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  Job shop scheduling (JSS) problem has been one of the most interesting research issues 
in the literature during the recent years. JSS problem has been studied in different forms 
of deterministic, fuzzy, and stochastic at different depths. The idea of robust 
optimization (ROP), on the other hand, has earned a particular value to become a 
popular subject of the breakthrough for problem solving affairs amongst the researchers. 
Based on the emerged opportunity for illustrating a new area of search, a robust JSS 
problem is proposed as a challenge to this boundary of knowledge. The proposed 
method is capable of handling the perturbation which exists amongst the processing 
times. In fact, in many real world job scheduling problems, a small change in the 
processing times, not only causes a non-optimal solution, but also the infeasibility of the 
final solution may also occur. The proposed robust method could guarantee that, a small 
deviation of the processing times does not affect the feasibility. The implementation of 
the proposed method is illustrated using some numerical examples and the outcomes of 
the investigation are discussed  
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1. Introduction 
 

The job shop-scheduling (JSS) problem normally deals with manufacturing industry where there are 
many practical applications on this sector. A simple definition of JSS problem can be defined as 
follows. Given n jobs which have to be processed on m machines, each job consists of a sequence of 
task operations. Each of which requires to be processed without interruption for a given period of 
time on a given machine. The sequence of machines for each job is prescribed, and each of them can 
process at most one job at a time. Tasks of the same job cannot be processed simultaneously & each 
of them needs to meet each machine only once and the aim is to generate a time schedule to perform 
the operations on machines. One of the most attractive objectives is to find a schedule that minimizes 
the makespan, that is, the time needed to complete all the jobs. The JSS problem is classified as one 
of the most difficult NP-complete problems (Garey, et al., 1976). Presently, there are literally lots of 
optimization and approximation algorithms such as meta-heuristics and hybrid methods proposed to 
solve the JSS problem.  In addition to the classical JSS problem, with some induced alteration in the 
basic model, other kinds of JSS problems also appear such as flexible JSS (Kacem, et al., 2002), 
fuzzy JSS (Allet, 2003), and stochastic JSS (Ginzburg, & Gonik, 2002). The main contribution of this 
paper is to implement robust optimization technique to handle uncertainty in JSS problem. As the 
first attempt, Soyster (1973) proposed a model which admits the highest protection. Therefore in his 
case, the objective function is determined in the worst-case condition. Ben-Tal and Nemirovski 
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(2000) presented a more popular robust approach which addressed a more conservative solution 
where a non-linear robust optimization model is presented. Bertsimas and Sim (2004) introduced a 
new robust approach in which the robust counterpart is of the same class as the nominal problem and 
therefore the proposed robust approach remains linear/mixed integer, if the nominal problem is 
linear/mixed integer.  

Consider a linear constraint i
j

ijij bxa ≤×∑  and let iJ represent the set of coefficients which are 

subject to perturbation ( ija , iJj∈ ). The true value ija~  equals ( ) ijij aεξ+1  where 0>ε  is a given 
uncertainty level and ijξ  are random variables distributed symmetrically in the interval [-1, 1].  

Therefore ija~  , iJj∈  takes values in [ ]ijijijij aaaa ˆ,ˆ +− . Bertsimas and Sim (2004) proposed parameter

ii J≤Γ≤0 , to adjust the desired conservatism level of the final solution. It means that at last only 

⎣ ⎦iΓ are allowed to change, and one coefficient 
iita changes by ⎣ ⎦( )

iitii âΓ−Γ . 
Note that, if ii J=Γ  is considered, the method is reduced to Soyster’s approach. The idea of using 
robust optimization has become popular (Farhang Moghadam & Seyed Hosseini, 2010; Gharakhani et 
al., 2010; Roghanian & Foroughi, 2010). For more details on the implementation of robust 
optimization, interested readers are referred to (Bertsimas & Sim, 2004). Shafia et al., (2010) adapted 
the latter approach to train routing and makeup problem.  
 
2. Robust Job Shop Problem 
As we explained, the perturbation is normally occurs in JSS problem, especially in the processing 
times of jobs in each machine. Suppose one is about to schedule the job shop problem introduced by 
Baker (1974). The tabular representations of the data for this prototype problem are shown in Table 
1.a and Table 1.b. 
 
Table 1.a  
Processing Times 

 
Table1.b  
Routing 

 
Consider minimization of total weighted tardiness (TWT) as the objective function, and let the 
starting time of schedule for each job, release time, to be equal to 1. The optimal solution for this 
example is shown as Fig. 1. Furthermore it is noticeable that this solution is also optimal in the case 
of makespan objective.  
 

 Operation 
1 2 3 

Jo
b 

1 4 3 2
2 1 4 4 
3 3 2 3 
4 3 3 1 

 Operation 
1 2 3 

Jo
b 

1 1 2 3 
2 2 1 3 
3 3 2 1 
4 2 3 1 
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Fig. 1. Optimal Job Shop Schedule 

 
As we can observe from Fig. 1, the optimum schedule value is 10. One can assume that the operation 
of job 1 in machine 1 is subjected to perturbation and the processing time is increased by one. In 
other words it changes from 4 to 5. This alteration makes the solution shown in Fig. 1, non-optimal. 
The perturbed schedule is depicted in Fig. 2.  
 

 
Fig. 2.  Perturbed Job Shop Schedule 

 
As it can be found in Fig 2, this interruption worsens the TWT by 3 minutes (10→13). However, for 
this case the optimum schedule on the basis of TWT is calculated as Fig. 3. 
 

 
Fig. 3. Optimal Job Shop Schedule-perturbation case 

 
The optimum schedule value in Fig. 3 for the TWT objective function is 10. It can be easily verified 
that just a little perturbation can highly change the optimum solution and this could be regarded as a 
good motivation to the robust optimization concept.  
In the remaining part of this section, the robust JSS problem is introduced after proposing an 
appropriate mathematical model for the classical JSS problem. At the first step, the reader can 
consider the integer programming model specified by Baker. The employed notations are as follows: 
 
Notations 
 
A: Set of machines, { }m,...,2,1  
P: Set of jobs, { }n,...,2,1  

pjmt : Required time to process task j of job p on machine m 

ie : The machine which performs the last operation on job i  
M: A big number 

pma : A variable which denotes the completion time of job p on machine m 
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ipmb : A binary variable which is 1, if job i precedes job p on machine m and 0, otherwise 
 

Model 1: ∑
∈Pi

iei
amin  

subject to: 
ijkihik taa ≥− ,    ( ) ( )kjihji ,,,1, <<−       (1) 
( ) pqkipkikpk tbMaa ≥−+− 1 ,  AkPpi ∈∈ ,,       (2) 

ijkipkpkik tbMaa ≥×+− ,  AkPpi ∈∈ ,,       (3) 
0≥ika ,    AkPi ∈∈ ,      
{ }1,0∈ipkb ,    AkPpi ∈∈ ,,  

 
See (Baker, 1974) for more details. 
Since, the processing times, pjmt , is subject to perturbation, the introduced robust method must be 
applied on inequalities 1, 2 and 3. It can be observed that for all these equations, there is only one 
perturbed parameter in each constraint. As a result by applying the introduced robust approach to 
these inequalities, the achieved results are the same as solving the model in the worst-case, where a 
fix supplementary time is added to all processing times. On the other hand, it is clear that model 1 is 
only capable to cover the effects of possible perturbation amongst the consecutive jobs. Therefore, in 
this case, the effects of perturbation propagation amongst jobs are ignored. In order to overcome the 
mentioned weak characteristics, another formulation is proposed in which the sequencing of jobs on 
machines is appeared in the model. Following notations are used for the proposed model 2. 
 
Notations 
 
s: Sequence index defined for each job in every machine 
Op: The last operation associated with job p. 

jpmsx : A binary variable which is 1, if task j of job p is allocated on machine m in sequence 
s, and 0, otherwise. 

jpmsy : Denotes start-processing time of task j of job p on machine m 

msL : Denotes the idle time of machine m in sequence s. i.e. the gap between (s)-th and (s-
1)-th operations performed on machine m. 

 

Model 2: ( )∑∑∑
∈ ∈ =

=
Pp Am

P

s
pmsOp

yZ
1

min          (4) 

subject to: 

∑∑
= ∈

=
P

s Am
jpmsx

1
,1      pj ,∀       (5) 

∑∑
∈ =

≤
Pp

O

j
jpms

p

x
1

1 ,     sm,∀       (6) 

jpmsjpms xMy ×≤  ,     smpj ,,,∀                  (7)                   

( )∑∑ ∑∑
= ∈ = ∈

+≤×+
P

s Am

P

s Am
pmsjjpmjpmsjpms ytxy

1 1
)1( ,  pj ,∀       (8) 
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1
1
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The objective function shown in equation 4 minimizes the sum of finishing time of the last operation 
of each job. Eq. 5 indicates that task j of job p must be assigned to just one sequence of one machine. 
Inequality 6 guarantees that only one task of each job can be executed in sequence s of machine m. 
Inequality 7 establishes the relation of jpmsx and jpmsy variables. In other word, jpmsy must be zero if 
the binary variable jpmsx is equal to zero. Inequality 8 guarantees the task sequences for each job. 
Inequality 9 guarantees that each task's processing time does not have any overlap with any other 
task.  
The desired job sequencing on machines appears using the new presented problem formulation. As 
explained previously, in order to have a robust job shop schedule, the possible effects of all 
operations on each other must be considered. For this purpose, we suggest to apply constraints 10 and 
11, instead of constraint 9. 
 

∑∑∑∑∑∑
∈ =

−

′=′′
′′

−

′=′′ = ∈
′′ ≤+×

Pp

O

j
jpms

s

ss
smjpm

s

ss

O

j Pp
sjpm

pp

yLtx
1

11

1
)( ,   sssm <′∀ ,,    (10) 

( )∑∑ ∑∑
∈ = ∈ =

−−− ×+−=
Pp

O

j Pp

O

j
jpmsjpmsjpmsjpmsms

p p

txyyL
1 1

111 .   smpj ,,,∀    (11) 

 
Applying the robust approach to constraint 10, leads to a situation in which there will be a confident 
gap amongst jobs in a specified machine, but there would be no such gaps amongst the operations 
associated with a specific job. In other words in order to have a robust job shop schedule, not only we 
need to consider the possible interruptions in each machine, but also it requires to embed some buffer 
times amongst the operations corresponds to each job, so that the possible delay in one machine do 
not affects the other machines, as well. For this reason, the inequality 12 is proposed instead of 
inequality 8. 
 

( )∑∑ ∑∑∑ ∑∑
= ∈ = ∈

−

′=′′ ∈ =
′′′′′ ≤×+

P

s Am

P

s Am
jpms

j

jj Am

P

s
pmjpmsjpmsj ytxy

1 1

1

1

.   jjpj <′∀ ,,    (12) 

 
Both inequalities 10 and 12 consist of some surplus constraints compared with inequalities 8 and 9.  
To illustrate the case, one could consider job 1 in figure 1. Inequality 12 represents three constraints 
for job 1 in this specific instant as follows: 
1- Second task of job 1 must be initiated after the first task. 
2- Third task of job 1 must be started after the second one. 
3- Third task of job 1 must be initiated after the finishing time of the first task added with the 

processing time of the second task of job 1. 
It is obvious that item 3 will be surplus under the condition that items 1 and 2 are fulfilled. It can be 
easily shown that the number of constraints resulted by equation 12 for the specific job p that contains 

pO  individual tasks will be equal to: 
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As inequality 8, represents ⎟⎟
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constraints, the number of surplus constraints is equal to: 
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The number of surplus constraints associated with inequality 10 can be also computed in a similar 
way. The pO

pS number of extra constraints, in addition to those resulted by inequality 10, are defined 
to formulate the robust JSS problem. The Bertsimas and Sim approach is briefly reviewed as follows. 

Consider the constraint i

n

j
jij bxa ≤∑

=1
 and suppose that iH represents the set of coefficients defined in 

constraint i which are subject to perturbation ( ija~ , iHj∈ ). It is assumed that each uncertain 

coefficient ija~ , iHj∈  belongs to the interval [ ijijijij aaaa ˆ,ˆ +− ].  

It is supposed that at last only ⎣ ⎦iΓ  of parameters subjected to disruptions will be interrupted in 
constraint i, and one coefficient 

iika alters by ⎣ ⎦( )
iikii âΓ−Γ . In the Bertsimas and Sim approach, the 

robust formulation of the specified constraint is formulated as follows, 
 

    
                       (13) 

 
where, iK  is a subset which has ⎣ ⎦iΓ  parameters subjected to perturbation. The added statement to 
the left hand-side of constraint 13, is called protection function.  
In order to reformulate the proposed model as a robust job shop one, at first the protection functions 
must be added to the left side of the equations 10 and 12. Based on inequality 13, the protection 
function for inequality 12 is proposed as Eq. 14. The other one could be generated as well.  
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The above equation equals the objective function of the following linear optimization problem. For 
the details the interested reader may refer to (Bertsimas, & Sim, 2004). 
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The dual of model 3 is as follows: 
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  ∑ ∑
= =
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Note that the above problem must be defined as )(,, jjpj <′∀ .  
Substituting the optimization function of the model 4 with the proposed protection function, equation 
14, and embedding the remaining constraints of model 4 to the main body of the model 2 will lead to 
the Robust JSS Problem. Note that, the robust approach must also be applied to inequality 10. The 
procedure is similar to that of inequality 12 and therefore is not repeated here. 
 
The value of Γ level 
As it is clarified, the role of parameter Γ  is to adjust the robustness of the proposed model against the 
level of conservatism of the solution. The proposed pjj ′Γ  level specified for the model 4 is as follows: 

pppjj jj βα ×−′−=Γ ′ )(         10&10 ≤<≤≤ βα        (15) 

In Eq. 15, the value jj ′−  is equal to the number of parameters which are subjected to the 
perturbation. Parameters pα  and pβ  are used to adjust the conservatism level. The parameters 
determine the trade-off between the desired robustness and the optimality. In the case 0=pα  and 

1=pβ  the level pjj ′Γ makes the problem to work in the worst condition exactly the same as Soyster’s 
model. 
Note that by applying the robust approach to inequality 10, a similar level to Eq. 15 would be 
resulted: ( ) mmmss ss γλ ×−′−=Γ ′ . The role of parameters mλ  and mγ are alike pα  , pβ . To illustrate 
the effects of the proposed robust JSS mathematical model, one can consider the Baker's example 
which was investigated earlier in this section. It is assumed that the maximum deviation for each 
processing time from the nominal value, t̂ , is equal to 10%. In other word, the true value, ipmt~ , takes 
values in [ ]ipmipm tt ×× 1.1,9.0 . Furthermore suppose that: 5.0== mp λα , 8.0== mp γβ , mp,∀ . 
The robust optimum solution for this example is shown in Fig. 4. 
 

 
Fig. 4. Optimal Robust Job Shop Schedule 

 
The optimal value of the objective function is equal to 13.56. Through applying this method, it is not 
only guaranteed that the generated schedule is robust against any perturbation less than the defined 
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robustness level, but also it remains robust under the condition of heavier disruptions with a high 
probability. For more details see Bertsimas & Sim, 2004.  
 
3. Proposed heuristic algorithm 
Job shop scheduling problem is known NP-Hard in its classical type. Considering the number of used 
binary variables involved in a real-world problem formulation, we need to look for a near-optimal 
solution as an alternative using a heuristic approach. In the remaining part of this section, a heuristic 
algorithm based on the simulating annealing (SA) algorithm is proposed. SA is known to be one of 
the most successful algorithms amongst the other applied meta-heuristic ones and its acceptable 
performance is demonstrated by experience in the conducted researches relevant to scheduling 
problems, for example (Krishna, 1995), (Steinhofel, 1999), (Suresh, & Mohanasundaram, 2006), 
(Ponnambalam, 1999), (Bozejko, 2009). 
The following algorithm is proposed to find a near-optimum schedule for the introduced robust JSS 
problem. 
Sub Simulated annealing  

k←1 

Call Initial schedule generation 

sbest ← s 

While k<K do 

Call neighborhood Schedule generation (s) 

 If f(s´)≤f(s) or random[0, 1]<Paccept(s,s´,Tk) then 

s ← s´.  

Endif 

If f(s´)<f(sbest) then 

sbest ← s´ 

Endif 

k←k+1  

Tk=α×Tk-1 

Endwhile 

Endsub 

 
Sub Initial schedule generation 

Do  

Select one of the non-scheduled operations that it's all predecessors is already scheduled, 
randomly.  
Compute the amount of protection function based on the desired robustness level, i.e. the 
required buffer times. 
Compute the start and the completion time of the selected operation considering other 
scheduled operations in addition to the required buffer time. 
If all operations are scheduled then Exit Do. 

Loop 

Endsub  
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Sub neighborhood Schedule generation (s) 

Select one of the operations which are delayed in schedule s, e.g. opi. 
Find the operation which causes the delay of opi in schedule s, e.g. opj. 
Generate the schedule s´, by this new assumption that opi must be scheduled earlier than opj. 
Note that all other operations must be scheduled in the same order of schedule s. 

Endsub 

 
In this part, s is a schedule, sbest is the best available solution,  f(s) is the objective function value for 
schedule s, k is the counter, K is the maximum iteration number which specifies the termination 
criteria, Tk is the temperature in k-th iteration, α is the cooling factor which belongs to the interval (0, 
1), and ( )kaccept TssP ,, ′ is the probability function to accept non-improving solution s´, Eq. 16. 
 
           

( )=′ kTssPaccept ,,            (16) 

 
 
Parameter tuning 
In order to use the best combination of parameters defined in the proposed SA algorithm in this 
section, a full factorial design of experiment (DOE) approach is applied. As it is explained in the 
proposed algorithm, two parameters need to be tuned. These include T0 and α. In Table 2, three levels 
for the parameters are considered, and therefore a 32 design is applied. The experiments contain 15 
different instances randomly generated and solved by assuming each of 9 different combinations of 
(T0, α). 
 
Table 2  
Three levels of SA parameters 
 Level 1 Level 2 Level 3 
α 0.97 0.98 0.99 
T0 50 100 150 
  
In order to compare the instances, the relative deviation index (RDI) is used. This index is obtained 
by 
 
௞ܫܦܴ ൌ ிೖିெ௜௡ೖ

ெ௔௫ೖିெ௜௡ೖ
ൈ 100,          (17) 

 
where, ܨ௞ is the objective function value in the k-th instance.  Mink and Maxk  are the best and the 
worst solutions obtained for each instance, respectively. 
We have solved 15 different instances, each of which is associated with one of the combinations of 
(T0, α).  
 
The results are analyzed by the means of analysis of variance (ANOVA) technique. The performed 
tests for analyzing the normality, homogeneity of variance and independence of residuals do not show 
any particular pattern in the experiments. Fig. 5 depicts the interaction plot for parameters T0 and α. 
The combination of T0=150 and α=0.98 are calculated and produce better results compared to the 
other evaluated combinations. 
  

if )()( sfsf <′   1 

))()((exp
kT

sfsf ′− Otherwise  
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Fig 5. The achieved results for tuning the parameters of SA 

 
 
The proposed SA algorithm is implemented in VB on a Laptop with Pentium IV Core 2 Duo 2.53 
GHz CPU. The outputs of the algorithm are compared with optimum solutions achieved by Branch 
and Bound algorithm (B&B).  
Each instance can be characterized by a number of parameters, such as number of jobs, number of 
machines, job routes, processing times, and the desired robustness parameters. The generated 
instances are based on the following assumptions: 

• Processing times are all integer numbers between the interval [10, 20] generated at random. 
• The objective is to minimize the total completion times of all jobs. 
• The robustness parameters are set as follows: 5.0== mp λα , 8.0== mp γβ , mp,∀ . 

The outputs are shown in Table 3. 
 
Table 3  
The comparison results between the proposed hybrid algorithm and B&B algorithm 
Item Number  

of jobs 
Number of  
Machines 

B&B algorithm SA algorithm 
TWT Duration TWT Duration 

1 4 3 116 00:00:01 116 00:00:00 
2 4 4 181 00:00:02 181 00:00:00 
3 4 5 247 00:00:09 249 00:00:01 
4 6 6 448 00:03:59 460 00:00:01 
5 6 6 418 00:03:15 422 00:00:01 
6 6 7 496 00:06:37 501 00:00:01 
7 6 7 487 00:09:53 488 00:00:05 
8 6 8 553 00:05:31 553 00:00:05 
9 6 8 598 00:08:49 598 00:00:11 
10 6 9 631 00:47:23 662 00:00:40 
 
The results show that the SA algorithm is capable to find near optimum solutions in a considerably 
reduced amount of time in comparison with the B&B algorithm. Moreover, the sensitivity of the 
objective function to the alteration of interruption values is experienced for a randomly generated 
instance with 8 jobs and 10 machines. Fig. 6 shows the best found solutions found by SA algorithm 
for the different cases of ( ) ( )[ ]txtxt +−∈ 1,1~ . 
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Fig 6. The achieved results for different interruption intervals 

 
Fig. 6 shows that as the interruption intervals increases, in order to reach the same level of robustness, 
the TWT of the solutions are worsen.  
 

4. Conclusion 
We have presented a robust JSS problem which has the capability of handling the perturbation which 
exists amongst almost all input parameters. It is illustrated that, for many real world job scheduling 
problems, a small change in input parameters may lead us to some final solutions which are neither 
feasible nor optimal. The proposed method of this paper could guarantee that a small alteration in 
input parameters does not have any effect in the feasibility and the optimality of the robust one and 
does not alter from the crisp one. Besides, it is known that the common software packages are not 
able to find optimum solutions for real world application in a reasonable amount of time. Therefore, a 
SA algorithm has been proposed to find near optimal solutions in a reasonable amount of time. The 
effectiveness of the algorithm has been demonstrated, using some numerical examples and the results 
of SA have been compared with optimal solutions.  
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