝௠௠∈௃௝∈௏௜∈௏ + (𝐿 + 𝑅)෍෍෍𝑥௜௝௠௠∈௃௝∈ே +௜∈௃ ෍𝑅𝐷𝐶௜௜∈ே ቑ (39) 

subject to: 

(6) ~ (7); (13) ~ (24); (29) ~ (31); (36) ~ (37)  

4. Two-Stage Heuristic 
 
To solve the truck-drone joint path optimization problem, a two-stage heuristic algorithm TD-TSH was developed, which was 
inspired by the bi-level programming model and combined with the Greedy algorithm with K-means (K-means GA) and the 
adaptive large neighborhood search (ALNS). In TD-TSH, K-means GA is used to solve LTRP, and ALNS is used to solve 
MDDRP. The solution to the problem includes the location of the truck stop, the route of the truck, and the distribution scheme 
of the drone. The TD-TSH designed in this paper is shown in Fig. 3.  
 

 
Fig. 3. Schematic diagram of TD-TSH 
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In the initial solution generation phase, following the characteristics of the solution, the K-means GA is used to solve the 
LTRP, adding heuristic rules based greedy strategy to solve the truck route. The ALNS is used to solve the MDDRP. In the 
neighborhood search improvement phase of searching for the optimal solution in the field of iterative optimization, a variety 
of destroy and repair operators based on the characteristics of the problem are used to explore the possible solution space. 
 
4.1 Initial Solution Generation 
 
4.1.1 K-Means GA For LTRP 
 
The K-Means GA mainly solves the location of truck stops and the optimal delivery route. K-Means GA mainly includes two 
modules: truck stop location strategy and optimal truck route strategy. 
 
Truck stop location strategy: (1) Pick up random 𝐾 points from the set of affected points 𝑁 = {1,2,···,𝑛} as the initial truck 
stop. The parameters 𝑘 are generated first through the "elbow method"; further adjustments are made through the indicator 𝑘 
to obtain a more appropriate 𝐾. 𝑅௫ presents the maximum allowable straight line round trip Euclidean distance between the 
disaster site and the cluster center. 
 
(2) Calculate the Euclidean distance from each disaster site to the initial truck stop in the set of disaster sites 𝑁 = {1,2,···,𝑛}, 
and assign it to the nearest cluster. Then, calculate the center of gravity of each cluster as a new truck stop and repartition 
which stop the disaster site belongs to. Repeat this process until the iterative results meet the termination conditions. 
Termination conditions: There is no redistribution of affected points to different truck stops, no change in truck stops, and 
least square error. 
 
Optimal truck route strategy: Through the above strategies, we can get the set of the distribution center, and the truck stops 𝐽ᇱ, 
calculate the distance matrix of all nodes in the set 𝐽ᇱ, generate a truck TSP path with minimum driving distance according to 
the greedy strategy, this TSP path from the distribution center, through all the truck stops, and finally back to the distribution 
center. 
 
4.1.2 ALNS For MDDRP 
 
The ALNS is mainly used to solve the optimal distribution scheme of drones. The path of the drone is encoded by real number 
coding. The 𝑛 affected points in the damaged area are designed as a set with 𝑛 numbers encoded. The random distribution 
order of the drone to each affected point is represented by a random arrangement from 1 to 𝑛 natural numbers. For all the 
disaster sites, the distribution scheme is a real number encoded path set; all the paths in the set will traverse all the disaster 
sites. 
 
(1) Split drone routes 
 
A TSP path is generated randomly to traverse all the affected points without considering the starting point, the recovery point, 
the load, and the energy consumption of the drone. For the generated TSP path, according to the greedy strategy, determine 
whether the accumulated weight of emergency supplies distributed by each disaster site meets the maximum load capacity of 
the drone. If the weight of the material distributed by the next disaster site exceeds the residual load capacity of the drone, a 
new path is split from the current disaster site position, the number of drones is increased, and the solution set 𝑆 containing 
several sub-paths of the drones is generated. 
 
(2) Select truck stop 
 
For each drone sub-path in the solution set 𝑆, according to the principle of "distance minimization", the closest truck stop 
point of the first disaster site in the ion path is selected as the drone's sending point and reclaiming point, and the solution set 𝑆 is updated. Then, all drone sub-paths can be assigned to truck stops. The solution set 𝑆 is analyzed to determine whether the 
number of drones needed exceeds the maximum capacity of the truck. If the number exceeds the maximum capacity of the 
truck, the operation is terminated in advance, and no solution is output. 
 
(3) Drone route validation 
 
For each drone sub-path in the solution set 𝑆, the dynamic load data of each path when the drone reaches each disaster site is 
calculated: the weight of the material distributed by each disaster site in the known path is respectively [𝑤ଵ,𝑤ଶ,𝑤ଷ, . . . ,𝑤௡], 
and the accumulated weight [𝑤௡ + 𝑤௡ିଵ + 𝑤௡ିଶ+. . . +𝑤ଵ,𝑤௡ + 𝑤௡ିଵ + 𝑤௡ିଶ+. . . +𝑤ଶ, . . . ,𝑤௡ + 𝑤௡ିଵ,𝑤௡]  of the 
emergency material carried by the drone when it reaches the current disaster site is obtained by adding them in reverse order, 
then the power consumption ∑ ∑ ൫𝛽଴ + 𝛽ଵ𝑤௜௝௞൯𝑙௜௝ 𝑣⁄ ∗ 𝑥௜௝௞௝∈௏௜∈௏   of each drone sub-path in the whole flight process is 
calculated. If the total energy consumption is less than the maximum releasable energy of the drone battery, the path is true, 
and if the total energy consumption is more than the maximum releasable energy of the drone battery, the path is not valid, 
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and an unfeasible path set 𝑅 is generated. Since the set 𝑅 is a subset of the solution set 𝑆, the subset 𝑅 of the solution set is 𝑆 
eliminated to obtain an updated set 𝑆ᇱ of feasible paths. 
 
(4) Create new drone routes 
 
For each path in the path set 𝑅, the “tail customer judgment method” is used to eliminate the tail disaster sites until the path 
to eliminate the disaster sites is in line with the maximum releasable energy requirements of the drone battery. For the 
eliminated disaster sites, several new paths are generated, and the path sets 𝑅 is updated based on the load and battery capacity 
consumption of drones. The path set 𝑅 is merged into the solution set 𝑆ᇱ, and the solution set 𝑆ᇱ is the initial feasible solution 
set of the ALNS. 
 
4.2 Neighborhood Search Improvement 
 
In this paper, we propose two kinds of destroy operators, three kinds of repair operators, and a drone path adjustment strategy 
to generate a feasible neighborhood solution. Given an integer 𝜃, firstly, a removal operator is randomly used to remove 𝜃 
damaged point codes from the current solution, and then a repair operator is randomly used to reinsert the removed damaged 
point codes to form a new drone distribution scheme. The path adjustment strategy is based on the dynamic energy 
consumption characteristics of the drone battery, and the adjustment of disaster sites in the path of the drone is introduced to 
optimize the neighborhood solution. Here are two destroy operators: 
 
(1) Random destroy operator 
Randomly select 𝜃 affected point codes to remove from the current solution. The random destroy operator is random, and its 
purpose is to expand the search range of the neighborhood solution and avoid getting into the local optimum. 𝜃 depends on 
the number of disaster sites in the current solution, where 𝜃 ∈ [1,𝑛]. 
 
(2) Worst destroy operator 
Given the current solution 𝑆 and a disaster site code 𝑛, 𝐹ᇱ is the target function value after removing the disaster site code 
from the current solution, 𝐹(𝑆) is the target function value of the current solution, ∆(𝑛, 𝑆) = 𝐹(𝑆) − 𝐹ᇱ. The destroy operator 
starts by removing a disaster site code until removing 𝜃 disaster site codes in turn. The basis of removal is that ∆(𝑛,𝑆) is the 
largest after removing the disaster site code 𝑛. 𝜃 depends on the number of disaster sites in the current solution, where 𝜃 ∈[1,𝑛]. After the destruction operator operation is completed, three repair operators are used to reinsert the deleted disaster site 
codes into the current solution for drone path reconstruction: 
 
(1) Random repair operator 
Randomly selected 𝜃 locations are inserted into the 𝜃 removed affected point codes. The random destroy operator is random, 
and its purpose is to expand the search range of the neighborhood solution and enrich the diversity of the solution. 
 
(2) Greedy repair operator  
According to the greedy strategy, for each disaster site code, let ∆𝐶(𝑛,𝑢) present the increased cost of the disaster site code 𝑛 inserted into the 𝑢௧௛ position of the original path and sequentially select the minor ∆𝐶(𝑛,𝑢) corresponding position to insert 
until all the disaster sites are inserted.  
 
(3) Regret repair operator 
Let 𝐶(𝑛) present the difference between the cost calculated after the disaster site code 𝑛 is inserted into the best insertion 
position and the cost calculated after the second-best insertion position is recorded. The larger 𝐶(𝑛) of affected point 𝑛, the 
greater the benefit of not inserting the optimal location at the current time and then inserting it into other locations. For each 
affected point code, select the most significant 𝐶(𝑛)  position in turn to insert until all the affected points are inserted. 
Compared with the greedy operator, this operator belongs to the global optimal insertion matching operator, which enhances 
the optimization ability of the algorithm, but it needs more search time. 
 
4.3 Path Adjustment of Drones 
 
For the solution set generated after the neighborhood search operation and the load change of the drone caused by the operation, 
execute the 𝐷𝑟𝑜𝑛𝑒 𝑟𝑜𝑢𝑡𝑒𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 and 𝐶𝑟𝑒𝑎𝑡𝑒 𝑛𝑒𝑤 𝑑𝑟𝑜𝑛𝑒 𝑟𝑜𝑢𝑡𝑒𝑠, adjust all the infeasible paths to feasible paths, and 
update the evolution solution set. 
 
4.4 Acceptance criteria for solutions 
 
In this study, the solution acceptance criterion of the simulated annealing algorithm is introduced into the iterative local search 
algorithm, which can accept the poor solution with a certain probability, thus enhancing the probability of jumping out of the 
local optimum and enhancing the ability to search for the optimal solution. The strategy is as follows: Suppose the local 
optimal solution 𝑆ᇱ of the current solution 𝑆 is obtained by large-scale neighborhood search; when 𝑆ᇱ is inferior, 𝑆ᇱ is accepted 
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with certain probability. 
 
5. Numerical Experiments and Analysis 
 
In order to verify the effectiveness of the TD-TSH, a series of numerical experiments were designed and tested, and the 
improved algorithm was based on Augerat (https://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances). The classical 
CVRP example set presented in this paper is suitable for the realistic situation of the research model in this paper: the 
emergency material type is set to 1, which has no heterogeneity; the material demand weight multiplied by 0.1 is suitable for 
the drone load, the unit takes 𝑘𝑔. The stable flight speed of the drone is set to 10 𝑘𝑚/ℎ, and the parameters in the energy 
consumption function and deprivation cost function are set to β଴ = 1.58, βଵ = 0.217 (Zhu et al., 2019), 𝜔 = 100 (Biswal et 
al., 2018). TD-TSH and ACO are implemented by Python programming, and the compiler is Python 3.9. The computer 
configuration is Intel Core i5-7200U, CPU 2.50GHz, 4GB memory. The MIP model is calculated by CPLEX12.8. 
 
5.1 Taguchi Analysis 
 
The parameters of the algorithm have a particular impact on the performance of the algorithm, and suitable parameters can 
improve the performance of the algorithm to a certain extent, so determining a reasonable value of the parameters is very 
important. Taguchi design is a parameter design method that originated from the field of quality management, with the aim to 
determine the optimal level of parameters with the least number of tests. With its superior reliability and reproducibility, 
simple analysis has been widely used (Soleimanin et al., 2017). Taguchi method mainly measures the parameters by the signal-
to-noise ratio; the more significant the signal-to-noise ratio, the more reasonable the corresponding parameter settings. TD-
TSH uses the objective function for minimizing the system cost, and the corresponding formula is: 
 𝑆𝑁 = −10 ∗ 𝑙𝑜𝑔ଵ଴(෍(𝐹௧ଶ௡

௧ୀଵ /𝑛)) (40) 

 
Here, 𝑛 is the execution times of the algorithm at the level of each parameter, 𝐹௧ is the response value, that is, the objective 
function value of the 𝑡௧௛ experiment. 
 
The parameters of TD-TSH are the maximum random destroy proportion 𝑟𝑑௠௔௫, the minimum random destroy proportion 𝑟𝑑௠௜௡, the maximum worst destroy quantity 𝑤𝑑௠௔௫, the minimum worst destroy quantity 𝑤𝑑௠௜௡, the regret destroy quantity 𝑟𝑒𝑔𝑟𝑒𝑡௡, the first score value 𝑟ଵ, the second score value 𝑟ଶ, the third score value 𝑟ଷ, the weight attenuation proportion 𝑟ℎ𝑜, 
the annealing rate 𝑝ℎ𝑖, the total number of inner and outer cycles 𝑒𝑝𝑜𝑐ℎ𝑠. According to the previous experience and the 
algorithm coding features set, 𝑟𝑑௠௔௫ is 0.2, and 𝑟𝑑௠௜௡ is 0.1, 𝑤𝑑௠௔௫ is 6, 𝑤𝑑௠௜௡ is 1, 𝑟𝑒𝑔𝑟𝑒𝑡௡ is 1, 𝑟ଵ is 30, 𝑟ଶ is 20, 𝑟ଷ is 10. The weight attenuation ratio, annealing rate, and the number of inner and outer loop iterations were optimized by the 
Taguchi analysis method to determine the optimal value. Considering orthogonal experimental design optimization, each 
parameter takes three levels: 𝑟ℎ𝑜 is taken from {0.3,0.4,0.5}, 𝑝ℎ𝑖 is taken from {0.7,0.8,0.9}, and 𝑒𝑝𝑜𝑐ℎ𝑠 taken from {10 ∗10, 15 ∗ 15, 20 ∗ 20}. Taguchi analysis was performed by using 𝐿9 type orthogonal test table, and five experiments were 
repeated for each level combination. Table 1 gives the results of the Taguchi orthogonal experiment, the total cost of each 
scheme, and the corresponding signal-to-noise ratio and mean. 
 
Table 1  
Taguchi Analysis 

 rho phi epoch Run-1 Run-2 Run-3 Run-4 Run-5 Avg. S/N 
1 0.3 0.7 100 3529.17 3657.62 3341.69 3465.31 3460.01 3490.76 -70.862 
2 0.3 0.8 400 3285.19 3345.95 3420.28 3347.22 3295.09 3338.746 -70.473 
3 0.3 0.9 225 3386.5 3488.37 3531.2 3354.17 3420.69 3436.186 -70.723 
4 0.4 0.7 400 3451.6 3324.67 3325.66 3276.57 3319.92 3339.684 -70.475 
5 0.4 0.8 225 3256.44 3442.69 3412.56 3343.47 3466.68 3384.368 -70.592 
6 0.4 0.9 100 3496.51 3734.65 3623.57 3757.57 3501.78 3622.816 -71.185 
7 0.5 0.7 225 3380.38 3345.13 3405.36 3287.74 3461.11 3375.944 -70.569 
8 0.5 0.8 100 3415.09 3533.66 3585.82 3471.56 3590.78 3519.382 -70.931 
9 0.5 0.9 400 3339.44 3333.12 3473.22 3333.65 3368.84 3369.654 -70.553 

 
The figure below shows the main effect graphs of the average signal-to-noise ratio and the main effect graphs of the average 
signal-to-noise ratio for each parameter at different levels. From Fig. 4, we can see that when the weight attenuation ratio is 0.5, the annealing rate is 0.7, and the number of inner and outer iterations is 400, the corresponding signal-to-noise ratio is 
the largest, and the corresponding average total cost is also the smallest, as shown in Fig. 5. Based on the above analysis, the 
parameters of the algorithm are set as shown in Table 2. 
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Fig. 4. Principal effect diagram of signal-to-noise ratio for orthogonal experiment 
 

 
 

Fig. 5. Main effect diagram of the mean value for the orthogonal experiment 
 
Table 2  
Algorithm Parameter Settings 𝑟𝑑௠௔௫ 𝑟𝑑௠௜௡ 𝑤𝑑௠௔௫ 𝑤𝑑௠௜௡ 𝑟𝑒𝑔𝑟𝑒𝑡௡ 𝑟ଵ 𝑟ଶ 𝑟ଷ 𝑟ℎ𝑜 𝑝ℎ𝑖 𝑒𝑝𝑜𝑐ℎ 

0.2 0.1 6 1 1 30 20 10 0.5 0.7 400 
 
5.2 Analysis of Optimization Results 
 
The optimization results of TD-TSH are analyzed by taking "Set A-N36" as an example. The optimal truck-drone joint path 
planning obtained by the algorithm is shown in Figure 6. We know that: (1) The disaster sites in the whole disaster-affected 
area are divided into four distribution areas. The truck carries drones and rescue materials from the emergency center and 
carries out material distribution plans one by one for each disaster-affected point in each distribution area. (2) All truck stops 
are traversed once by the truck, and the material distribution tasks in the four disaster-affected areas are all completed by the 
drone. (3) The disaster-affected sites in the same disaster-affected area are all distributed by the same drone. The path planning 
of multi-drones is less cross and circuitous. (4) All drones start distribution from the nearest truck stop. This shows that K-
means GA can reasonably cluster the disaster sites, ALNS can reasonably plan the truck-drone joint distribution path according 
to the actual situation and minimize the total cost of the distribution system. 
 

 
Fig. 6. Schematic diagram of optimal joint path planning scheme 

 
5.3 Comparative Analysis of Algorithms 
 
In this paper, CPLEX is used to obtain the exact solution of a small-scale case, and the validity and accuracy of the hybrid 
algorithm are compared. For large-scale cases, the comparison with the ACO, which has a better solution effect, is carried out, 
and the advancement and universality of TD-TSH are further verified. The exact solutions of small-scale examples are 
compared and analyzed. When the problem scale and constraints are complex, CPLEX cannot solve the MDDRP under bilevel 
programming. Therefore, a small-scale example (𝑁 = 23,22,21,20,19,16) is set to compare with it. The solution results are 
shown in Table 3, where 𝐺𝐴𝑃 = (𝑆𝑜𝑙(𝑇𝐷 − 𝑇𝑆𝐻) − 𝑆𝑜𝑙(𝐶𝑃𝐿𝐸𝑋)) ∗ 100%. The value with an asterisk indicates that CPLEX 
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does not find the optimal solution within the prescribed 3600 seconds; only the feasible solution is obtained. From Table 3, 
for small-scale examples, the results of TD-TSH are close to the exact solution of CPLEX; the difference is only 0~3.36%. In 
the solution time, TD-TSH is significantly shorter, the average is less than 1.24s, and the average time is reduced by 99.20% 
compared with CPLEX. With the increase in computational complexity, the solution time of the CPLEX solver increases 
sharply, and it is more difficult to find a better solution. Therefore, compared with the exact solution method, using TD-TSH 
to solve MDCVRP has some time advantages while maintaining accuracy and effectiveness. 
 
Table 3  
Comparison and Analysis of Exact Solutions for Small-Scale Examples 

Instance CPLEX Best Sol. TD-TSH 
Best Sol. GAP CPLEX Time(s) TD-TSH 

Time(s) Reduction Rate 

Set P-N=16 483.924 484.336 0.09% 35.28 2.96 91.61% 
Set P-N=19 556.575 556.578 0.00% 675.46 9.99 98.52% 
Set P-N=20 533.212 551.126 3.36% 208.78 9.69 95.36% 
Set P-N=21 574.286* 581.49 1.25% 3600 14.29 99.60% 
Set P-N=22 535.975 548.286 2.30% 328.89 12.79 96.11% 
Set P-N=23 591.886* 608.342 2.78% 3600 17.71 99.51% 
Avg. - - - 1408.07 11.24 99.20% 

 
The comparative analysis of large-scale algorithms is carried out. At present, in the MDDRP problem, the ACO proposed by 
Dorigo and Gambardella (1997) has a better solution effect and has obtained a higher recognition as a comparative algorithm 
for the study. The number of customers 𝑁 of large-scale example sets Set A and Set P is taken within [32, 101]. The two 
algorithms run ten times separately for each instance, and the solution results are shown in Table 4. 𝐵𝑒𝑠𝑡 is the optimal solution 
for ten times of operation results. 𝑊𝑜𝑟𝑠𝑡 is the worst solution for ten times of operation results, 𝐴𝑣𝑔. is the average result for 
ten times of operation, 𝐺𝐴𝑃 = (𝐴𝑣𝑔. (𝑇𝐷 − 𝑇𝑆𝐻) − 𝐴𝑣𝑔. (𝐴𝐶𝑂))/𝐴𝑣𝑔. (𝑇𝐷 − 𝑇𝑆𝐻) ∗ 100%. From Table 4, it can be seen 
that according to the value of 𝐴𝑣𝑔., the average cost of the total system cost obtained by the TD-TSH in all the instances is 
better than that obtained by the ACO, the maximum savings is 5.75%, and the minimum savings is 0.34%, which indicates 
that the TD-TSH can effectively reduce the total system cost of truck-drone joint transportation. 
 
Table 4  
Comparative Analysis of Large-Scale Computational Examples 

Instance 
TD-TSH  ACO  

GAP 
Best Worst Avg.  Best Worst Avg.  

Set A-N=32 3245.74 3365.86 3299.32  3351.12 3451.18 3407.26  3.27% 
Set A-N=36 2834.31 2995.62 2913.63  2863.17 2984.51 2926.06  0.43% 
Set P-N=40 2949.80 3038.33 3003.00  2994.58 3095.82 3062.74  1.99% 
Set A-N=44 4035.13 4400.45 4188.02  4371.35 4484.06 4428.91  5.75% 
Set P-N=45 3439.19 3511.50 3479.46  3499.46 3612.09 3546.23  1.92% 
Set A-N=53 4442.17 4595.32 4506.49  4598.37 4850.57 4738.33  5.14% 
Set P-N=55 4514.89 4661.16 4582.51  4624.38 4715.57 4668.76  1.88% 
Set A-N=64 5473.28 5744.73 5636.18  5547.20 5776.50 5658.93  0.40% 
Set P-N=70 6362.69 6760.98 6487.67  6529.98 6666.01 6595.57  1.66% 
Set P-N=76 6659.54 6774.98 6729.22  6640.81 6892.55 6752.05  0.34% 
Set A-N=80 6739.37 6836.45 6794.97  6925.10 6968.45 6945.82  2.22% 
Set P-N=101 7286.35 7309.84 7298.10  7472.20 7605.81 7539.01  3.30% 

 
The efficiency of the TD-TSH is further tested by the example "Set A-N36". From Table 4, we can see that the average 
optimization result of ACO is 2926.06, while the average optimization result of TD-TSH is 2913.63, which is better.  
 

 
Fig. 7. Schematic diagram of the iterative process of TSH and ACO optimal results 

 
Fig. 7 is the optimal result iteration curves of TD-TSH and ACO. TD-TSH uses heuristic rules to construct the initial solution. 
At the beginning of the iteration, the total cost of the truck-drone distribution system is optimized to a near-optimal position. 
However, ACO converges quickly, but it is still far from TD-TSH. TD-TSH optimizes the solution space of the drone path 
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rapidly by judging the load and battery capacity of the drone in the early stage of operation. TD-TSH introduces two kinds of 
destroy operators, which make the search space more extensive and more directional, not only enhancing the ability of 
optimization but also significantly improving search efficiency. In addition, the greedy repair operator is introduced to 
accelerate the search process of the neighborhood feasible solution, and the balance between search quality and search time 
is achieved by alternately calling the optimal repair operator and the maximum contribution repair operator. However, ACO 
is too blind in each search and does not make any judgment on the infeasible solution in the solution space. The optimization 
effect could be more apparent, and the premature convergence phenomenon is easy to occur. The proposed TD-TSH can 
effectively improve the convergence efficiency and effectiveness of the solution. 
 
Furthermore, to observe the variation amplitude of each cost index with the change of the drone battery capacity 𝐸, referring 
to the experimental results of five groups of examples, taking 𝐸 as the horizontal axis, the three cost indexes as the vertical 
axis are plotted respectively, as shown in Figure 8. From the figure, with the increase of 𝐸 , the total cost of the system 
decreases gradually, which shows that the increase in battery capacity will affect the reduction of the total cost of the system 
to a certain extent. The economic cost of truck-drone transportation and the relative deprivation cost of fairness were observed, 
and the economic cost decreased gradually with the increase of 𝐸, but the relative deprivation cost increased gradually. This 
shows that the increase in the battery capacity of drones will lead to the reduction of economic costs but also will lead to the 
increase of the relative cost of deprivation. The endurance capability of drones is an essential factor in reducing economic 
costs, but it may lead to the occurrence of unfair phenomena. When the drone battery capacity increases, the drones tend to 
rescue more disaster-affected points, compared with more drones at the same time, material ration, to some extent, will 
temporarily suspend some of the disaster-hit points' material ration, which is not conducive to alleviating the trauma of the 
victims. Each drone distribution path will be longer, thus conducive to reducing the number of drones initiated, so the overall 
system cost is reduced. 
 

 
Fig. 8. Variation range of each cost index with battery capacity 𝐸 of drone 

 
Through the above analysis, it can be found that only based on the economic cost of the drone emergency material deployment 
decision, although the number of drones and the total cost of the system can be well controlled, in the humanitarian relief of 
the more critical victims of psychological trauma, not necessarily achieve good results. When making decision plans, we 
should not only pursue the improvement of drone battery capacity. However, drones with higher endurance levels can 
undertake more distribution tasks at disaster sites to some extent but may cause unfair phenomena. Of course, to the extent 
that the economic cost allows, the smaller the fairness threshold based on the total relative deprivation cost is, the better. 
Therefore, considering the economic cost and the relative deprivation cost as the crucial objectives of decision-making, the 
deployment scheme of drones can get result in relative economic fairness. 
 
6. Conclusion 
 
In this paper, the total cost of truck-drone transportation and the relative deprivation cost of fairness are considered as the 
objectives. The allocation problem of emergency supplies for truck-drone joint transportation with dynamic energy constraints 
and fairness is studied, and the corresponding mixed integer programming model MIP is constructed. To solve the model, a 
two-stage heuristic algorithm TD-TSH was designed, and many numerical experiments were conducted to verify the 
effectiveness and stability of the algorithm. TD-TSH performs well in small-scale cases and is stable in large-scale cases. 
Further study found that the battery capacity of drones affects the total cost of the distribution process by influencing the flight 
time of drones, and the impact of emergency material allocation planning decisions can not be ignored. The truck-drone joint 
path planning scheme has practical significance and can provide a valuable reference for building a fair and efficient drone 
emergency rescue system. 
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