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  In this paper, we establish an economic production quantity (EPQ) based inventory model by 
considering various types of non-perfect products  . We classify products in four groups of 
perfect, imperfect, defective but reworkable and non-reworkable defective items. The demand 
is a power function of price and marketing expenditure and production unit cost is considered to 
be a function of lot size. The objective of this paper is to determine lot size, marketing 
expenditure, selling price, set up cost and inventory holding cost, simultaneously. The problem 
is modeled as a nonlinear posynomial geometric programming and an optimal solution is 
derived. The implementation of the proposed method is demonstrated using a numerical 
example and the sensitivity analysis is also performed to study the behavior of the model.  
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1. Introduction 
 

The main focus of inventory control problems is on optimizing order quantity or lot-sizing subject to 
some capacity limitations. In such problems, the objective is either to minimize the total costs 
associated with the inventory control system including ordering and holding costs or to maximize the 
benefits associated with the system. The EOQ model has been widely employed along these lines in 
inventory control systems to determine ordering or purchasing quantity  . When the production takes 
place at a constant rate, the EOQ model is extended to economic production quantity (EPQ). One of 
the primary assumptions with most lot-sizing models is that demand is constant and is given in 
planning horizon. However, demand can be affected by different factors such as price and marketing 
expenditure (Lilian, 1992). The other issue on classical lot-sizing problems is the absence of quality 
characteristics. Product quality is normally affected by the state of the production process, which may 
shift from an "in-control" state to an "out-of-control" state and produce defective items (Lee & 
Rosenblatt, 1987). Hence defective items are produced when the quality characteristics are outside 
the specification limits and the products cannot be used until the necessary rework is applied. The 
production process may also produce imperfect quality products and items of imperfect quality could 
be used in another production/inventory situation that is less restrictive process and acceptance 
(Salameh & Jaber, 2000). Therefore, imperfect items can be sold to a particular purchaser at a 
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discount price. However, as the production of imperfect or defective products is a natural expectation, 
it will be more realistic to integrate quality considerations into the classical models to cope with real 
life manufacturing conditions. We classify products in four groups of perfect, imperfect, defective but 
reworkable and non-reworkable defective items. The percentage of each type is assumed to be 
constant and deterministic. 

The other controversial assumption with many classical EPQ model is that the unit production 
expenditure is assumed to be constant (Bedworth & Bailey, 1987) and all units produced are of good 
quality (Warets, 1994). In recent decades, researchers have tried to determine the optimal batch 
quantity of imperfect production systems with the consideration of different operating conditions.  

Gupta and Chakraborty (1984) considered the reworking option of rejected items. They considered 
recycling from the last stage to the first stage and obtained an economic batch quantity model. Lee et 
al. (1997) developed a model of batch quantity in a multi-stage production system considering 
various proportions of defective items produced in every stage while they ignored the rework 
situation. Salameh and Jaber (2000) surveyed an EOQ model where each lot contains a certain 
percentage of defective items with a continuous random variable. They also considered that imperfect 
items could be sold as a single batch at a reduced price by the end of 100% inspection but they did 
not address the impact of the rejected and the reworked items and the selling price. In their paper, 
Salameh and Jaber did not declare the appropriate cycle time for selling the imperfect products. 
Hayek and Salameh (2001) assumed that all produced defective items were repairable and provided 
an optimal point for EPQ model under the effect of reworking the imperfect quality items. Teunter 
and van der Laan (2002) tried to find the solution for the non -optimal condition in an inventory model 
with remanufacturing. Chiu (2003) considered a finite production model with random defective rate, 
scrap, reworking of repairable defective items and backlogging to derive an optimal operating policy 
including lot size and backordering levels that minimized overall inventory costs. Chan et al. (2003) 
provided a framework to integrate lower pricing, rework and reject situations into a single EPQ 
model. They also found that the time schedule for selling imperfect items is critical, as this decision 
would affect the inventory cost and the batch quantities. Jamal et al ( . 2004) considered a single 
production system with rework options incorporating two cases of rework process to minimize the 
total system cost  . In the first case, they considered that the rework executed within the same cycle and 
the same stage of production. In the second case, the defective items are accumulated up to N cycles 
to be reworked for the following cycle where all defective products could be reworked. Ben-Daya et 
al. (2006) developed integrated inventory inspection models with and without replacement of 
nonconforming items discovered during inspection where the process includes no inspection, 
sampling inspection, and 100% inspection. They also proposed a solution procedure to determine the 
operating policies for inventory and inspection which consists of order quantity, sample size, and 
acceptance number. Recently, Jaber et al. (2009) applied the concept of entropy cost to extend the 
classical EOQ model under the assumptions of perfect and imperfect quality. 

There is also another types of lot sizing where the primary objective is the maximization of profit 
which incorporates pricing and marketing expenditure (Fathian et al., 2009; Lee & Kim, 1993; Lee et 
al., 1996; Sadjadi, 2005). Sadjadi et al. (2005) presented a joint production, marketing and inventory 
model which determines the production lot size, marketing expenditure and product's selling price 
when demand and production have linear relationship. Lee and Kim (1993) formulated a model 
incorporating production and marketing decisions in a profit maximizing firm over a planning 
horizon. Their integrated model simultaneously determines price, marketing expenses, demand or 
production volume and lot size for a single product.  

Geometric Programming (GP) is a popular mathematical programming technique for engineering 
design purposes (Beightler & Philip, 1976; Duffin, 1967; Sadjadi et al., 2005; Jung & Klein, 2001; 
Abad, 1988; Kim & Lee, 1998; Lee, 1993; Lee et al., 1996). The proposed model of this study differs 
from the earlier ones since they assume that all items are produced by a perfect reliability. However, 
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we classify products in four groups of perfect, imperfect, defective but reworkable and non-
reworkable defective and imperfect items can be sold at the end of processing period as a single batch 
at a reduced price per unit. Furthermore, unlike the earlier works, the proposed model determines the 
holding cost per product and the set up cost per production cycle. We also consider interest and 
depreciation cost as part of problem formulation. The objective of this model is to maximize the total 
profit with decision variables of lot size ( Q ), marketing expenditure(M), selling price ( PS ), set up 
cost (A) and inventory holding cost (H), where demand is a power function of selling price and 
marketing expenditure with constant elasticity and the cost per unit is a power function of lot size. 

This paper is organized as follows: Problem definition, notations and assumptions used throughout 
this study are presented in Section 2. In Section 3, the proposed mathematical models are derived in 
order to maximize the profit per unit time. The optimal solution procedure is represented in Section 4. 
In Section 5, a numerical example is provided to illustrate the implementation of the proposed model. 
Finally, in Section 6, conclusion remarks and recommendations for possible future work are 
presented. 

2. Problem Definition 

Consider a single economic production lot-sizing where a single product in a batch size of Q is 
produced at a finite production rate, P units per unit time. A 100% inspection is performed in order to 
identify the quality of each product at negligible cost. Demand for perfect product is a power function 
of selling price and marketing expenditure. Each lot produced contains p1 percent of imperfect quality 
items (See Fig. 1 ) . 

 

Fig .1. A schematic diagram of our model 

 

Fig. 2. Inventory level in stock during one cycle 
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The perfect and imperfect products are kept in stock when identified. The imperfect products are sold 
at the end of processing period, i.e., end of Tp in Fig. (2), as a single batch at a reduced price per unit

)( IS  that is proportion of selling price of good quality products. The lot also contains a percentage of 
defectives, p2 , so that these defective products can be reprocessed, or reworked, after the processing 
period and finally they are kept in stock. These products are assumed to be of good quality after 
reprocessing and they will not need any inspection. Each lot produced also contains a percentage of 
defectives, p3, so that these units are rejected when identified. In other words, a defective product 
which could not be reworked is rejected immediately after its work operation completes. The main 
objective of the present study is to maximize the total profit of the inventory system.  

2.1. Notations 

A Setup cost for each lot (decision variable) 

C Production cost per unit 

H Inventory holding cost per unit (decision variable) 

M Marketing expenditure (decision variable) 

D Demand per unit time 

P Production rate in units per unit time 

TR Total revenue per unit time 

CM marketing expenditure per unit time 

CS Setup cost per unit time 

CP Production cost per unit time 

CH Holding cost per unit time 

CID Interest and depreciation cost per unit time 

T(A, H) Total cost of interest and depreciation for a production process per cycle 

R Reliability of production (in our model R =1- p1- p3) 

Q Lot size in number of units per cycle (decision variable) 

SP Unit selling price for good quality products (decision variable) 

SI Unit selling price for imperfect quality products 

p1 Percentage of imperfect quality products 

p2 Percentage of rework products 

p3 Percentage of reject products 

T Cycle time 

Tp Processing time in each cycle 

Tr Reprocessing, reworking,  time in each cycle 
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Tm Total production run time, sum of the processing and reprocessing times, in each cycle 

Td Time in each cycle when there is no production 

I1 Total quantity of inventory in stock during the processing period  

I2 Total quantity of inventory in stock during the reprocessing period 

I3 Total quantity of inventory in stock when there is no production 

k Scaling constant for demand 

α Price elasticity to demand 

γ Marketing expenditure elasticity to demand 

r Scaling constant for unit production cost 

β Lot size elasticity to production unit cost 

l Scaling constant for T(A,H) 

x Reliability elasticity to  T(A,H) 

y Set up cost elasticity to  T(A,H) 

z Inventory holding cost elasticity  

i Imperfect products price to perfect products price ratio 

π Total profit 

2.2. Assumptions 

The model is based on the following assumptions: 

1. In this model it is assumed that demand is a function of price per unit of good quality products and 
marketing expenditure per unit i.e.,  

.10,1 <<>= − γαγα MkSD P  (1)

2. The production unit cost is defined as a power function of stock level and r  is the scaling constant 
for unit production cost. 

.10 <<= − ββrQC  (2)
The exponent β  represents lot size elasticity of unit production cost with .10 << β  This function is 
similar to the function considered by Sadjadi et al. (2005) and Panda and Maiti (2009).    

3. Similar to the function considered by Van Beek and Putten (1987) the total cost of interest and 
depreciation per production cycle is affected by reliability, set up and holding cost. Therefore it can 
be assumed as: 

zyx HAlRHAT −−=),( , (3)

where .0,,, ≥zyxl  Also the total reliability is .1 31 pp −−   
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4.The selling price of imperfect products is proportion of the selling price of the good quality 
products i.e. 

10 <<= iiSS pI  (4)

5. No Shortage is allowed. 

6. The demand for the imperfect product with reduced price always exits. 

7. Proportions of imperfect, reworked and rejected products are constant in each cycle. 

8. No imperfect or defective product is produced during the rework. 

9. The processing and reprocessing are accomplished using the same resources at the same speed. 

10. No stop is allowed during the manufacturing operations of one lot. 

11. Production rate, setup time, etc. are constant and deterministic. 

12. Inspection cost is negligible. 

3. Modeling 

Fig. 2 presents the behavior of the inventory level in stock during one cycle. The purpose is to 
maximize the total profit per unit time (π ). The total relevant cost per unit time includes setup, 
production (processing and reprocessing), inspection, rejection and inventory holding costs. 
According to Fig. 2, it can be easily shown that: 

10 321 <++≤ ppp , )5( 

P
QTp = , )6( 

P
QpTr

2= , )7( 

P
QpTm

)1( 2+
= , (8)

D
QppT )1( 31 −−

= . (9)

To ensure that inventory level does not run into shortages, we must have: 

D.)p-p-P(1 32 ≥  (10)

The revenue and various costs per unit time derived with respect to Eqs. 5-9 are as follows: 

3.1 Revenue 

The total revenue per unit time can be calculated as follows, 

.
)1(

)1(

31

1131

pp
DpSDS

T
QpS

T
ppQSTR I

P
IP

−−
+=+

−−
=  )11( 

3.2 Marketing expenditure 

The marketing expenditure per unit time is as follows, 

.
)1( 31 pp

MD
T

MQCM −−
==  (12)  
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3.3 Setup cost 

The setup cost for the production system during a cycle is designated as A. Using Eq  (. 9) yields the 
following for the setup cost per unit time,  

.
)1( 31

A
ppQ

D
T
ACS −−
==  )13( 

3.4 Production cost 

Production cost in each cycle consists of two parts: Processing cost at time Tp, and reprocessing or 
reworking cost at time Tr. The quantity of products reworked during each cycle is p2Q. Therefore, 
according to the notation used and from Eq. (9), production cost per unit time is as follows, 

).1(
)1(

)(
2

31

2 p
pp

CD
T

QpCCQCP +
−−

=
+

=  )14( 

3.5 Inventory holding cost 

The inventory holding cost per cycle is obtained as the average inventory times holding cost per 
product per cycle. Following Jamal et al. (2004), we do not consider any inventory holding costs for 
the defective items while the machines are waiting for the rework. The reason for this is the low 
percentage of the items as well as the low level of such costs as storage, etc. The average inventory 
level can be evaluated as follows, 

.IIII 321

T
++

=  )15( 

It is evident from Fig .1 that: 
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As a result and using Eq. (5) through Eq. (8), the inventory holding cost will be expressed as: 

( ).))1(21()1(
)1(2 3221

2
31

31
ppppDppP

ppP
HQIHCH −++−−−−

−−
==  )19( 

3.6 Interest and depreciation cost 

According to our notations and assumptions, interest and depreciation costs per unit time can be 
calculated as follows, 

.)1(
)1(

)1(),( 11
31

31

31 DHAQppl
Qpp

DHAppl
T

HATC zyx
zyx

ID
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−−=
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−−
==  )20( 

3.7 Total profit 

Based on the above definitions and assumptions, we have the following formulation for the total 
profit per unit time (π ): 
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)(),,,,( IDHPSMP CCCCCTRHAMSQ ++++−=π . )21( 

Substituting Eqs. 11-14 and Eqs.19-20 in Eq. 21 and some simplification, the total profit per unit time 
is as follows,  
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4. The Optimal Solution Procedure  

In this section, we are interested in simultaneously determining lot size, selling price, marketing 
expenditure, set up and holding costs. The objective function is as follows, 

.)1(

)1(2
))1(21(

2
)1(

)1(
)1(

)1()1(
)

)1(
(),,,,(max

11
31

31

322131

31

2

1

31

1

31

1

31

1

zy
p

x

PP

PPPP

HAMSQpplk

HMQS
ppP

kppppQHppMSQ
pp
kpr

AMSQ
pp

kMS
pp

kMS
pp

kipkHAMSQ

−−−−−

−−−

−−+−−

−−−

−−
−++−

+
−−

−
−−

+
−

−−
−

−−
−

−−
+=

γα

γαγαβ

γαγαγαπ

 

)23( 

The above objective function is a signomial geometric programming (GP) with 1 degree of difficulty. 
As the global optimality is not guaranteed for a signomial problem (Duffin et al., 1967), we modify 
the profit function into the posynomial GP problem with one additional variable and constraint  . This 
technique was developed by Duffin et al. (1967) and it is assumed that there is a lower bound Z for the 
objective function where the maximization of Z (or minimizing 1−Z ) is equivalent to maximization of 
the objective value. Also in order to simplify the objective function, we define the following,  
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where ia denotes the coefficient of ith term of Eq. (23). Therefore, the above problem is modified as 
follow, 

1min −Z   
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Since 0>Z , the first constraint can be transformed into the following form, 

1min −Z   
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can be solved globally by its dual problem which is formulated as follows, 
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The dual variables in Eq. (27) can be rewritten in terms of variable 7w  as follows, 
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and also: 
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To have feasible solution for dual problem, we need some additional assumptions to ensure that w1 to 
w6 remain positive. 
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Since 07 >w  we assume have, 
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Also the coefficient of 6th term of Eq. (23) must be positive )0( 6 >a to ensure that feasible solution 
exists. Therefore we assume  

1)1(2 3221 >++− pppp . )32( 

Since the model has 1 degree of difficulty, we can eliminate 7 out of 8 dual variables by substituting 
Eqs. (28) and (29) into Eq. (27) and write out the dual objective function as maximizing a function in 
just one dual variable (w7  ). By taking the logarithm of substituted dual problem we obtain a function 
in just one variable that is proved to be a concave function by Duffin et al. (1967) and the unique 
solution can be detremined using a simple line search technique such as bi-section. The procedure is 
similar to the method used by Sadjadi et al. (2005) and Jung and Klein (2001). 
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Note that iδ  for 7,,1K=i are the weights of the terms in the constraints of model (26). In fact 1δ to 7δ , 
represent the proportion of revenue ( 1δ ), marketing cost ( 2δ ), set up cost ( 3δ ), production cost ( 4δ ), 
holding cost ( 5δ + 6δ ) and interest and depreciation cost ( 7δ ) to the total profit, respectively. The 
following relations must hold: 

,

,

,

,

,

,

,

11
7

1
17

1
6

1
16

1
5

1
15

1
4

1
14

11
3

1
13

1
2

1
12

11
11

zy
p

P

P

P

P

p

P

HASQaa

HQSaa

HMQSaa

SQaa

ASQaa

MSaa

ZMSa

−−−−−

−−

−−−

−−−

−−−

−−

−−−

=

=

=

=

=

=

=

δ

δ

δ

δ

δ

δ

δ

γα

β

γα

 

)34( 

where 1
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1
=∑

=i
iδ  at optimality. Using (34), the optimal solution of the problem can be summarized as 

follow, 
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5. A numerical example 

To illustrate the implementation of the model developed in this paper, consider a production system 
where the parameters are as follows,  

P=9000 units/year, p1=50%, p2=2%, p3=3%, ,10,03.0,01.0,5.2 5==== kγβα r=5, l=1, x=1.5, y=1, 
z=4.5, i=0.5 . 

Hence the optimal dual variables are calculated to be =),,( *
7

*
1 ww K (1, 0.0308, 0.0059, 1.4975, 0.0270, 

0.000028, 0.0059), =*λ 2.5673 and =)( *
7

*
1 δδ K (0.3895, 0.0120, 0.0023, 0.5833, 0.0105, 0.000011, 

0.0023). Then the optimal solution can be obtained from (35  ) as below: 

3.0$,6.12$,1.0$,4.11$Se,units/cycl 659 *
P

* ===== HAMQ  and .1450$* =π   

Since PI iSS = , in this example 7.5$=IS . 

6. Sensitivity Analysis 

In this section we analyze the behavior of the proposed model when some of the parameters change in 
different intervals. The sensitivity analysis of pricing model could also help us extract some 
managerial implications.  

Proposition 1. Let *Q  remain unchanged and suppose that changing p1 does not have any effect on p2 
and p3. As p1 increases (decreases), *

PS increases (decreases) (see Fig. 3). 

Proof. Given 7654321 ,,,,,, δδδδδδδ and β−= QKS QpSP
* we have (
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From Eq. (36) and Eq. (37), we understand that QPSK  is a concave function of p1 when *Q remains 
unchanged. Hence, as p1 increases (decreases), the selling price for good quality products must be 
increased (decreased).  

 

Fig. 3. The effect of p1 on selling price 

Proposition 2. Let *Q remain unchanged. As p2 increases (decreases), *A increases (decreases) (see 
Fig. 4). 

Proof. Given 7654321 ,,,,,, δδδδδδδ and β−= QKA AQ
* we have (

34

43

a
aK AQ δ

δ
= ): 

0
4

3

2

>=
∂
∂

δ
δ r

p
K AQ

 
)38( 

0
2

2

=
∂

∂
p
K AQ

 
)39(  

Note that we have: 
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Fig. 4. The effect of p2 on set up cost 
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From Eq. (38) and Eq. (39), we understand that AQK  is a function of p2 when *Q remains unchanged. 
Hence, as p2 increases (decreases), the set up cost must be increased (decreased). From Eq. (40) and 
Eq. (41) we realize that changing p1 or p3 does not affect set up cost (when *Q remains unchanged). 

7. Conclusion and future research 

In this paper, a joint lot sizing and marketing problem was investigated by considering production of 
various types of non-perfect products. The products are classified in four groups of perfect, imperfect, 
defective but reworkable, and finally non-reworkable defective items. The proposed model of this 
paper considers demand as a power function of price and marketing expenditure and it assumes that 
production unit cost is a function of lot size. Furthermore, the interest and depreciation costs are also 
considered as part of modeling formulation. The proposed model of this paper has been solved using 
GP method and the implementation of the proposed method was illustrated using a numerical 
example. Furthermore the sensitivity analysis is presented to study the behavior of model parameters.  

This research can be extended in some directions. The effect of machine breakdown on this model 
may be recommended for further study. Another important study is to investigate the effect of time 
value of money on optimal solution. Besides, it would be interesting to model the problem when 
various parameters are not deterministic and described in fuzzy or interval form. 
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