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  The permutation method of multiple attribute decision making has two significant deficiencies: 
high computational time and wrong priority output in some problem instances. In this paper, a 
novel permutation method called adjusted permutation method (APM) is proposed to 
compensate deficiencies of conventional permutation method. We propose Tabu search (TS) 
and particle swarm optimization (PSO) to find suitable solutions at a reasonable computational 
time for large problem instances. The proposed method is examined using some numerical 
examples to evaluate the performance of the proposed method. The preliminary results show 
that both approaches provide competent solutions in relatively reasonable amounts of time 
while TS performs better to solve APM.  
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1. Introduction 
 

There are many human-made decisions which are influenced by various conflicting factors. 
Organizations are typical examples of environments where different segments (departments) are in 
consistent conflict in terms of organizational objectives. In such a conflicting environment, multiple 
criteria decision making (MCDM) techniques are basically developed to select or rank decision 
alternatives. The existing conflict among goals of a decision maker implies that full attainment to a 
particular goal may jeopardize reaching the other objectives. In the past, business and industry 
decisions were used to have merely two determinants: the “boss”, and the resulting profit. Today, 
however, decision making may involve many people with multiple and conflicting criteria. To cope 
with this complexity, researchers are consistently looking for more capable MCDM techniques which 
could better capture the real situation of a decision making process.  

In MCDM, there are two types of criteria: objectives and attributes. Based on the type of criteria, 
MCDM problems can be classified into two categories: Multiple objective decisions making 
(MODM) and multiple attribute decision making (MADM). The basic difference between MODM 
and MADM problems is that the former concentrates on a continuous decision space while the latter 
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focuses on problems with discrete decision spaces (Yoon & Hwang, 1981). MADM methods are 
classified into the following groups: 1) Compensatory methods where a production with high 
expenditure but good quality is compensated because of its high quality (Yoon & Hwang, 1981). 
ELECTRE, MDS, MRS, TOPSIS, SAW, Linear assignment are examples of this method. 2) Non 
compensatory methods where the attributes are separated. For instance, for taking driving license non 
compensative important factors such as normal eye test, driving rule test and practical driving 
examination are used where one’s strength in one of the tests does not compensate the others. 
Dominance, Lexicography, Elimination, Permutation are examples of this kind of model (Korhonen 
et al., 1992). 

Each MADM methodology has its own limitations and attributes, and the decision maker cannot use 
one model for all decision-making problems. Using MADM methodology to prioritize various 
alternatives of a decision problem requires considering both the characteristics of the preferred 
methodology and the attributes of the problem itself. Nevertheless, there is always a chance of 
reaching to wrong priorities of the alternatives. The technique for order preference by similarity to 
ideal solution (TOPSIS) is a classical method to solve multi-criteria decision-making problem which 
was first developed by Hwang and Yoon (1981) and subsequently discussed by many such as Chu 
(2002), Olson (2004) and Peng (2000). According to TOPSIS, alternatives are chosen based on the 
shortest distance from the positive ideal solution (PIS) and the farthest distance from the negative 
ideal solution (NIS). The PIS has the best measures over all attributes, while the NIS has the worst 
measures over all attributes. TOPSIS was originally presented in the context of multiple criteria 
decision making, where the relative importance decision maker preference was a factor and 
subjective weights were inputs. 

The analytical hierarchy process (AHP) method, as another MADM method, developed by Saaty 
(1990), is based on three principles: decomposition, comparative judgment and synthesis of priorities. 
Based on the decomposition principle, the decision problem is decomposed into a hierarchy that 
captures the necessary elements of the problem. The ELECTRE I method, originally introduced by 
Roy (1968), was built for multi-criteria choice problem where the primary aim is to obtain ranking for 
various alternatives. ELECTRE II was developed by Roy and Bertier (1971) where it represented an 
improvement on ELECTRE I.  Just a few years later, ELECTRE III for ranking actions was devised 
by Roy (1978). Another ELECTRE method, known as ELECTRE IV, was introduced by Hugonnard 
and Roy (1982) as a technique for ranking the alternatives in a real-world project. The new method 
was equipped with an inserted outranking relationships framework. ELECTRE III is used when it is 
possible and desirable to express the quantity of the relative importance of criteria and ELECTRE IV 
is applied when this quantification is not possible. 

Permutation method (PM) is one of the MADM techniques to find the best linear ordering of the 
alternatives. It is often difficult to reach the final result by PM since the method needs to spend 
tremendous amount of CPU-time which increases exponentially as the number of the alternatives 
increases. Also, Rinnooy (1976) proved that if the number of alternatives increases, the problem 
becomes NP-hard. Among all MADM approaches, permutation method is a technique developed to 
rank decision alternatives based on decision matrix and weights of criteria. This method is applied on 
a variety of industrial problems including location and allocation of factories in national or 
international level, establishment of efficient production and non-production units in factory 
environment, suitable layout design for equipment and machinery production units, selection of 
suppliers, etc. There are different goals and criteria which could be considered in the decision-making 
process such as working conditions, production requirements, practical constraints, and personnel 
requirements.  

As an early application, the permutation method was used by Paelinck (1977) in an airport location 
problem. Ancot and Paelinck (1982) applied permutation method in urban resource management 
related to water supply and garbage grave, public transport, and public services. Blair and Karnisky 
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(1994) applied the method for analysis of recorded electrical wave datasets of brain. Chin and 
Haughton (1996) proposed permutation test for analyzing the student learning evaluations. 
Permutation methods were also applied by Pantazis et al. (2003) for the analysis of MEG data in 
reconstructed cortical maps of brain activation. Turskis (2008) used this method for contractor's 
evaluation. Chen and Wang (2009) presented interval-valued fuzzy permutation (IVFP) methods for 
solving MADM problems based on interval-valued fuzzy sets and showed how this method could be 
used in group decision makings. For more reviewing MCDM literature, interested readers can study 
Figueira et al. (2005). 

In this paper, an adjusted permutation method (APM) is proposed to correct shortcomings of the 
classical permutation method. Since APM has the same complexity degree as the classical 
permutation method, tabu search (TS) and particle swarm optimization (PSO) techniques are 
proposed to handle large instances of the problem. 

The remainder of this paper is organized as follows. Section 2 is dedicated to an introduction to the 
classical permutation method. The APM is proposed in Section 3. Two meta-heuristic techniques 
including TS and PSO are described in Section 4 to handle APM for large instances of the problem. 
Numerical examples are presented in Section 5. Finally, the paper is concluded in Section 6. 

2. Classical permutation method 

The permutation method for MADM problem was first proposed by Jacquet-Lagreze (1969). It is 
based on the permutation of decision alternatives: If m alternatives are available, then !m
permutations can be generated. This method calculates a rate for each permutation and eventually 
chooses the permutation with the highest rate as the preferable permutation. Suppose there are m
alternatives )...,,,( 21 mAAA and the problem has n criteria (X1, X2, …, Xn).Then the decision matrix (D) 
can be formed with alternatives and criteria in rows and columns, respectively. In general, the 
importance of each criterion is different. 

For instance suppose that there are three alternatives )3( =m which are displayed with 1A , 2A  and 3A . 
In this case, there are 3! =6 permutations as },,{ 3211 AAAP = , },,{ 2312 AAAP = , },,{ 3123 AAAP = , 

},,{ 1324 AAAP = , },,{ 2135 AAAP = , and },,{ 1236 AAAP = . 

In order to choose the best permutation, we first define the concordance )( klC and the discordance
)( klD sets. These sets are generated based on pairwise comparison of alternatives k and l regarding 

the criteria. kja is defined as the performance of thk alternative in thj  criterion in the decision 
matrix. Suppose criterion j has positive effect on our decision. Now if ljkj aa ≥ , Then j will be in klC

set, otherwise j will be in klD set. Mathematically speaking, the concordance and discordance sets 
are defined as: 

lkmlkaajC ljkjkl ≠=≥= ,...,2,1,}|{  (1)

lkmlkaajD ljkjkl ≠=≤= ,...,2,1,}|{  (2)

After generating klC and lkD for a permutation, the rate of that permutation is calculated as follows,  

!,...,1, miwwR
klDj jklCj ji =−= ∑∑ ∈∈  (3)
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where iR and jw denote the rate of permutation iP and the weight of criterion j , respectively. After 
calculating these rates for all permutations, the permutation with the highest rate is selected as the 
best priority sequence of decision alternatives.  

In the pairwise comparison of alternatives, the classical permutation method can only consider the 
priority of an alternative over the other one, and not the degree by which this priority exists. This 
shortcoming can be addressed through the following example. Suppose there are three alternatives 
and three criteria in a decision matrix given by Table 1.  

Table 1  
A sample decision matrix 
  Criterion  
Alternative 1 (-) 2 (+) 3 (+) 
1 200 5 2400 
2 300 5 2420 
3 350 3 2000 
 

The first criterion has a negative effect and the other two criteria have positive effects on the decision. 
The weights of criteria are given as 0.3, 0.4, and 0.3, respectively. Assuming a linear utility function, 
it is clear that the alternative 1 is better than alternative 2. The classical permutation method, 
however, cannot underscore this dominance. It calculates the same rate of 2 for permutations 

},,{ 321 AAA  and },,{ 312 AAA  whereas the former is clearly the best permutation of this problem. To 
address this drawback, the APM is proposed in the next section.  

3. Adjusted Permutation Method  

In APM, the rate of each permutation is calculated as follows, 

!...,,1,)
||

()
||

( minmaxminmax mi
aa
aa

w
aa
aa

wR
klCj klDj jj

ljkj
j

jj

ljkj
ji =

−

−
−

−

−
=′ ∑ ∑

∈ ∈
 (4)

where max
ja and min

ja are the maximum and the minimum values of the thj criterion, respectively. The 
first and the second terms on the right hand side of (4) calculate the sum of weighted standard 
proportional priority of each permutation using concordance and discordance sets, respectively. Using 
the previous example, the adjusted rate of permutation },,{ 321 AAA  is calculated as 1.9714 versus 1.6 
obtained for permutation },,{ 312 AAA .The exact algorithm used by APM to solve MADM problems 
has the same complexity as the classical permutation method. The computational time grows 
exponentially as the number of alternatives increases. Therefore, meta-heuristic procedures are 
required to handle large instances of the problem. 

4. Meta-heuristic procedures for APM  

In their original definition, meta-heuristics are solution methods that coordinate an interaction 
between higher level strategies and local improvement procedures to make a useful process of 
escaping from local optima and to achieve a robust exploration of solution space. These methods may 
also embed procedures that utilize strategies for overcoming the trap of local optimality in complex 
solution spaces, especially those procedures that employ one or more neighborhood structures as a 
tool of defining acceptable moves to transition from one solution to another, or to build or destroy 
solutions. 

In this paper, two meta-heuristics are suggested to solve APM in reasonable amount of computational 
resources. The first is based on TS and the second is based on PSO. To the best of our knowledge, 
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these meta-heuristics have never been applied to the permutation method in MADM area. But, these 
are used in other problems like sequencing problem. There are different works such as Nowicki and 
Smutnicki (1996) and Grabowski and Wodecki (2004) to apply TS for accelerating the process of 
permutation method in sequencing problem. Grabowski and Pempera (2007) used TS algorithm to 
develop a method for minimizing makespan in a flowshop problem. Liao and Huang (2010) proposed 
a method to solve a sequencing problem that simultaneously uses two TS algorithms with adaptation 
of permutation method. Tasgetiren et al. (2007) presented PSO to solve the permutation flowshop 
sequencing problem with the objectives of minimizing makespan and the total flowtime of jobs. This 
could motivate us to use TS and PSO algorithm for solving permutation method in other areas. 

4.1. TS for APM 

There are many important applications in different fields of sciences where it is practically impossible 
to detect the optimal solution. In such cases, one of the relevant choices is to use meta-heuristic 
approaches such as TS or PSO. TS was first proposed by Glover (1989, 1990) and it has been 
dramatically changing the ability of solving problems of practical significance. The pseudo code of 
the proposed TS for APM is as follows: 

1. Insert decision matrix and weights, Calculate the minimum and maximum values of rating of each 
alternative with respect to each criterion 

2. Generate a random permutation and calculate its rate R  from (4), Entitle this permutation and its 
rate as Best_Per and Best_R, respectively 

3. Set Max_Iter, Max_STM (Short Term Memory) and Iter=1, Insert LTM (Long Term Memory) as a 
matrix with all elements equal to 1 

4. Generate Random matrix using (5): 

),(
)1,0(),(
jiLTM

randjiRandom =
 

(5)

5. Set N1 and N2 as the row and the column of the maximum value in the Random matrix, 
respectively, if their exchange is in the STM go to step 4 

6. Exchange N1 with N2 and set as Per and calculate the rate of this new permutation, Insert this 
exchange in STM and eliminate the last exchange in STM like (M1, M2) 

7. LTM (M1, M2) =LTM (M1, M2) +1 

8. If R>Best_R, then Best_R=R and Best_Per=Per 

9. Iter =Iter +1. If Iter>Max_Iter, then the final solution is Best_R and Best_per; else go to step 4 

There are two parameters in proposed TS. Max_Iter and Max_STM must be tuned before executing 
the procedure. The important factor in tuning these parameters is the number of alternatives (NOA). 
The tuning empirical formulas are expressed in consequence of some experiments by considering the 
NOA.  Hence, the suitable performance of proposed TS can be achieved by setting these parameters 
as: NOAIterMax ×= 40_ , ⎣ ⎦5_ ÷= NOASTMMax . Randomization and diversification are considered 
using Eq. (5) by choosing the row and the column with the maximum value in the Random matrix, 
respectively. The procedure is depicted in Fig. 1.  
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Fig. 1. Flowchart of the proposed TS 

4.2. PSO for APM 

PSO is a significant member of swarm intelligence. It was proposed by Kennedy and Eberhart (1995) 
as a stochastic optimization method. PSO is a population based search algorithm developed based on 
the simulation of the social behavior of bees, birds or a school of fish. Each individual within the 
swarm is represented by a vector in multidimensional search space. This vector has one assigned 
vector which determines the next movement of the particle called the velocity vector. The PSO also 
determines how to update the velocity of a particle. Each particle updates its velocity based on current 
velocity and the best position (p_best) it has explored so far and the global best position (g_best) 
explored by swarm. Movement of each particle is based on Eq. (6) and Eq. (7) depicted by Fig. 2. Eq. 
(6) shows that the velocity vector is updated by the global best position, personal best position, and 
current position of each particle. Eq. (7) shows that each particle moves by its velocity. 
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Fig. 2. Particle movement 

where i is the index of the particles, t is the index of the iteration, iv is the vector of velocity, ix is 
the position, a is the inertial weight, 1b is the weight of difference between personal best and current 
position, 2b is the weight of difference between global best and current position. Note that a , 1b
and 2b are integer. Finally rand is used for randomization. 

The pseudo code of the proposed PSO for APM is as follows: 

1. Insert a decision matrix and weights of each criterion 

2. Determine a, b1, b2, Max_Iter, and the number of particles, No_Particle, which is an integer 
number 

3. Set −∞=RpBest _  for personal best rate of each particle and −∞=RgBest _ for the global best 
rate, Generate random permutations for each particle and set Iter=1 

4. Subtract a  from the number of alternatives, for the number of the answer, exchange two 
alternatives randomly and repeat this step for each particle 

5. Calculate the rate of each permutation R  using Eq. (4), for all particles. If R>pBest_R then 
pBest=R and pPer=Per 

6. Find the maximum rate and its permutation for this iteration, Entitle this rate and its permutation 
as MR and MPer, respectively. If MR>gBest_R, then gBest_R=MR and gPer=MPer 

7. Generate a random integer number (RIN1) between 0 and b1. Liken RIN1 numbers of Per to pPer 
for each particle 

8. Generate a random integer number (RIN2) between 0 and b2. Liken RIN2 numbers of Per to gPer 
for each particle 

9. Iter=Iter+1, If Iter<Max_Iter then go to step 4; otherwise the solution is gBest_R and gPer 

The flowchart of this proposed procedure is depicted in Fig. 3. There are five parameters in the 
proposed PSO for APM. As mentioned before, the NOA is the important factor for tuning the 
parameters. Therefore, These parameters are set as:  15_ =ParticleNO , NOAIterMax ×= 5_ , 

1−= NOAa , ⎣ ⎦21 ÷= NOAb  and ⎣ ⎦ 221 −÷= NOAb . As we already explained we need to have 
21 bba ≥≥  for the implementation of our PSO and better results are normally expected using this 

condition (Clerc, 2006). This procedure can also flee from the local solution by using Eq. (6) and Eq. 

Velocity Vector

Current Position 

Personal Best Position 

Global Best Position 

New Position
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(7) with tuned parameters. The application and the implementation of the proposed meta-heuristics of 
APM are presented in the next section. 

 

 

Fig. 3. Flowchart of the proposed PSO 

4.3. Illustrative examples 

In order to demonstrate the implementation of our proposed method we use two numerical examples 
in this section. The first example has 10 alternatives and 5 criteria where the second and the fifth 
criteria are negative attributes and the third and the fourth criteria are qualitative. The weights of the 
criteria are given as 0.3, 0.2, 0.1, 0.1 and 0.3, respectively. Table 2 shows the decision matrix of this 
example.  

Table 2  
Decision matrix of the first example 
   Criterion   
Alternative 1 (+) 2 (-) 3 (+) 4 (+) 5 (-) 
1 22 4.2 Very Good Medium 21 
2 25 2.6 Good High 20 
3 24 1.5 Poor Low 27 
4 15 6.8 Good Medium 59 
5 35 7.9 Medium High 67 
6 18 1.7 Poor Low 34 
 

7 12 4.8 Very Good High 26 
8 20 4.5 Medium Low 34 
9 23 3.5 Poor Medium 65 
10 22 4.5 Very Good Low 52 
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To tackle this example, we first quantify the qualitative criteria. For the third criterion, “Poor”, 
“Medium”, “Good” and “Very Good” are transformed to 1, 2, 3 and 4, respectively. The fourth 
criterion is transformed in a similar manner. We determine the exact solution of this problem by 
checking all permutations and the example is solved using the two proposed meta-heuristics. The 
results are summarized in Table 3. 

 

Table 3  
Results of the first example 
Solution 
method 

Rank 
Best rate CPU 

time (s) 1 2 3 4 5 6 7 8 9 10 

Exact 2 1 7 5 3 8 6 10 9 4 9.1103 557.747 

TS 2 1 7 5 3 8 6 10 9 4 9.1103 0.261 

PSO 2 1 7 5 3 8 6 10 9 4 9.1103 0.987 
 

Table 3 shows that the proposed procedures replicate the solution of the exact method in a reasonable 
CPU time. In addition, it seems that the required CPU time for TS is less than PSO.  

5. Computational experiments 

This section presents the experiments conducted to investigate the performance of TS and PSO on 
benchmark instances which are generated randomly. We have generated a matrix with 30 alternatives 
and 6 criteria. These alternatives represent the suppliers of a corporation and the criteria are price, 
transportation cost, delivery time, history of cooperation, production capacity and quality, 
respectively. To generate these random instances, lower and upper bounds are considered for each 
criterion. These values for the first, the second and the fifth criteria are shown in Table 4 and the 
other criteria are qualitative. Hence, we use similar transformation method as explained before for 
quantitative values. Therefore, the values can be generated randomly and  5, 10, 15, 20 and 25 
alternative subsets are built by taking the top 5×6, 10×6, 15×6, 20×6 and 25×6 submatrices and we 
can take 6 benchmark instances from this random problem. 

Table 4  
Lower and upper bounds for quantitative criteria in generating random matrix 
 Lower bound Upper bound Type 

Price 10 80 Integer 

Transportation Cost 1 10 Fraction 

Production Capacity 10 100 Integer 
 

In this matrix, the first and the second criteria are negative attributes. Weights of criteria are given as 
0.3, 0.2, 0.2, 0.05, 0.2 and 0.05, respectively. The purpose of this problem is to find the preferable 
supplier and to rank these suppliers. Table 5 presents the random decision matrix of this benchmark 
problem. In line with the first example, the qualitative criteria are first quantified. In this example, the 
total number of permutations are 5!, 10!, 15!, 20!, 25! and 30! for the mentioned six benchmark 
instances, respectively. It is clear that tackling such large problem instances by complete enumeration 
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of all permutations is impractical. This clearly calls for meta-heuristic procedures that can efficiently 
solve the problems. 

We apply the TS and PSO procedures of subsection 4.1 and 4.2 to these instances and the results are 
repeated five different times. Table 6 and Table 7 summarize the details of our implementations. All 
computations were executed using MATLAB 7.8 on a personal computer equipped with 2.99GB of 
RAM and a Pentium microprocessor running at 2.53 GHz. 

Table 5  
Decision matrix of the benchmark problem 

Criterion 
Alternative 1 (-) 2 (-) 3 (+) 4 (+) 5 (+) 6 (+) 
1 12 2 Poor Medium 30 Very Good 
2 24 6 Very Good Low 26 Poor 
3 35 1.5 Poor Low 27 Good 
4 10 6.8 Good Low 89 Medium 
5 45 9 Poor High 59 Very Good 

6 58 7 Poor Low 54 Poor 

7 12 8 Very Good Low 16 Medium 

8 24 4.6 Very Good Medium 67 Poor 

9 36 6.8 Poor Low 80 Good 
10 20 3.2 Medium High 46 Poor 
11 26 1.9 Poor High 20 Poor 

12 69 8.9 Very Good Low 26 Poor 

13 58 9 Poor Low 38 Poor 
14 41 4 Very Good Low 95 Very Good 

15 12 6 Poor High 47 Good 

16 35 6.7 Poor High 41 Poor 
17 30 6.9 Medium High 16 Very Good 
18 20 4.6 Good Low 57 Very Good 
19 70 5.8 Poor High 50 Poor 
20 74 7 Very Good Medium 90 Poor 

21 26 8.5 Medium Low 13 Very Good 

22 70 3.6 Good High 68 Medium 
23 53 9.4 Medium Medium 53 Good 
24 36 2.2 Poor Low 97 Poor 
25 16 1.4 Very Good Low 36 Very Good 
26 41 5.1 Good High 56 Medium 
27 28 9 Medium Medium 78 Poor 
28 64 6.4 Very Good High 83 Good 
29 31 4.2 Poor Low 25 Very Good 
30 19 7 Very Good High 47 Poor 
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Table 6  
The proposed TS results of the benchmark instances N

um
ber 

of
alternatives
Instances 

Run Solution permutation CPU(s) B_Rate

1 
2 
3 
4 
5 

5 

1 4 1 2 3 5           0.1623 2.4856 
2 4 1 2 3 5           0.1547 2.4856 
3 4 1 2 3 5           0.1651 2.4856 
4 4 1 2 3 5           0.1706 2.4856 
5 4 1 2 3 5           0.1582 2.4856 

1 

10 

1 4 8 10 1 7 2 3 9 5 6      0.3057 9.2123 
2 2 4 8 10 1 7 2 3 9 5 6      0.2992 9.2123 
3 3 4 8 10 1 7 2 3 9 5 6      0.2921 9.2123 
4 4 4 8 10 1 7 2 3 9 5 6      0.3154 9.2123 
5 5 4 8 10 1 7 2 3 9 5 6      0.2864 9.2123 
1 

15 

1 14 4 8 10 7 1 2 15 11 9 3 5 12 6 13 0.3373 22.8010 
2 2 14 4 8 10 7 1 2 15 11 9 3 5 12 6 13 0.3225 22.8010 
3 3 14 4 8 10 7 1 2 15 11 9 3 5 12 6 13 0.3312 22.8010 
4 4 14 4 8 10 7 1 2 15 11 9 3 5 12 6 13 0.3356 22.8010 
5 5 14 4 8 10 7 1 2 15 11 9 3 5 12 6 13 0.3298 22.8010 

1 

20 

1 
14 4 8 18 10 7 1 2 15 11 20 9 17 3 5 

0.5249 37.8339 16 12 19 6 13           

2 2 
14 4 8 18 10 7 1 2 15 11 20 9 17 3 5 

0.5645 37.8339 16 12 19 6 13           

3 3 
14 4 8 18 10 7 1 2 15 11 20 9 17 3 5 

0.6328 37.8339 16 12 19 6 13           

4 4 
14 4 8 18 10 7 1 2 15 11 20 9 17 3 5 

0.3863 37.8339 16 12 19 6 13           

5 5 
14 4 8 18 10 7 1 2 15 11 20 9 17 3 5 

0.6928 37.8339 16 12 19 6 13           

1 

25 

1 
14 25 4 8 18 10 7 1 2 15 24 11 20 22 17 

0.7623 56.3126 9 3 21 16 5 23 12 6 19 3      

2 2 
14 25 4 8 18 10 7 1 2 15 24 11 20 22 17 

0.9261 56.3126 9 3 21 5 16 23 12 19 6 13      

3 3 
14 25 4 8 18 10 7 1 2 15 24 11 20 22 17 

0.8980 56.3126 9 3 21 16 23 5 12 6 19 13      

4 4 14 25 8 4 18 10 1 7 2 15 24 11 20 22 17 0.6461 56.2923 9 3 21 5 16 23 12 19 6 13      

5 5 14 25 4 8 18 10 7 1 2 15 24 11 20 22 17 0.8561 56.3126 9 3 21 5 16 23 12 19 6 13      

1 

30 

1 14 25 4 8 30 18 28 10 7 26 1 2 15 24 27 1.4344 76.6881 11 20 22 17 9 3 29 21 5 16 23 12 19 6 13 

2 2 14 25 4 8 18 30 28 10 7 26 1 2 15 24 27 1.3060 76.6648 11 20 22 17 9 3 29 21 5 16 23 12 19 6 13 

3 3 14 25 4 8 30 18 10 28 7 26 1 2 15 24 27 0.9615 76.6866 11 20 22 17 9 3 29 21 5 16 23 12 19 6 13 

4 4 14 25 4 8 30 18 28 10 7 26 1 2 15 24 27 0.9657 76.6881 11 20 22 17 9 3 29 21 5 16 23 12 19 6 13 

5 5 14 25 4 8 30 18 28 10 7 26 1 2 15 24 27 1.3152 76.6881 11 20 22 17 9 3 29 21 5 16 23 12 19 6 13 
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Table 7 
The proposed PSO results of the benchmark instances Instance 

N
um

ber of 
alternatives 

Run Solution permutation CPU(s) B_Rate 

1 5 

1 4 1 2 3 5           0.3168 2.4856 
2 4 1 2 3 5           0.3247 2.4856 
3 4 1 2 3 5           0.2851 2.4856 
4 4 1 2 3 5           0.2255 2.4856 
5 4 1 2 3 5           0.2457 2.4856 

2 10 

1 4 8 10 1 7 2 3 9 5 6      0.3480 9.2123 
2 4 8 10 1 7 2 3 9 5 6      0.2812 9.2123 
3 4 8 10 1 7 2 3 9 5 6      0.4809 9.2123 
4 4 8 10 1 7 2 3 9 5 6      0.3254 9.2123 
5 4 8 10 1 7 2 3 9 5 6      0.4818 9.2123 

3 15 

1 14 4 8 10 7 1 15 2 11 9 3 5 12 6 13 0.6366 22.7960
2 14 4 8 7 10 2 1 15 11 9 3 5 12 6 13 0.6206 22.7674
3 14 4 8 10 7 2 1 15 11 9 3 5 12 6 13 0.6530 22.7856
4 14 4 8 10 7 1 2 15 11 9 3 5 12 6 13 0.6026 22.8010
5 14 4 8 10 7 1 15 2 11 9 3 5 12 6 13 0.7050 22.7960

4 20 

1 14 4 8 18 10 7 1 2 15 11 20 9 17 3 5 1.6449 37.833916 12 19 6 13           

2 14 4 8 18 10 7 1 2 15 11 20 9 17 3 5 1.9945 37.833916 12 19 6 13           

3 14 4 8 18 10 7 1 2 15 11 20 9 17 3 5 2.0328 37.833916 12 19 6 13           

4 14 4 8 18 10 7 1 2 15 11 20 17 9 3 5 1.3863 37.829716 12 19 6 13           

5 14 4 8 18 10 7 1 2 15 11 20 9 17 3 5 1.9728 37.833916 12 19 6 13           

5 25 

1 14 25 4 8 18 2 10 7 1 15 24 11 20 22 17 2.1465 56.22359 3 21 5 16 23 12 19 6 3      

2 14 25 8 4 18 10 7 1 2 15 24 11 20 22 9 3.3512 56.252517 21 3 5 16 23 12 19 6 13  

3 14 25 8 4 18 10 1 7 2 15 24 11 22 20 9 3.4550 56.216517 3 5 21 16 23 12 19 6 13      

4 14 25 4 8 18 7 10 15 1 2 24 11 20 22 17 2.7915 56.25899 3 21 5 16 23 12 19 6 13      

5 14 25 8 4 18 10 7 2 1 15 24 11 22 17 20 2.5117 56.21479 3 5 21 16 23 12 19 6 13      

6 30 

1 14 4 25 8 18 30 28 10 7 1 26 2 24 15 27 3.7405 76.541511 22 20 17 9 3 21 29 5 16 23 12 19 6 13 

2 14 25 4 30 8 18 28 7 10 2 1 26 15 27 24 3.9658 76.240611 22 9 20 3 17 29 5 16 23 21 12 19 6 13 

3 14 4 25 18 8 10 30 7 28 1 2 26 15 24 11 3.7482 76.265727 22 20 17 9 3 21 29 5 16 23 12 19 6 13 

4 14 25 4 8 30 28 18 10 1 7 26 15 2 11 24 4.3661 76.217920 27 22 17 9 3 16 5 21 29 23 12 19 6 13 

5 25 14 8 4 30 18 7 10 28 2 26 1 15 24 27 3.7476 76.233222 11 20 17 9 3 21 29 16 5 23 6 12 19 13 
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5.1. Comparative Study 

In this section we study the performance of two proposed meta-heuristic TS and PSO approaches by 
choosing six benchmark instances and performing ANOVA test.  
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Fig. 4. ANOVA results: 95% confidence interval for the difference between TS and PSO 

Instance (1)  Instance (2) 
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Fig. 4 summarizes the results of our investigation where the critical value for this analysis is 
considered as 0.05. As we can observe from Fig. 4 TS performs better compared with PSO method. 
Hence, it is not necessary that the p-values of these analyses to be declared.  

In the first and the second instances which represent small instances, two meta-heuristic approaches 
have the same results. As we explained earlier, the performance of the proposed meta-heuristics 
cannot be measured based on the small instances. For the third and the forth instances which 
represent medum size instances we could observe some differences where TS seems to perform better 
than PSO.  

The fifth and the sixth instances represent instances for large-scale problems. As we can see from the 
last two instances, the two approaches in APM perform completely different. Based on the results on 
Table 6 and Table 7 we can conclude that TS requires less CPU time than PSO for almost all cases. 
The results of these tables also show that the proposed TS in APM can nearly provide the exact 
solution. 

One other observation from the experimental results is that both meta-heuristic approaches could 
solve the resulted NP-Hard permutation problem in reasonable amount time for typical real-world 
problems. The CPU times for most large-scale problems is less than a few seconds which means that 
a decision maker could solve a problem different times. This could be considered as an outstanding 
advantage since there are many cases where we may wish to run a problem under various 
cicumstances to perform sensitivity analysis.       

6. Conclusion 

In any MADM process, there are three important criteria which need to be considered. The first one is 
the selection of the significant criteria. The second one is the identification of the competent 
alternatives and last one is to make the decision based on an effective and efficient technique. The 
implementation of the third one normally involves the use of some NP-Hard approaches where we 
need to spend significant amount of time to reach optimal solutions.  

We have presented a new adjustment permutation method for permutation scheme. The proposed 
method of this paper has been solved using two meta-heuristic approaches of TS and PSO. The 
preliminary results indicate that both meta-heuristic approaches could provide reasonable solutions 
but the proposed TS provides better results compared with PSO for large instances. As a future 
research direction, we propose applying other meta-heuristic procedures such as genetic algorithm 
and invasive weed optimization to the APM, and comparing results of this method with other MADM 
techniques.  
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