
* Corresponding author. Tel.: +81-90-6418-0253; fax: +81-86-251-8056. 
E-mail addresses: dotun.abdul@gmail.com (I. Abdul). 
 
 
© 2010 Growing Science Ltd. All rights reserved. 
doi: 10.5267/j.ijiec.2010.05.002 
 
 

 
 

 
 

International Journal of Industrial Engineering Computations 2 (2011) 61–86 
 

 

Contents lists available at GrowingScience
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 

An inventory model for deteriorating items with varying demand pattern and unknown time 
horizon 
 

Ibraheem Abdula* and Atsuo Murataa  
aDepartment of Intelligent Mechanical Systems Engineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-
8530, Japan.  

A R T I C L E I N F O                            A B S T R A C T 

Article history:  
Received 24 June 2010 
Received in revised form  
22 August 2010 
Accepted 23 August 2010  
Available online 24 August  2010 

  The primary assumptions with many multi-period inventory lot-sizing models are fixed time 
horizon and uniform demand variation within each period. In some real inventory situations, 
however, the time horizon may be unknown, uncertain or imprecise in nature and the demand 
pattern may vary within a given replenishment period.  This paper presents an economic order 
quantity model for deteriorating items where demand has different pattern with unknown time 
horizon. The model generates optimal replenishment schedules, order quantity and costs using a 
general ramp-type demand pattern that allows three-phase variation in demand. Shortages are 
allowed with full backlogging of demand and all possible replenishment scenarios that can be 
encountered when shortages and demand pattern variation occur in multi-period inventory 
modeling are also considered. With the aid of numerical illustrations, the advantages of 
allowing for variation in demand pattern within replenishment periods, whenever they occur, 
are explored. The numerical examples show that the length of the replenishment period 
generated by the model varies with the changes in demand patterns.  

 © 2010 Growing Science Ltd.  All rights reserved. 
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1. Introduction 
 

The inventory lot-sizing problem for deteriorating items is prominent in the literatures due to its 
important connection with commonly used items in daily life. Fruits, vegetables, meats, photographic 
films, electronic products etc, are examples of deteriorating products. Deteriorating items are often 
classified in terms of their lifetime or utility as a function of time while in stock. The study of this 
paper focuses on the deteriorating items classified as decreasing-utility with random lifetime. Fruits, 
vegetables, fish etc are some of the examples which are classified in this category. Since the utility of 
such items are time dependent, their demand is more likely to be time dependent as the customers 
may be willing to buy more when the utility is high and less when the utility is low. 

The ramp-type demand pattern adopted in this study is motivated by the observation that the demand 
for this class of deteriorating items increases with time at the beginning of its season. It attains a peak 
and becomes steady at the middle of the season and it finally decreases when the time reaches to the 
end of the season. This increasing-steady-decreasing demand pattern can be represented by a general 
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ramp-type function. This function allows a three-phase variation in demand representing the growth, 
the steady and the decline phases of demand during the entire period. This type of demand behavior 
can also be observed in some fashion or seasonal products in general. 

In this paper, the inventory lot-sizing problem for these kinds of deteriorating items is studied under 
unknown time horizon. Traditionally in multi-period inventory modeling, the time horizon over 
which the inventory will be controlled is often assumed to be either finite or infinite. However, the 
infinitive time horizon assumption is considered to be unrealistic due to several reasons such as 
variation in inventory costs, change in product specification and designs, technological changes, etc. 
According to Roy et al. (2007), the business period for some products like fruits and vegetables 
cannot be infinite due to the nature of the items. Another common approach in multi-period inventory 
modeling of deteriorating items is to assume that the time horizon over which the inventory will be 
controlled is finite and fixed. The total inventory cost is often obtained by summing up various cost 
components over the entire horizon. Most often, however, the demand for the product will not be 
terminated at the end of the time horizon. A well-defined termination point of demand is usually an 
artificial device often used in order to obtain an optimal solution (Silver 1979). In many inventory 
situations, the period over which the inventory will be controlled is difficult to predict with certainty, 
as the inventory problems may not live up to or live beyond the assumed time horizon. Time horizon 
in several real life situations may be unknown, uncertain or imprecise in nature. 

In this paper, we develop a multi-period lot-sizing model for deteriorating items with varying demand 
patterns when the time horizon is unknown or unspecified. There are three main reasons for our 
assumptions. (i) The first reason is to present a multi-period inventory model for deteriorating items 
using a general ramp-type demand pattern with full backlogging of shortages. The general ramp-type 
demand function allows three-phase variation in demand, representing the growth, the steady and the 
decline phases of demand commonly experienced by many products. This will be more suitable for 
practical applications than single period models that assume a single replenishment to cover all 
phases of demand. (ii) The second reason is to make the developed model suitable for unknown time 
horizon by extending the Silver-Meal approach to a general ramp-type demand pattern. This makes 
the model to be suitable for situations, discussed earlier, when the time horizon is neither fixed nor 
infinite. (iii) Finally, the third reason is to examine various possible replenishment patterns when 
shortages and demand pattern variation occur in a multi-period inventory model. The replenishment 
intervals are allowed to vary from one period to another along the cycle and a replenishment policy to 
generate optimal replenishment schedules, order quantity and costs is proposed. An additional 
solution procedure based on trust region methods is also presented to complement the usual direct 
implementation of derivatives. This paper is organized as follows: Section 2 contains a brief literature 
review and the proposed model of this paper is presented in section 3. Solution procedure to obtain 
the optimal replenishment policy, numerical illustrations and conclusions are also presented in 
sections 4 to 6. 

2. Literature review 

Ghare and Schrader (1963) extended the classical economic order quantity (EOQ) model to include 
exponential decay, wherein a constant fraction of on-hand inventory is assumed lost due to 
deterioration. Covert and Philip (1973) and Shah (1977) extended this model by considering 
deterioration of Weibull and general distributions, respectively. Dave and Patel (1981) developed the 
first inventory model for deteriorating items with time dependent demand using a linear function. 
This model was later improved by Sachan (1984), Bahari-kashani (1989), and Hariga (1995). There 
are various forms of time dependent demand patterns such as linear, exponential, quadratic, and log-
concave functions (e.g. Chu & Chen 2002, Khanra & Chaudhuri 2003, Dye et al. 2005, Rau & 
Ouyang 2008).  
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Apart from the unidirectional time-varying patterns mentioned above, Hill (1995) proposed a ramp-
type demand pattern for items whose demand pattern changes during their lifetime in inventory. The 
demand pattern consists of two phases namely the growing and the stability phases. Subsequent 
researches on the ramp-type demand focused mainly on models with this type of demand patterns. 
The works of Mandal and Pal (1998), Wu and Ouyang (2000), Wu (2001), Giri et al. (2003), Manna 
and Chaudhuri (2006) and Deng et al. (2007) are notable contributions in this direction. Panda et al. 
(2008) developed an inventory model for deteriorating seasonal products using ramp-type demand 
pattern with a three-phase variation in demand. The ramp-type pattern in this case is assumed to 
increase exponentially with respect to time up to a point. Then it becomes steady and finally 
decreases exponentially and becomes asymptotic. Another form of this pattern, called trapezoidal 
demand pattern, was used by Cheng and Wang (2009), in developing an EOQ model for deteriorating 
items.   

Chung and Ting (1993) were the first to propose a heuristic model for deteriorating items with time-
varying demand irrespective of the existence of a time horizon (Goyal and Giri 2000). By extending 
Silver-Meal heuristics (see Silver and Meal 1973) approach to deteriorating items having 
deterministic demand with linear and positive pattern, they proposed a model to obtain multi-period 
replenishment schedules for perishable items without the assumption of a fixed time horizon. Kim 
(1995) developed a similar heuristic solution procedure to obtain replenishment schedules for items 
with linearly changing demand rate and constant rate of deterioration when the time horizon is 
unknown. Giri and Chaudhuri (1997) developed a model along the same line with varying 
deterioration rates and shortages. An inventory model incorporating constant rate of deterioration, 
time dependent demand and shortages over fuzzy time horizon was developed by Kar et al. (2006). 
Roy et al. (2007) developed a model for an item with stock dependent demand over an uncertain time 
horizon which follows exponential distribution. The demand patterns used for all explained models 
are represented by single, non-decreasing function of time or stock depending on their case-study.   

In real market situation, the demand for some items may not increase continuously with either time or 
stock. For items like fruits and some farm products whose ripeness and nutritional value are known to 
attain their peak at certain period of time, their demand is also likely to rise steadily to the peak at 
some time and fall afterwards. The demand for some products also falls due to the emergence of a 
better or similar alternative in the market. These possible changes in pattern of demand can be 
accurately captured by good forecasting techniques that are available (e.g. the electronic forecasting 
system (EFS)) and it is possible for this change in pattern to fall within a particular replenishment 
duration. The proposed model of this paper allows such changes in demand pattern within a 
replenishment period.  

Many inventory models usually depend on the direct implementation of the derivatives in optimizing 
their objective functions. However, some problems are often encountered with this method due to the 
difficulties in obtaining the second derivatives of these objective functions.  Since most of these 
objective functions are nonlinear in nature, the problems can be easily surmounted with the aid of 
nonlinear programming software packages which are based on trust region algorithms. The trust-
region methods define a region around the current iterate within which the model is trusted to be an 
adequate representation of the objective function, and then choose the step to be the approximate 
minimizer of the model in this trust region (Nocedal and Wright 1999). The methods have many 
attractive features which include the ability to deal with curvature information, robustness, and a 
comprehensive and elegant convergence theory (Conn et al. 2009). Sadjadi and Ponnambalam (1999) 
presented a survey of advances in trust region algorithms and its application in solving several large-
scale constrained optimization problems. Extensive research on solving trust-region sub-problems has 
led to the popularity of the methods and its incorporation into some commercial nonlinear 
programming software packages. In this paper, a procedure that obtains optimal solutions using trust 
region methods is developed to serve as an additional solution procedure for the model. 
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3. Model formulation and analysis 

The inventory system consists of several replenishment periods. The ith replenishment period begins 
with full inventory at time 1−it , consumption due to demand and deterioration brings the inventory 
level to zero at time is , shortages occur from time is to time it  and instantaneous replenishment 
follows at time it . The following assumptions and notations are used in formulating the model:  

1) Demand rate f (t) is a general time dependent ramp-type function which has the following 
form:  

( )
( )
( )
( )

( ) ( ) ( ) ( )

, 0 ,

, ,

, .

0, 0, 0 , .

g t t

f t g t

h t t

g t h t g h

μ

μ μ γ

γ

μ γ μ γ

≤ ≤⎧
⎪

= ≤ ≤⎨
⎪ ≥⎩

≥ ≥ ≤ ≤ =

 

The function g(t) can be any continuous, non-decreasing function of time, while h(t) is any 
continuous, non-increasing function of time in the given interval. μ and γ also represent the 
parameters of the ramp-type demand function. The demand pattern is as shown in Fig. 1. 

Fig. 1. A typical ramp-type demand pattern 

2) A single item inventory is considered. 
3) There is a constant fraction, θ, of on-hand inventory deteriorates per unit time. 
4) Replenishment rate is infinite. 
5) Shortages are allowed and completely backlogged. 
6) No repair or replacement of deteriorated items during the period under review is allowed.  
7) Inventory holding cost per unit per unit time (H), cost of deteriorated items per unit (P), 

shortage cost per unit per unit time (G), and replenishment cost per order (S) are known and 
constant during a replenishment period. 

8) Total inventory cost per unit time for the ith replenishment period is TCi while the length of 
the ith replenishment period is given by ( )1 1,2,3,.... .i i iT t t i−= − =  Note:  t0 = 0.      

The objective is to determine the optimal replenishment schedules, costs and order quantities 
( )* * * *, , ,i i i is t TC Q for the first and all other subsequent periods by minimizing the total inventory cost 
per unit time for each replenishment period. Three different scenarios may arise during a 
replenishment period according to the demand pattern exhibited by the item during the period. These 
scenarios are examined below: 
Scenario I: 

No change in demand pattern occurs during a replenishment period. This implies that each 
replenishment period begins and ends with a single demand pattern which may be g (t), g (μ), or h (t). 
This behavior is considered in Case I below. 

        
 
        f (t)        g(t)             h(t) 
 
 
 
 
 
               0          μ                    γ              t 
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Scenario II: 

Change in demand pattern occurs only once during a replenishment period. The change in pattern 
can occur in either of two ways:  

a. Stabilization of demand: This is when demand pattern changes from non-decreasing pattern to 
a constant pattern. The equation of the system in this case depends on whether this change in 
pattern occurs before or during shortages. The optimal replenishment schedules in these cases 
are considered under Case 2 and Case 3.  

b. Declining demand: This is when the transition of demand pattern is from constant to declining 
pattern within a single replenishment period. The equation of the system will also depend on 
whether this transition in pattern occurs before or during shortages. The optimal 
replenishment schedules are considered under Case 4 and Case 5.  

 

Scenario III: 

In this scenario, the change in demand pattern occurs twice during a replenishment cycle. The 
demand pattern changes from non-decreasing pattern to steady and later non-increasing pattern 
during the replenishment period. This is quite possible when it is considered more economical to 
order once to cater for the demand throughout a season. Three possible cases arise here, depending on 
when the changes in demand occur. Both changes can occur before commencement of shortages 
(Case 6), or during shortages (Case 7). The third case in this scenario is when a single change in 
pattern occurs both before and during shortages (Case 8). Detailed analyses of each case are 
considered below. 

3.1 Case 1: Replenishment period with single demand pattern  
The demand pattern may be any of the patterns given in f (t). As stated earlier, a replenishment period 
begins with full inventory at time 1it − , consumption brings the inventory level to zero at the time is  and 
shortages occur from time is to time it .The equation of the inventory system for any replenishment 
period under this case is as follows:  

( ) ( ) ( )

( ) ( )

1
1 1

2

0, ,

, . 

i
i i i

i
i i

dI t
I t f t t t s

dt
dI t

f t s t t
dt

θ −

⎫
+ + = ≤ ≤ ⎪⎪

⎬
⎪= ≤ ≤ ⎪⎭

 

 

(1) 

 

In Eq. (1) ( )1iI t is the inventory level and ( )2iI t is the shortage level at any time within the given time 
range for the ith replenishment period. Since the inventory and shortage levels are zero at si, the 
solutions to Eq. (1) are as follows: 
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t
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∫
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(2)

The amount of shortage during the ith replenishment period is given by ( )2 .i

i

t

S is
I I t dt= ∫ The number of 

units in inventory during the ith replenishment period is given by ( )
1

1 .i

i

s

I it
I I t dt

−

= ∫ Also the number of 
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units that deteriorate during the ith replenishment period is D II Iθ= . Total inventory cost per unit time 
for the ith replenishment period, ( )1 ,i i iTC s t is also given by: 

( ) ( ) ( )( )1
1 1,i i i D I S I S

i i

TC s t S PI HI GI S P H I GI
T T

θ= + + + = + + + . (3)

Substituting II  and SI  in Eq. (3) yields the following expression for ( )1 ,i i iTC s t , 
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i i i i it s
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= + + +
− ∫ ∫ . (4)

The necessary conditions for the minimization of ( )1 ,i i iTC s t are ( )1 ,
0i i i

i

TC s t
s

∂
=

∂
and ( )1 ,

0i i i

i

TC s t
t

∂
=

∂
. 

Taking the first derivatives of ( )1 ,i i iTC s t with respect to i is and t and equating the result to zero yields, 
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1

*

*

( )1 * *

* *
1

( 1) ( ) 0

( ) ( , ) 0

i i

i

i

s t
i i

t

i i is

P H e G s t
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⎬

− = ⎪⎭∫
. 

 

 (5)

The optimal replenishment schedules for the ith replenishment period * *( . . , )i ii e s t can be obtained by 
solving Eq. (5). The optimal order quantity, Qi*, for the ith replenishment period are given by the sum 
of maximum order level (i.e. inventory level at time 1it −  ) and total back order, 

( ) ( ) ( ) ( )
* *

1
* *

1

*
1 1 1

i i i
i

i i i

t s tt x
i i i s t s

Q I t f t e e f x dx f tθ θ−

−

−
−= + = +∫ ∫ ∫ .

  
(6)

Theorem 1:  

If ( )k P H Gθ= + and
*

1( )* *( ) ( ) 1 ( 1)i is t
i if t f s keθ −−> + , then ( )1 ,i i iTC s t is convex for all 0, 0i is t> > . 

Proof: See Appendix A.   ■ 

The condition for convexity is always satisfied when the demand rate is a non-decreasing function of 
time.   

3.2 Case 2: Replenishment period with demand pattern varying once during shortages  
The replenishment period begins with full inventory at time 1it −  ( 10 it μ−≤ < ), inventory is brought to 
zero at time is  ( 0 is μ< ≤ ) while the demand pattern is represented by ( )g t . This is followed by 
shortages and the period ends at time it  ( itμ γ< < ). The demand pattern changes during shortages 
from ( )g t to ( )g μ . The behavior of the inventory level in this case is described by the following 
equations, 
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(7)

( )2iI t and ( )3iI t  represent the shortage levels at any time during the given time range while ( )1iI t is 
the inventory level. The solutions to Eq. (7) are as follows, 
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The number of units in inventory during the ith replenishment period is given by 
1
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inventory cost per unit time for the ith replenishment period, ( )2 ,i i iTC s t in this case is, 
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The necessary conditions for the min of ( )2 ,i i iTC s t are: ( )2 ,
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Taking the first derivatives of ( )2 ,i i iTC s t with respect to i is and t and equating the result to zero 
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The optimal replenishment schedules for the ith replenishment period * *( . . , )i ii e s t can be obtained by 
solving Eq. (10). The optimal order quantity,  Q2i*, for the ith replenishment period under this case is 
given by:  

( )
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Theorem 2: ( )2 ,i i iTC s t is convex for all 0, 0i is t> > . 

Proof: See Appendix B.   ■ 
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3.3 Case 3: Replenishment period with demand pattern varying once before shortages 
The inventory behavior in this case is similar to Case 2, except that, in this case the inventory is 
brought to zero while the demand is constant (i.e.  10 , ,i i it s tμ μ γ μ γ−< < ≤ < < < ). The demand 
pattern also changes from ( )g t to ( )g μ before commencement of shortages. The equation of the 
system is as follows, 
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(12)

1 ( )iI t  and 2 ( )iI t represent the inventory levels while 3 ( )iI t represents the shortage level at any time 
during the given time range. The solutions to Eq. (12) are as follows, 
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The number of units in inventory during the ith replenishment period is 
1

1 2( ) ( ) .i

i

s

I i it
I I t dt I t dt

μ

μ−

= +∫ ∫
The amount of shortage during the ith replenishment period is also given by 3 ( ) .i

i

t

S is
I I t dt= ∫ The total 

inventory cost per unit time for the ith replenishment period, ( )3 ,i i iTC s t  in this case is as follows, 
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The optimal values of is and it for minimization of the total cost per unit time for the ith replenishment 

period is achieved by ( )3 ,
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The optimal order quantity for the ith replenishment period is given by the following, 
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It can be easily shown, as in Case 2, that ( )3 ,i i iTC s t  is convex for all 0, 0i is t> > . 
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3.4 Case 4: Replenishment period with demand pattern varying (declining) once during shortages  
In this case, the replenishment period begins with full inventory at time 1it −  ( 1itμ γ−≤ < ) when the 
demand is constant. The inventory is depleted and shortages begins at time is  ( isμ γ< < ) when the 
demand is still constant. The demand pattern changes from constant to declining pattern (i.e. from 
( )g μ to ( )h t ) when shortages start. The equation of the system during this period is as follows, 

( )

( ) ( )

( ) ( )

1
1 1 1

2
2

3
3 2

( ) ( ) ( ) 0, ; 0,

( ) , ; 0,

( ) ( ), ; .

i
i i i i i

i
i i i

i
i i i

dI t I t g t t s I s
dt

dI t g s t I s
dt

dI t h t t t I I
dt

θ μ

μ γ

γ γ γ

−
⎫+ + = ≤ ≤ = ⎪
⎪
⎪= ≤ ≤ = ⎬
⎪
⎪

= ≤ ≤ = ⎪⎭

 

 

(17)

In Eq. (17), ( )2iI t , and  ( )3iI t  represent the shortage levels at any time during the given time range 

while ( )1iI t is the inventory level. The solutions to Eq. (17) are as follows, 

1 1

2

3

( ) ( ) , ,

( ) ( ) ,

( ) ( ) ( ) . 

i

i

i

st x
i i it

t

i is

t

i is

I t e e g dx t t s

I t g dx s t

I t h x dx g dx t t

θ θ

γ

γ

μ

μ γ

μ γ

−
−

⎫= ≤ ≤ ⎪
⎪⎪= ≤ ≤ ⎬
⎪
⎪= + ≤ ≤ ⎪⎭

∫

∫

∫ ∫

 

 

(18)

The number of units in inventory in the ith replenishment period is
1

1 ( ) .i

i

s

I it
I I t dt

−

= ∫  

The amount of shortage in the ith replenishment period is also given by 2 3( ) ( ) .i

i

t

S i is
I I t dt I t dt

γ

γ
= +∫ ∫  

Total inventory cost per unit time for the ith replenishment period in this case is given by: 

( ) ( )( )

( ) ( )( ) ( )( )
1

4

1 2 3
1

1,

1 ( ) ( ) ( ) .i i

i i

i i i I S
i

s t

i i it s
i i

TC s t S P H I GI
T

S P H I t dt G I t dt I t dt
t t

γ

γ

θ

θ
−−

= + + +

= + + + +
− ∫ ∫ ∫

 

 

(19)

Applying the conditions ( )4 ,
0i i i

i

TC s t
t

∂
=

∂
and ( )4 ,

0i i i

i

TC s t
s

∂
=

∂
 to Eq. (19) yields the following, 

( )( )
( )

*
1

*

*

( ) * *

* *
4

/ 1 ( ) 0

( ) ( , ) 0

i i

i

i

s t
i i

t

i i is

P H e G s t

G h t dt g dx TC s t

θ

γ

γ

θ

μ

−− ⎫+ − + − =
⎪
⎬⎛ ⎞+ − = ⎪⎜ ⎟

⎝ ⎠ ⎭∫ ∫
 

 

(20)

Eq. (20) gives the optimal values of is and it  that satisfy the first order necessary conditions for 
minimization of ( )4 ,i i iTC s t . The optimal order quantity, *

4iQ , for the ith replenishment period in this 
case is as follows, 

( )
* *

1
* *

1

*
4 1 1 ( ) ( ) ( ) ( ) .i i i

i

i i i

t s tt x
i i i s t s

Q I t f t e e g dx g h t dt
γθ θ

γ
μ μ−

−

−
−= + = + +∫ ∫ ∫ ∫  (21)
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Theorem 3:  

If ( )k P H Gθ= + and
*

1( )*( ) ( ) 1 ( 1)i is t
ih t h keθγ −−> + , then ( )4 ,i i iTC s t is convex for all 0, 0i is t> > .  

Proof: See Appendix C. ■ 

3.5 Case 5: Replenishment period with demand pattern varying (declining) once before shortages 
The inventory behavior in this case is similar to Case 4, with the exception that inventory is brought 
to zero while the demand is decreasing (i.e.  1 , ,i i it s tμ γ γ γ−≤ < > > ). The demand pattern also 
changes from ( )g μ to  ( )h t before commencement of shortages which yields the following, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1
1 1 1 2

2
2 2

3
3

0, ; ,

0, ; 0,

, ; 0. 

i
i i i i

i
i i i i

i
i i i i

dI t
I t g t t I I

dt
dI t

I t h t t s I s
dt

dI t
h t s t t I s

dt

θ μ γ γ γ

θ γ

−

⎫
+ + = ≤ ≤ = ⎪

⎪
⎪

+ + = ≤ ≤ = ⎬
⎪
⎪

= ≤ ≤ = ⎪
⎭

 

 

(22)

In Eq. (22), 1 ( )iI t  and 2 ( )iI t represent the inventory levels while 3 ( )iI t represents the shortage level at 
any time during the given time range. The solutions to Eq. (22) are as follows, 

( )1 1

2

3

( ) ( ) ( ) , ,

( ) ( ) ,

( ) ( ) . 

i

i

i

st x x
i it

st x
i it

t

i i is

I t e e g dx e h x dx t t

I t e e h x dx t s

I t h x dx s t t

γθ θ θ

γ

θ θ

μ γ

γ

−
−

−

⎫= + ≤ ≤ ⎪
⎪⎪= ≤ ≤ ⎬
⎪
⎪= ≤ ≤
⎪⎭

∫ ∫

∫

∫

. 

 

(23)

The number of units in inventory during the ith replenishment period is given by 

1
1 2( ) ( ) .i

i

s

I i it
I I t dt I t dt

γ

γ−

= +∫ ∫  

The amount of shortage during the ith replenishment period is also given by 3 ( ) .i

i

t

S is
I I t dt= ∫  

The total inventory cost per unit time for the ith replenishment period, ( )5 ,i i iTC s t ,  is as follows, 

( ) ( )( )

( ) ( )( )( )
1

5

1 2 3
1

1,

1 ( ) ( ) ( ) . .i i

i i

i i i I S
i

s t

i i it s
i i

TC t T S P H I GI
T

S P H I t dt I t dt G I t dt
t t

γ

γ

θ

θ
−−

= + + +

= + + + +
− ∫ ∫ ∫

 

 

(24)

Similar to previous cases, the simultaneous equation to determine the optimal values of is and it  is as 
follows, 

( ) *
1

*

*

( ) * *

* *
5

/ ( 1) ( ) 0

( ) ( , ) 0

i i

i

i

s t
i i

t

i i is

P H e G s t

G h t dt TC s t

θθ −− ⎫+ − + − = ⎪
⎬

− = ⎪⎭∫
 (25)
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The optimal order quantity, *
5iQ , for the ith replenishment period in this case is as follows, 

* * *

1
* *

1

*
5 1 1( ) ( ) ( ) ( ) ( ) .i i i

i

i i i

t s tt t t
i i i s t s

Q I t f t e e g dt e h t dt h t dt
γθ θ θ

γ
μ−

−
−

⎛ ⎞= + = + +⎜ ⎟
⎝ ⎠∫ ∫ ∫ ∫  

(26)

Applying similar procedure used in Case 4 shows that ( )5 ,i i iTC s t is convex for all 0, 0i is t> > ,  if
*

1( )* *( ) ( ) 1 ( 1)i is t
i ih t h s keθ −−> + .  

3.6 Case 6: Replenishment period with twice variation in demand pattern during shortages 
The replenishment period begins with full inventory at time 1it −  ( 10 ,it μ−≤ < ), inventory is brought 
to zero at time is  ( 0 is μ< < ) while the demand rate is ( )g t . A shortage follows and the period ends 

at time it  ( ,it γ> ).The demand pattern changes twice during shortages, first from ( )g t to ( )g μ and 

later from ( )g μ  to ( )h t . The equation of the system is as follows: 

1
1 1 1

2
2

3
3 2

4
4 3

( ) ( ) ( ) 0, ; ( ) 0,

( ) ( ), ; ( ) 0,

( ) ( ), ; ( ) ( ),

( ) ( ), ; ( ) ( ). 

i
i i i i i

i
i i i

i
i i

i
i i i

dI t I t g t t t s I s
dt

dI t g t s t I s
dt

dI t g t I I
dt

dI t h t t t I I
dt

θ

μ

μ μ γ μ μ

γ γ γ

−
⎫+ + = ≤ ≤ = ⎪
⎪
⎪= ≤ ≤ = ⎪
⎬
⎪= ≤ ≤ =
⎪
⎪
⎪= ≤ ≤ =
⎭

                            (27) 

While ( )1iI t  represents the inventory level, ( )2iI t , ( )3iI t , ( )4iI t , represent the shortage levels at any 
time in the given time range. Solutions to Eq. (27) are as follows, 

1 1

2

3

4

( ) ( ) , ,

( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ( ) ( ) . 

i

i

i

i

st x
i i it

t

i is

t

i s

t

i is

I t e e g x dx t t s

I t g x dx s t

I t g dx g x dx t

I t h x dx g dx g x dx t t

θ θ

μ

μ

γ μ

γ μ

μ

μ μ γ

μ γ

−
−

⎫= ≤ ≤ ⎪
⎪

= ≤ ≤ ⎪⎪
⎬
⎪= + ≤ ≤
⎪
⎪= + + ≤ ≤ ⎪⎭

∫

∫

∫ ∫

∫ ∫ ∫

 

 
 

(28)

 

 The number of units in inventory during the ith replenishment period is given by
1

1 ( ) .i

i

s

I it
I I t dt

−

= ∫  
The amount 

of shortage during the ith replenishment period is also given by 2 3 4( ) ( ) ( )i

i

t

S i i is
I I t dt I t dt I t dt

μ γ

μ γ
= + +∫ ∫ ∫ . 

The total inventory cost per unit time for the ith replenishment period in this case can be obtained as follows, 

( ) ( )( )

( ) ( )( ) ( )( )
1

6

1 2 3 4
1

1,

1 ( ) ( ) ( ) ( ) .i i

i i

i i i I S
i

s t

i i i it s
i i

TC s t S P H I GI
T

S P H I t dt G I t dt I t dt I t dt
t t

μ γ

μ γ

θ

θ
−−

= + + +

= + + + + +
− ∫ ∫ ∫ ∫

 

(29)

Applying the conditions ( )6 ,
0i i i

i

TC s t
t

∂
=

∂
and ( )6 ,

0i i i

i

TC s t
s

∂
=

∂
 to Eq. (29) yields, 
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( ) *
1

*

*

( ) * *

* *
6

/ ( 1) ( ) 0

( ) ( ) ( ) ( , ) 0

i i

i

i

s t
i i

t

i i is

P H e G s t

G g dt g t dt h t dt TC s t

θ

γ μ

μ γ

θ

μ

−− ⎫+ − + − =
⎪
⎬⎛ ⎞+ + − = ⎪⎜ ⎟

⎝ ⎠ ⎭∫ ∫ ∫

 
(30)

 

 The optimal order quantity, *
6iQ , for the ith replenishment period in this case is given by:  

* * *

1
* *

1

*
6 1 1( ) ( ) ( ) ( ) ( ) ( ) .i i i

i

i i i

t s tt t
i i i s t s

Q I t f t e e g t dt g t dt g dt h t dt
μ γθ θ

μ γ
μ−

−

−
−= + = + + +∫ ∫ ∫ ∫ ∫  

(31)

Theorem 4:  

If ( )k P H Gθ= + and
*

1( )* *( ) ( ) 1 ( 1)i is t
i ih t g s keθ −−> + , then ( )6 ,i i iTC s t is convex for all 0, 0i is t> > .  

Proof: See Appendix D.  ■ 

3.7 Case 7: Replenishment period with variation in demand pattern before and during shortages 
In this case the inventory at the beginning of the period ( 10 it μ−≤ < ) gets depleted and shortage 
commence at time is ( isμ γ≤ < ). Shortages continue till the end of the period at time it  ( it γ> ). The 
demand pattern changes before commencement of shortages from ( )g t to ( )g μ and later from ( )g μ

to ( )h t  during shortages.The equation of the system is as follows,  

1
1 1 1 2

2
2 2

3
3

4
4 3

( ) ( ) ( ) 0, ; ( ) ( ),

( ) ( ) ( ) 0 ; ( ) 0,

( ) ( ), ; ( ) 0,

( ) ( ), ; ( ) ( ). 

i
i i i i

i
i i i i

i
i i i

i
i i i

dI t I t g t t t I I
dt

dI t I t g t s I s
dt

dI t g s t I s
dt

dI t h t t t I I
dt

θ μ μ μ

θ μ μ

μ γ

γ γ γ

−
⎫+ + = ≤ ≤ = ⎪
⎪
⎪+ + = ≤ ≤ = ⎪
⎬
⎪= ≤ ≤ =
⎪
⎪
⎪= ≤ ≤ =
⎭

 

 

(32)

 

In Eq(32), ( )1iI t  and ( )2iI t  represent the inventory levels. Also ( )3iI t and ( )4iI t  represent the 
shortage levels at any time during the given time range. The solutions to Eq. (32) are as follows, 

( )1 1

2

3

4

( ) ( ) ( ) , ,

( ) ( ) ,

( ) ( ) ,

( ) ( ) ( ) . 

i

i

i

i

st x x
i it

st x
i it

t

i is

t

i is

I t e e g x dx e g dx t t

I t e e g dx t s

I t g dx s t

I t h x dx g dx t t

μθ θ θ

μ

θ θ

γ

γ

μ μ

μ μ

μ γ

μ γ

−
−

−

⎫= + ≤ ≤ ⎪
⎪
⎪= ≤ ≤ ⎪
⎬
⎪= ≤ ≤
⎪
⎪= + ≤ ≤ ⎪⎭

∫ ∫

∫

∫

∫ ∫

 
 

(33)  

The number of units in inventory during the ith replenishment period is given by: 

1
1 2( ) ( ) .i

i

s

I i it
I I t dt I t dt

μ

μ−

= +∫ ∫  

The amount of shortage during the ith replenishment period is also given by: 

3 4( ) ( )i

i

t

S i is
I I t dt I t dt

γ

γ
= +∫ ∫ . 

The total inventory cost per unit time for the ith replenishment period in this case is given by: 
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( )( ) ( )( )
1

7 1 2 3 4
1

1( , ) ( ) ( ) ( ) ( ) .
( )

i i

i i

s t

i i i i i i it s
i i

TC s t S P H I t dt I t dt G I t dt I t dt
t t

μ γ

μ γ
θ

−−

= + + + + +
− ∫ ∫ ∫ ∫ (34)  

Applying the conditions ( )7 ,
0i i i

i

TC s t
t

∂
=

∂
and ( )7 ,

0i i i

i

TC s t
s

∂
=

∂
 to Eq. (34) yields, 

( )( )*
1

*

*

( ) * *

* *
7

/ 1 ( ) 0
.

( ) ( ) ( , ) 0

i i

i

i

s t
i i

t

i i is

P H e G s t

G h t dt g dx TC s t

θ

γ

γ

θ

μ

−− ⎫+ − + − =
⎪
⎬⎛ ⎞+ − = ⎪⎜ ⎟

⎝ ⎠ ⎭∫ ∫
 

 

(35)

The optimal order quantity, *
7iQ  , for the ith replenishment period is given as follows, 

( )* *

1
* *

1

*
7 1 1( ) ( ) ( ) ( ) ( ) ( ) .i i i

i

i i i

t s tt x x
i i i s t s

Q I t f t e e g x dx e g dx g dt h t dt
μ μθ θ θ

μ γ
μ μ−

−

−
−= + = + + +∫ ∫ ∫ ∫ ∫  (36)

Using similar procedure to Case 6 shows that ( )7 ,i i iTC s t is convex for all 0, 0i is t> >   if
*

1( )*( ) ( ) 1 ( 1)i is t
ih t h keθγ −−> + . 

3.8 Case 8: Replenishment period with twice variation in demand pattern before shortages 
In this case the inventory gets depleted and shortage commence at time is  when demand is declining 
and continues till the end of the period at time it  ( 10 , ,i i it s tμ γ γ−≤ < ≥ > ).The demand pattern 
changes first from ( )g t to ( )g μ and later from ( )g μ  to ( )h t before the commencement of shortages. 
The equation of the system is as follows, 

( )

1
1 1 1 2

2
2 2 3

3
3 3

4
4

( ) ( ) ( ) 0, ; ( ) ( ),

( ) ( ) 0 ; ( ) ( ),
.

( ) ( ) ( ) 0, ; ( ) 0,

( ) ( ), ; ( ) 0. 

i
i i i i

i
i i i

i
i i i i

i
i i i i

dI t I t g t t t I I
dt

dI t I t g t I I
dt

dI t I t h t t s I s
dt

dI t h t s t t I s
dt

θ μ μ μ

θ μ μ γ γ γ

θ γ

−
⎫+ + = ≤ ≤ = ⎪
⎪
⎪+ + = ≤ ≤ = ⎪
⎬
⎪+ + = ≤ ≤ =
⎪
⎪
⎪= ≤ ≤ =
⎭

 

 

(37)

 

The solutions to Eq. (37) are as follows, 

( )
( )

1 1

2

3

4

( ) ( ) ( ) ( ) , ,

( ) ( ) ( ) ,

( ) ( ) ,

( ) ( ) . 

i

i

i

i

st x x x
i it

st x x
i t

st x
i it

t

i i is

I t e e g x dx e g dx e h x dx t t

I t e e g dx e h x dx t

I t e e h x dx t s

I t h x dx s t t

μ γθ θ θ θ

μ γ

γθ θ θ

γ

θ θ

μ μ

μ μ γ

γ

−
−

−

−

⎫= + + ≤ ≤ ⎪
⎪
⎪= + ≤ ≤ ⎪
⎬
⎪= ≤ ≤
⎪
⎪

= ≤ ≤ ⎪⎭

∫ ∫ ∫

∫ ∫

∫

∫

 

 

(38)

 

The number of units in inventory during the ith replenishment period is as follows, 

1
1 2 3( ) ( ) ( ) .i

i

s

I i i it
I I t dt I t dt I t dt

μ γ

μ γ−

= + +∫ ∫ ∫   

The amount of shortage during the ith replenishment period is also given by: ( )4
i

i

t

S is
I I t dt= ∫ and the 

total inventory cost per unit time for the ith replenishment period in this case is given by: 
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( )( )( )
1

8 1 2 3 4
1

1( , ) ( ) ( ) ( ) ( ) .
( )

i i

i i

s t

i i i i i i it s
i i

TC s t S P H I t dt I t dt I t dt G I t dt
t t

μ γ

μ γ
θ

−−

= + + + + +
− ∫ ∫ ∫ ∫   (39)

As in previous cases, the simultaneous equation to determine the optimal values of is and it   is 
obtained as follows, 
( ) *

1

*

*

( ) * *

* *
8

/ ( 1) ( ) 0

( ) ( , ) 0

i i

i

i

s t
i i

t

i i is

P H e G s t

G h t dt TC s t

θθ −− ⎫+ − + − = ⎪
⎬

− = ⎪⎭∫
 

 

(40)

 

The optimal order quantity, *
8iQ  , for the ith replenishment period is as follows, 

( )* *

1
* *

1

*
8 1 1( ) ( ) ( ) ( ) ( ) ( ) .i i i

i

i i i

t s tt x x x
i i i s t s

Q I t f t e e g x dx e g dx e h t dx h t dt
μ γθ θ θ θ

μ γ
μ−

−

−
−= + = + + +∫ ∫ ∫ ∫ ∫  

 

(41)

Applying similar procedure to Case 6 shows that ( )8 ,i i iTC s t is convex for all 0, 0i is t> > if
*

1( )* *( ) ( ) 1 ( 1)i is t
i ih t h s keθ −−> + . 

4. Solution procedure 
As we explained earlier, the optimal values of is (the time when the inventory level reaches zero 
during the ith replenishment period) and it  (time at which the ith replenishment is made) for all 
replenishment periods and their corresponding costs and order quantities can be obtained throughout 
the lifetime of the product in the market without the need of a specific (fixed) time horizon. Before 
presenting the solution algorithm which leads to the optimal replenishment policy, the summary of 
the result for each scenario is outlined in different scenarios. 
 

 

Scenario I 

Optimal values of is  and it (si
*, ti

*) are given by Eq. (5). Optimal inventory cost in period,  ( )* *
1 ,i i iTC s t

, is given by Eq. (4) while the optimal order quantity, ( )* *
1 ,i i iQ s t , is obtained using Eq. (6). 

Scenario II 

    (a). Stabilization of demand: 

Two sets of possible optimal values of is  and it can be obtained using Eq. (10) and Eq. (15). Let 

( )# #,i is t  and ( ),i is to o represent the optimal values of is  and it obtained from Eq. (10) and Eq. (15), 
respectively. In accordance with initial assumptions and the convexity of the cost functions, it follows 
that if #0 is μ< < , then the optimal total inventory cost per unit time of the period is ( )# #

2 ,i i iTC s t . On 

the other hand, if isμ γ≤ <o , the optimal total inventory cost per unit time is ( )3 ,i i iTC s to o which is 
presented as follows, 

( )
( )

# # #
2*

3

, , 0 ,

, , .

i i i i

i

i i i i

TC s t s
TC

TC s t s

μ

μ γ

⎧ < <⎪= ⎨
≤ <⎪⎩

o o o
 (42)

Likewise the optimal order quantity for the period is as follows, 
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( )
( )

# # #
2*

3

, , 0 ,

, , .

i i i i

i

i i i i

Q s t s
Q

Q s t s

μ

μ γ

⎧ < <⎪= ⎨
≤ <⎪⎩

o o o
 (43)

    (b). Declining demand:  

Let, ( ),i is t• • and ( ),i is t⊗ ⊗ represent the optimal values of is  and it obtained from Eq. (20) and Eq. (25), 
respectively. It follows from the initial assumptions and the convexity of the cost functions that if

isμ γ•< < , then the optimal total inventory cost per unit time of the period is ( )4 ,i i iTC s t• • . Likewise if

is γ⊗ > , the optimal total inventory cost per unit time is ( )5 ,i i iTC s t⊗ ⊗ . This can be presented as 
follows,  

( )
( )

4*

5

, , ,

, , .

i i i i

i

i i i i

TC s t s
TC

TC s t s

μ γ

γ

• • •

⊗ ⊗ ⊗

⎧ < <⎪= ⎨
>⎪⎩

 

 

(44)

The optimal order quantity for the period is as follows, 

( )
( )

4*

5

, , ,

, , .

i i i i

i

i i i i

Q s t s
Q

Q s t s

μ γ

γ

• • •

⊗ ⊗ ⊗

⎧ < <⎪= ⎨
>⎪⎩

 (45)

Scenario III 

Let ( )# #,i is t ,  ( ),i is to o  and ( ),i is t• •  represent the optimal values of is  and it obtained from Eq. (30), Eq. 
(35), or Eq. (40), respectively. The optimal total inventory cost per unit time and the optimal order 
quantity for the period is as follows, 

( )
( )
( )

# # #
6

*
7

8

, , 0 ,

, , ,

, , .

i i i i

i i i i i
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The following algorithm outlines the procedure to be used to determine the replenishment policies for 
the first and the subsequent periods which makes up the inventory system. 

 4.1 Optimal replenishment policy (Policy A): 

Under this policy, all replenishment periods are solved using the procedure for Case 1 except at the 
points when changes in demand pattern occur. The periods incorporating the change points are 
identified and the optimal values for those periods are recalculated using the appropriate equations. 
The following algorithm summarizes the policy. 

Algorithm 1 

Step 1:  

Determine all the optimal values ( )* * * *, , ,i i i is t TC Q  for the first and the subsequent replenishments 
using Eq. (4), Eq. (5) and Eq. (6) with appropriate demand function. 
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Step 2:  

Check for change points by comparing two successive values of ti (i.e. ti and ti-1).  

Step 3:  

If 10 it μ−≤ <  and  itμ γ< ≤  for a given ith replenishment period, then a change in demand pattern has 
already occurred during that period. Recalculate the set of optimal values ( )* *,i is t for that period using 
Eq. (10) and Eq. (15), then use Eq. (42) and Eq. (43) to determine the optimal cost and order quantity.   

Step 4: 

If  1itμ γ−≤ <   and it γ>  for a given ith replenishment period, then a change in demand pattern has 
already occurred during that period.  Recalculate the set of optimal values ( )* *,i is t  for that period 
using Eq. (20) or Eq. (25). Use Eq. (44) and Eq. (45) to determine the optimal cost and order quantity.   

Step 5: 

If 10 it μ−≤ <   and  it > γ for a given ith replenishment period, then a change in demand pattern has 
already occurred twice during that period. Hence, recalculate the set of optimal values ( )* *,i is t  for that 
period using Eq. (30), Eq. (35), and Eq. (40). Use Eq. (46) and Eq. (47) to determine optimal cost and 
order quantity. 

4.2 Alternative replenishment policy (Policy B): 

In this situation, we assume all replenishment periods have single demand pattern by deliberately 
avoiding change of demand pattern within replenishment periods and the following algorithm 
summarizes the algorithm used for this case. 

Algorithm 2 

Step 1:  

Determine all the optimal values ( )* * * *, , ,i i i is t TC Q  for the first and subsequent replenishments using Eq. 
(4), Eq. (5) and Eq. (6), respectively with appropriate demand function. 

Step 2:  

Check for demand change points by comparing two successive values of ti (i.e. ti and ti-1).  

Step 3:  

If  10 it μ−< <   and  itμ γ< ≤  for a given ith replenishment period, then a change in demand pattern 
occurred during that period. Set *

it μ=  for that period and recalculate *
is using the Eq. (5). Use Eq. 

(4) and Eq. (6) to determine the optimal cost and the order quantity.   

Step 4: 

If  1itμ γ−≤ <   and it γ>  for a given ith replenishment period, then a change in demand pattern 
occurred during that period.  Set *

it γ=  for that period and recalculate *
is using the Eq. (5). Use Eq. 

(4) and Eq. (6) to determine optimal cost and order quantity.   

Using the algorithm 1 or 2 the replenishment schedules, order quantities and costs can be obtained for 
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all replenishment periods that make up the inventory system when the time horizon is unknown or 
unspecified. Any of the above policies can be adopted by managers depending on various 
circumstances. Apart from the optimal policy (Policy A) other policies have their associated penalties 
in terms of higher total inventory cost which have to be weighed against other benefits to be derived 
from adopting such policies.  

4.3 Additional solution procedure 

The model formulated in section 3 can handle different forms of time dependent demand pattern as 
well as differences in demand pattern for the non-decreasing and non-increasing phases. However, 
the existence of unique optimal solutions can only be guaranteed under the conditions stated in the 
theorems given in Section 3. These conditions may not hold in some cases due to certain factors. The 
factors may include very high shortage costs, low rate of deterioration of products, high rate of 
decline in demand etc. In such cases, the simultaneous equations obtained through direct 
implementation of the derivatives cannot guarantee the optimality. One alternative is to use trust 
region method which guarantee to reach a local optimal solution for all possible circumstances. The 
following summarizes the details of our implementation. 

Scenario 1, Case 1: 

The constrained nonlinear optimization problem (CNLOP) for this case is formulated as follows, 

( )1 1 1 1min , { ; ; 0}.i i i i i i i i iP TC s t subject to s t t t s t− −= ≥ ≥ − ≤ (48)  

The equation for 1 ( , )i i iTC s t is as given by Eq. (4), and the constraints equations are obtained from the 
characteristics of the system as described in Section 3.1. Equation (48) can be solved using trust 
region methods incorporated in the optimization toolbox of software packages like LANCELOT or 
MATLAB to give the optimal values of * * *

1,i i is t and TC .  

Scenario 2:  

Using the same approach as in scenario 1 above, the CNLOP for the several discussed cases under 
this scenario are formulated as: 

Case 2:  ( )2 2 1 1min , { ; ; 0; }.i i i i i i i i i iP TC s t subject to s t t t s t s μ− −= ≥ ≥ − ≤ ≤     

Case 3:  ( )3 3 1 1min , { ; ; 0; }.i i i i i i i i i iP TC s t subject to s t t t s t s μ− −= ≥ ≥ − ≤ ≥     

Case 4:  ( )4 4 1 1min , { ; ; 0; }.i i i i i i i i i iP TC s t subject to s t t t s t s γ− −= ≥ ≥ − ≤ ≤     

Case 5:  ( )5 5 1 1min , { ; ; 0; }.i i i i i i i i i iP TC s t subject to s t t t s t s γ− −= ≥ ≥ − ≤ ≥     

Scenario 3:  

The CNLOP for the cases under this scenario are as follows: 

Case 6:  ( )6 6 1 1 1min , { ; ; 0; ; ; }.i i i i i i i i i i i iP TC s t subject to s t t t s t t s tμ μ γ− − −= ≥ ≥ − ≤ ≤ ≤ ≥   

Case 7:  ( )7 7 1 1 1min , { ; ; 0; ; ; }.i i i i i i i i i i i iP TC s t subject to s t t t s t t s tμ μ γ− − −= ≥ ≥ − ≤ ≤ ≥ ≥   

Case 8:  ( )8 8 1 1 1min , { ; ; 0; ; ; }.i i i i i i i i i i i iP TC s t subject to s t t t s t t s tμ γ γ− − −= ≥ ≥ − ≤ ≤ ≥ ≥  
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The algorithm 1 to obtain the optimal replenishment schedules for the first and the subsequent periods 
can be used with the following modifications: 

Algorithm 3 

Step 1:  

Determine all the optimal values ( )* * *, ,i i is t TC  for the first and the subsequent replenishments by 

solving problem P1 with the appropriate demand function. Use Eq. (6) to obtain the value of *
iQ  

Step 2:  

Check for change points by comparing two successive values of ti (i.e. ti and ti-1).  

Step 3:  

If 10 it μ−≤ <  and itμ γ< ≤   for a given ith replenishment period, then a change in demand pattern 

occurred during that period. Recalculate the set of optimal values ( )* * *, ,i i is t TC  for that period by 
solving problems P2 and P3. Determine the optimal cost for that period by using

* * *
2 3min[ , ]i i iTC TC TC= , where * *

2 3,i iTC and TC are the optimal values obtained from the solution to 
problems P2 and P3, respectively.   

Step 4: 

If 1itμ γ−≤ <  and it γ>  for a given ith replenishment period, then a change in demand pattern occurs 
during that period.  Recalculate the set of optimal values ( )* * *, ,i i is t TC  for that period by solving 

problems P4 and P5. Determine the optimal cost for that period by using * * *
4 5min[ , ]i i iTC TC TC= , where 

* *
4 5,i iTC and TC are the optimal values obtained from the solution to problems P4and P5, respectively.    

Step 5: 

If 10 it μ−≤ <  and it γ>  for a given ith replenishment period, then a change in demand pattern have 
already occurred twice during that period. Hence, recalculate the set of optimal values ( )* * *, ,i i is t TC  
for that period by solving problems P6, P7, and P8. Determine the optimal cost for that period by 
using * * * *

6 7 8min[ , , ]i i i iTC TC TC TC= , where * * *
6 7 8,i i iTC TC and TC are the optimal values obtained from the 

solution to problems P6, P7, and P8, respectively. Similar modifications can be applied to algorithm 2 
to obtain the alternative replenishment schedules. The additional procedure given in section 4.3 can 
be used to obtain the optimal solutions even when the conditions stipulated in the theorems 1 – 4 fail 
to hold. This is due to the robustness and strong convergence property of the trust region methods to 
be used in solving the optimization problem. Illustrative examples are presented next. 

5. Numerical Example  
To demonstrate the application of this model to inventory situation of items with varying demand 
pattern and shortages over various phases in their life cycle in the market, three numerical examples 
are considered in this section. In Example 1, the demand of the item varies from an exponentially 
non-decreasing pattern at the beginning through a uniform pattern during the stability stage and later 
decreases exponentially at the later part of its life cycle in the market. Example 2, however, involves 
different time dependent demand pattern during the growing and the declining phase of demand. 
Example 3 represents special cases where the conditions stipulated in theorems 1-4 do not hold. The 
time horizons in all examples are unknown and the optimal replenishment schedules, cost and order 
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quantities for the first and some of the subsequent periods were obtained using the algorithm outlined 
in the previous section. Example 3 was solved by using the additional solution procedure given in 
section 4.3. 
 
Example 1 
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The alternative replenishment schedules were also obtained with the corresponding cost and order 
quantities. The last period in the alternative schedules was adjusted to end at the same time as that of 
the optimal schedules for ease of comparison. The results are given in Tables 1 – 6. 

Table 1  
Optimal replenishment schedules, order quantity and cost for Example 1 
n 1it −  *

is *
it  *

iT *
iQ *

i iTC T ∗∗

1 0 0.4448 0.5135 0.5135 155.3431 159.4347 
2 0.5135 0.9572 1.0257 0.5122 155.7444 159.4385 
3 1.0257 1.4693 1.5378 0.5121 156.3387 159.6937 
4 1.5378 1.9814 2.0499 0.5121 156.3849 159.6998 
5 2.0499 2.4935 2.5620 0.5121 156.3849 159.6998 
6 2.5620 3.0058 3.0743 0.5123 156.4380 159.7591 
7 3.0743 3.5195 3.5882 0.5139 156.4187 159.9465 
8 3.5882 4.0345 4.1034 0.5152 156.0118 159.9397 
9 4.1034 4.5509 4.6200 0.5166 155.6331 159.9619 
Total inventory cost 1404.6976 1437.5737 

 

Table 1 and Table 2 show that, using the optimal replenishment policy, the length of the ith 
replenishment period ( *

iT ) reduces with increasing demand, remains constant when the demand is 
stable and increases as the demand reduces. This shows that the length of the replenishment period 
generated by the model varies with the variation in demand patterns. This is better than the traditional 
assumption of constant replenishment period irrespective of demand fluctuations.  Increase in demand 
often results in more frequent ordering and, consequently, reduction in the replenishment period 
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while decrease in demand should naturally lead to reduce the ordering frequency (increase in 
replenishment period). 

Table 2  
Optimal replenishment schedules, order quantity and cost for Example 2 
n 1it −  *

is *
it  *

iT *
iQ *

i iTC T ∗∗

1 0 1.1909 1.4443 1.4443 151.8835 390.1032 
2 1.4443 2.6277 2.8795 1.4352 159.4340 397.4738 
3 2.8795 4.1191 4.3831 1.5036 166.3835 415.2282 
4 4.3831 5.9374 6.2699 1.8868 163.1858 453.2257 
5 6.2699 8.2805 8.7136 2.4437 138.3598 473.8122 
6 8.7136 11.7237 12.3821 3.6685 126.7097 531.1463 
Total inventory cost 905.9563 2660. 9894 

 

Table 3  
Optimal replenishment schedules, order quantity and cost for Example 3 
n 1it −  *

is *
it  *

iT *
iQ *

i iTC T ∗∗

1 0 1.0384     1.0816 1.0816 138.8761 357.7002 
2 1.0816 2.0086     2.0471 0.9655 173.6179 372.1729 
3 2.0471 3.0065     3.0464 0.9993 201.7005 398.7911 
4 3.0464  4.0000      4.0449 0.9985 184.5731 397.8490 
Total inventory cost 698.7676 1526.5132 

 

Tables 1-3 also show that the optimal order quantity increases with increasing demand and vice versa. 
This is in line with the findings of Hariga (1996) for perishable items with log-concave demand 
functions. The examples also show that the total inventory cost generated using the optimal 
replenishment policy is less than the one given by the alternative policy. 

Table 4  
Alternative replenishment schedules, order quantity and cost for Example 1 
n 1it −  *

is *
it  *

iT *
iQ *

i iTC T ∗∗

1 0 0.4448 0.5135 0.5135 155.3431 159.4347 
2 0.5135 1.1080 1.2 0.6865 209.3370 223.0453 
3 1.2 1.6436 1.7121 0.5121 156.3849 159.6998 
4 1.7121 2.1557 2.2242 0.5121 156.3849 159.6998 
5 2.2242 2.8960 3.0 0.7758 237.6190 263.2773 
6 3.0 3.4450 3.5137 0.5137 156.4737 159.9436 
7 3.5137 3.9599 4.0288 0.5151 156.0976 159.9683 
8 4.0288 4.5409 4.6200 0.5912 178.3239 184.8116 
Total inventory cost 1405.964 1469.8804 

 

Note that it is always better to consider changes in the demand pattern that may occur within 
replenishment periods. The cost penalties may be small, as shown by Example 1 (compare total cost 
in Table 1 and Table 4) or substantial, as shown by Example 2. 
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Table 5  
Alternative replenishment schedules, order quantity and cost for Example 2 
n 1it −  *

is *
it  *

iT *
iQ *

i iTC T ∗∗

1 0 1.1909 1.4443 1.4443 151.8835 390.1032 
2 1.4443 1.9034 2 0.5557 60.7004 229.1813 
3 2 3.1843 3.4363 1.4363 160.3349 398.0787 
4 3.4363 3.9020 4 0.5637 62.3665 230.3287 
5 4 5.4793 5.7954 1.7954 168.9399 450.0803 
6 5.7954 7.6749 8.0790 2.2836 144.0576 467.6047 
7 8.0790 12.0748 12.9621 4.8831 158.8832 785.1057 
Total inventory cost 907.166 2950.4826 

 

Table 6  
Alternative replenishment schedules, order quantity and cost for Example 3 
n 1it −  *

is *
it  *

iT *
iQ *

i iTC T ∗∗

1 0 1.0384     1.0816 1.0816 138.8761 357.7002 
2 1.0816 1.9634 2.0000 0.9184 164.0288 354.4884 
3 2.0000  2.9594  2.9993 0.9993 201.7127 398.7911 
4 2.9993 4.0031 4.0449 1.0456 211.1488 417.7008 
Total inventory cost 715.7664 1528.6805 

 

The differences between the order quantity generated by the optimal policy and the one generated by 
the alternative policy are quite small and negligible. The examples also demonstrated the ability of 
the model to handle different forms of time dependent demand pattern as well as differences in 
demand pattern for the non-decreasing and non-increasing phases. Apart from solving Example 3 that 
represents special cases, the additional solution procedure given in section 4.3 was also used to 
satisfactorily confirm the validity of the results obtained for Example 1 and Example 2 using the 
algorithms one and two given in section 4.1 and 4.2.  

6. Conclusion 
The inventory lot-sizing problem for deteriorating items with varying demand pattern and unknown 
time horizon has been considered in this paper. A multi-period model was developed to obtain 
optimal replenishment schedules for such items using a general ramp-type demand pattern that allows 
for three-phase variation in demand pattern. This variation represents the growth, the steady and the 
decline phases of demand commonly experienced by some products in the market. By extending the 
Silver-Meal heuristic approach to a general ramp-type demand pattern, the developed model was 
made suitable for inventory situations when time horizon is unknown or unspecified.  Such a situation 
is common in practice, especially regarding many perishable items like fruits, vegetables, fish etc. As 
noted by Donaldson (1977), the demands for such items does not usually cease at the end of a fixed 
time horizon. Also, their perishable nature does not usually allow for a single replenishment to cater 
for demand over a considerable length of time.  

The numerical illustrations showed that allowing for changes in pattern of demand variation within 
replenishment periods, whenever they occur, lead to lower total inventory cost on the long run. It was 
also shown that the length of a replenishment period and the optimal order quantity for the period 
varies with the changes in demand patterns.  
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This model is a generalization of some previous EOQ models incorporating ramp-type demand (e.g. 
Deng et al. 2007, Panda et al. 2008 and Cheng & Wang 2009). It can be extended to cater for wider 
range of products by consideration of varying deterioration rates and varying inventory holding cost. 
Another future research direction is to incorporate the effect of inflation and time value of money in 
modeling to make it suitable for long time application.  
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The second derivatives of ( )1 ,i i iTC s t  at the minimum points are as follows, 
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The determinant of the Hessian matrix in this case is given by the following, 
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The second derivatives of ( )4 ,i i iTC s t  at the minimum point are as follows, 
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The determinant of the Hessian matrix in this case is given by, 
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It follows from Eq. (C3) above, that if
*
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function * *
4 ( , )i i iTC s t is convex. (Note: ( ) ( )h g=γ μ ). ■ 

Appendix D 

The first derivatives of ( )6 ,i i iTC s t  with respect to ,i is and t  are as follows, 
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The determinant of the Hessian matrix in this case is given by: 
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It follows from Eq. (D3) above, that if
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