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  Lot streaming is a technique of splitting production lots into smaller sublots in a multi-stage 
manufacturing systems so that operations of a given lot can be overlapped. This technique can 
reduce manufacturing makespan and is an effective tool for time-based manufacturing strategy. 
Several research articles appeared in literature to solve this problem and most of these studies 
are limited to pure flowshop environments where there is only a single machine in each stage. 
On the other hand, because of the applicability of hybrid flowshops in different manufacturing 
settings, the scheduling of these types of shops is also extensively studied by several authors. 
However, the issue of lot streaming in hybrid flowshop environment is not well studied. In this 
paper, we aim to initiate research in bridging the gap between the research efforts in flowshop 
lot streaming and hybrid flowshop scheduling. We present a comprehensive mathematical 
model for scheduling flexible hybrid flowshop with lot streaming. Numerical example 
demonstrated that lot streaming can result in larger makespan reduction in hybrid flowshop 
where there is a limited research than in pure flowshop where research is abundant. 
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1. Introduction 
 

Lot streaming is a technique to split a given job, each consisting of identical items, into sublots to 
allow overlapping of successive operations in multi-stage manufacturing systems thereby reducing 
production makespan. It is used to implement the time-based strategy in today’s global competition 
(Chang & Chiu, 2005). In fact, many world-class manufacturing companies (e.g., Dell and Toyota) 
have adopted this strategy to quickly produce and deliver goods to their customers (Blackburn, 1991; 
Bockerstette & Shell, 1993). The concept of lot streaming was formally introduced in Reiter (1966) 
and its practice in flowshop is not new. Previous studies considering two-stage or special cases of 
three-stage flowshop lot streaming can be found in Potts and Baker (1989), Vickson and Alfredsson 
(1992), Trietsch and Baker (1993), Baker and Jia (1993), Glass et al. (1994), Baker (1995), Chen and 
Steiner (1996), Sen et al. (1998), and Sriskandarajah and Wagneur (1999). Lot streaming in 
flowshops with more than three stages has been studied recently by several researchers (see for 
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example Kumar et al., 2000; Hall et al., 2003; Liu, 2003; Chiu et al., 2004; Bukchin & Masin, 2004; 
Martin, 2009; Biskup & Feldmann, 2006; Tseng & Liao, 2008; Feldmann & Biskup, 2008; 
Marimuthu et al., 2008). 

A common feature of the above flowshop lot streaming studies is the assumption of single machine in 
each stage. However, the so called hybrid flowshops, where there are parallel machines at certain 
stages, are very common in industries. If one stage poses a bottleneck in the production process, 
managers may consider investing on additional machines for that stage. Moreover, hybrid flowshops 
have important applications in flexible manufacturing systems (FMS), manufacturing of electronics 
and furniture, process industries such as food processing, petrochemical and pharmaceutical 
industries (Xiao et al., 2000; Tang et al., 2005, 2006; Zandieh et al., 2006; Jungwattanakit et al., 
2007). To this end, hybrid flowshop scheduling attracted much interest and proliffc scientiffc papers 
dealing with the diverse aspects of the problem appeared in literature (see for example Botta-
Genoulaz, 2000; Bertel & Billaut, 2004; Oğuzc et al., 2004; Tang et al., 2005; Zhang et al., 2005; 
Tang et al., 2006; Ruiz & Maroto, 2006; Zandieh et al., 2006; Ying & Lin, 2006; Jungwattanakit et 
al., 2007; Janiak et al., 2007; Ruiz et al., 2008). Although this shows considerable research effort in 
hybrid flowshop scheduling, the issue of lot streaming in this type of shops has not gained as much 
attention as for pure flowshop scheduling. To the best of our knowledge the only paper that addressed 
lot streaming in hybrid flowshops is Zhang et al. (2005). However, this work is for a very special case 
where there are parallel machines only in the first stage and the number of stages is limited to two. 
Lot streaming in a more general hybrid flowshop where there can be parallel machines on any stage 
and the number of stages is not limited to two has been implicitly and partially addressed in Ruiz et 
al. (2008) through the concept of time-lag. Time-lag is defined as the difference between the 
completion time and the starting time of a job in two successively required stages, respectively. Ruiz 
et al. considered the overlapping of operations in successive stage by allowing negative time-lag. 
However, they assumed that this negative time-lag is a given data, not a decision variable to be 
optimized. Moreover, time-lag cannot fully represent lot streaming problem for the following 
reasons: It restricts the number of sublots of a given job only to two whereas theoretically the 
maximum number of sublots of jobs can be as large as the number of items in that job. Negative time-
lag between two successively required stages can assume values only within a certain range (see Ruiz 
et al., 2008). This in turn may not allow an optimal choice of sublot sizes. Time-lag cannot represent 
lot streaming when its value needs to be positive. A positive time-lag between successive operations 
of jobs is required when for example drying or cooling of products must occur before further 
operations can be carried out. Studies that allow the splitting of a job and the overlapping of its 
operations over the parallel machines in a given stage can be found in Bertel and Billaut (2004), 
Oğuzc et al. (2004), Oğuzc and Frinket (2005), and Ying and Lin (2006). The manufacturing systems 
considered in these studies are referred to as flowshop with multiprocessors (FSMP). These shops are 
special case of hybrid flowshops where the parallel machines are assumed to be identical. Though the 
studies in FSMP scheduling addressed the overlapping of operations over the parallel machines, such 
overlapping is not considered across stages. Thus, such studies may not be classified as lot streaming 
research as the very definition of lot streaming is to allow the overlapping of operations across stages.  

The above literature review clearly indicates that there is a gap between the research efforts in 
flowshop lot streaming and hybrid flowshop scheduling. In this paper, we aim to initiate research in 
bridging this gap by developing a mathematical model for the general hybrid flowshop lot streaming 
problem. The proposed mathematical model incorporates lot streaming and other practical issues 
identified in Ruiz et al. (2008). These include (1) the existence of unrelated parallel machines, (2) the 
possibility of certain stages to be skipped by certain jobs, (3) sequence-dependent setup times, (4) 
anticipatory or non-anticipatory nature of setups, (5) release dates for machines, and (6) machine 
eligibility. A detailed discussion on these attributes can be found in Ruiz et al. (2008). Because of the 
first two attributes, the system considered in this study can be regarded as a complex generalized 
flowshop or hybrid flexible flowshop (HFFS). In Section 2 we present the proposed mixed integer 
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linear programming model for HFFS lot streaming. Numerical example is given in Section 3. 
Discussion and conclusion are in Section 4. 

2. Mathematical Formulation 

In this section, we present the problem description and the proposed MILP model for the type of 
flowshop lot streaming problem addressed in this paper. Most of the attributes of the proposed model 
were adopted from Ruiz et al. (2008) where the authors did not consider lot streaming.  

2.1. Problem Description and Assumptions 

Consider a flowshop consisting of several consecutive production stages to process several jobs. Each 
stage has a known number of unrelated parallel machines. The batch of each job is to be split into 
several unequal consistent sublots. The sublots are to be processed in the order of the stages and 
sublots of certain products may skip some stages. At a given stage, a sublot of a job can be assigned 
to one of the parallel machines eligible to process that particular job. For each job there is a sequence 
dependent setup time on each eligible machine and this setup may be anticipatory or non-anticipatory 
on different stages. Each machine can process at most one sublot at a time. Sublots of different 
products can be interleaved. The problem is to determine the size of each sublot of each job and the 
assignment and processing sequence of these sublots on each machine in each stage. The objective 
function is to minimize the completion time of the last sublot to be processed in the system. 

2.2. Notations 

In order to present a mathematical model for problem described above, we define several notations. 
These notations are explained here under.  

Indexes and Input Data:  

݈ Number of stages where stages are indexed by ݅ or ܫ ൌ 1, 2, ڮ ,  ܫ

݇ ௜ Number of machines in stage ݅ where machines are indexed by ݉ orܯ ൌ 1, 2, ڮ ,  ௜ܯ

ܰ Number of jobs (products) where jobs are indexed by ݊ or ݌ ൌ 1, 2, ڮ , ܰ 

ݏ ௡ Maximum number of sublots of job ݊ where sublots are indexed by  ݆ orܬ ൌ 1, 2, ڮ ,  ௡ܬ

,௡ A set of pairs of stages ሺ݈ܧ ݅ሻ for job ݊ constrained by precedence relations, i.e, the processing 
of job ݊ in stage ݈ is followed by its processing in stage ݅ 

௡ܶ,௠,௜ Processing time for one unit of job ݊ on machine ݉ in stage ݅ 

ܳ௡ Batch size of job ݊ 

ܴ௠,௜ Maximum number of production runs of machine ݉ in stage ݅ where production runs are 
indexed by ݎ or ݑ ൌ 1, 2, ڮ , ܴ௠,௜  

Theoretically ܴ௠,௜ is equal to the total number of sublots of all the jobs. However, because of 
the presence of parallel machines and skipping of stages by certain jobs, the number of sublots 
that will be actually processed on a particular machine at an optimal solution is likely lower 
than the total number of sublots. Hence, a reasonably lower value for ܴ௠,௜ has to be assumed 
in order to reduce the number of variable in the mathematical model. 

ܵ௠,௜,௡,௣ Setup time on machine ݉ in stage ݅ for processing job ݊ following the processing of job ݌ on 
this machine; if ݊ ൌ  the setup may be called minor setup ,݌
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 ௡,௜ A binary data equal to 1 if setup of job ݊ in stage ݅ is attached setup (non-anticipatory), or 0 ifܣ
this setup is detached setup (anticipatory) 

 ௡,௜ A binary data equal to 1 if job ݊ needs processing in stage ݅, otherwise 0ܤ

 ;௡,௠.௜ A binary data equal to 1 if job ݊ can be processed on machine ݉ in stage ݅, otherwise 0ܦ
௡,௠.௜ܦ ൑  ௡,௜ܤ

 ݅ ௠,௜ The release date of machine ݉ in stageܨ

Ω Large positive number. 

Continuous Variables: 

௝ܿ,௡,௜ Completion time of the ݆௧௛ sublot of job ݊ in stage ݅ 

ܿ̂௥,௠,௝ Completion time of the ݎ௧௛ run of machine ݉ in stage ݅ 

 ݊ ௝,௡ Size of the ݆௧௛ sublot of jobߣ

ܿ௠௔௫ Makespan of the schedule 

Binary Variables: 

 ௧௛ run on machine ݉ in stage ݅ is forݎ ௥,௠,௜,௝,௡ Binary variable which takes the value 1 if theݔ
the ݆௧௛ sublot of job ݊, 0 otherwise 

௝,௡ߣ௝,௡  Binary variable which takes the value 1 if sublot ݆ of job ݊ is non-zero ൫ߛ ൒ 1൯, 0 
otherwise 

2.3. MILP Model 

Using the notation given above, the objective function and the constraints of the proposed MILP 
mathematical model for the hybrid flexible flowshop lot streaming problem are presented below.  

Minimize:  

ܼ ൌ ܿ௠௔௫ (1)

subject to 

ܿ̂௥,௠,௜ ൒ ௝ܿ,௡,௜ ൅ Ω · ௥,௠,௜,௝,௡ݔ െ Ω; ׊ሺݎ, ݉, ݅, ݆, ݊ሻ  (2)

ܿ̂௥,௠,௜ ൑ ௝ܿ,௡,௜ െ Ω · ௥,௠,௜,௝,௡ݔ ൅ Ω; ׊ሺݎ, ݉, ݅, ݆, ݊ሻ  (3)

ܿ̂ଵ,௠,௜ െ ௝,௡ߣ · ௡ܶ,௠,௜ െ ܵ௠,௜,௡,଴ െ Ω · ଵ,௠,௜,௝,௡ݔ ൅ Ω ൒ ;௠,௜ܨ ,ሺ݉׊ ݅, ݆, ݊ሻ  (4)

ܿ̂௥,௠,௜ െ ௝,௡ߣ · ௡ܶ,௠,௜ െ ܵ௠,௜,௡,୮ െ Ω · ቄቀ∑ ௥ିଵ,௠,௜,௦,௣ݔ
௃೛
௦ୀଵ ቁ ൅ ௥,௠,௜,௝,௡ቅݔ ൅ 2Ω ൒ ܿ̂௥ିଵ,௠,௜;  

,ݎሺ׊ ݉, ݅, ݆, ݊, ݎ|ሻ݌ ൐ 1 
(5)

ܿ̂ଵ,௠,௜ െ ௝,௡ߣ · ௡ܶ,௠,௜ െ ܵ௠,௜,௡,଴ · ௡,௜ܣ െ Ω൫ݔ௨,௞,௟,௝,௡ ൅ ଵ,௠,௜,௝,௡൯ݔ ൅ 2Ω ൒ ܿ̂௨,௞,௟;   

,ݑሺ׊ ݇, ݉, ݈, ݅, ݆, ݊ሻ|ሺ݈, ݅ሻ א   ௡ܧ
(6)
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ܿ̂௥,௠,௜ െ ௝,௡ߣ · ௡ܶ,௠,௜ െ ܵ௠,௜,௡,୮ · ௡,௜ܣ െ Ω ቄቀ∑ ௥ିଵ,௠,௜,௦,௣ݔ
௃೛
௦ୀଵ ቁ ൅ ௨,௞,௟,௝,௡ݔ ൅ ௥,௠,௜,௝,௡ቅݔ ൅ 3Ω ൒  

ܿ̂௨,௞,௟;  ׊ሺݑ, ,ݎ ݇, ݉, ݈, ݅, ݆, ݊, ,ሻ|ሺ݈݌ ݅ሻ א ௡ܧ and ݎ ൐ 1 
(7)

∑ ∑ ௥,௠,௜,௝,௡ݔ
௃೙
௝ୀଵ

ே
௡ୀଵ ൑ ,ݎሺ׊  ;1 ݉, ݅ሻ  (8)

∑ ∑ ௥ାଵ,௠,௜,௝,௡ݔ
௃೙
௝ୀଵ

ே
௡ୀଵ ൑ ∑ ∑ ;௥,௠,௜,௝,௡ݔ ,ݎሺ׊ ݉, ݅ሻ|ݎ ൏ ܴ௠,௜

௃೙
௝ୀଵ

ே
௡ୀଵ   (9)

∑ ௝,௡ߣ ൌ ܳ௡;  ݊׊௃೙
௝ୀଵ   (10)

௝,௡ߣ ൑ Ω · ;௝,௡ߛ ,ሺ݆׊   ݊ሻ  (11)

௝,௡ߛ ൑ ;௝,௡ߣ ,ሺ݆׊   ݊ሻ  (12)

∑ ∑ ௥,௠,௜,௝,௡ݔ ൌோ೘,೔
௥ୀଵ

ெ೔
௠ୀଵ ௝,௡ߛ · ;௡,௜ܤ ,ሺ݅׊   ݆, ݊ሻ  (13)

௥,௠,௜,௝,௡ݔ ൑ ;௡,௠.௜ܦ ,ݎሺ׊   ݉, ݅, ݆, ݊ሻ  (14)

ܿ௠௔௫ ൒ ௝ܿ,௡,௜; ,ሺ݆׊   ݊, ݅ሻ  (15)

௝,௡ are binary (16)ߛ ௥,௠,௜,௝,௡ andݔ

The objective function in Eq. (1) is to minimize the makespan of the schedule which is equal to the 
completion time of the last sublot processed in the system. The constraints in Eqs. (2) and (3) together 
state that the completion time of the ݆௧௛ sublot of job ݊ in stage ݅ is equal to the completion time of 
the ݎ௧௛ run of machine ݉ in stage ݅ if this production run is assigned to that particular sublot. The 
starting time of the setup for the first run ሺݎ ൌ  1ሻ of machine ݉ in stage ݅ is given by ܿ̂ଵ,௠,௝ െ ௝,௡ߣ ·

௡ܶ,௠,௜ െ ܵ௠,௜,௡,଴ if the ݆௧௛ sublot of job ݊ is assigned to this first run. This starting time cannot be less 
than the release date of the machine as enforced by the constraint in Eq. (4). The constraint in Eq. (5) 
is to enforce the requirement that the setup of any production run ݎ ൐  1 of a given machine cannot be 
started before the completion time of run ݎ െ  1 of that machine. The constraint in Eq. (6) states that 
for any pair of stages ሺ݈, ݅ሻ א   ௡, the setup or the actual processing of the first run on machine ݉ inܧ 
stage ݅ may not be started before the completion time of run ݑ of machine ݇ in stage ݈, depending on 
whether the setup of product type ݊ in stage ݅ is non-anticipatory or anticipatory. This constraint is 
applied if run ݑ of machine ݇ in stage ݈ and that of the first run of machine ݉ in stage ݅ are both 
assigned to sublot ݆ of job ݊. The constraint in Eq. (7) is similar to that in Eq. (6) except Eq. (7) is for 
run ݎ ൐  1 of machine ݉ in stage ݅. In this case, the sequence dependent setup time has to be 
considered by taking into account the type of the job that was processed in run ݎ െ  1 of machine ݉ 
in stage ݅. The constraint in Eq. (8) states that a production run ݎ of a particular machine ݉ at a 
particular stage ݅ can be assigned to at most on subplot. The constraint in Eq. (9) is to enforce the 
logic that a production run ݎ ൅  1 of a given machine can be assigned to a sublot if and only if run ݎ 
of that machine is already assigned to another sublot. The constraint in Eq. (10) enforces that the sum 
of the sizes of the sublots of a given job should be equal to the lot size of that particular job. 
Constraints in Eqs. (11) and (12) are to set the binary variable ߛ௝,௡to a value equal to 1 or zero 
depending on whether the size of ݆௧௛ sublot of job ݊ is positive or zero, respectively. If sublot ݆ of job 
݊ is positive (i.e., ߛ௝,௡ ൌ 1) and it requires processing in stage ݅, then it should be assigned to one of 
the eligible machine in stage ݅. This is enforced by the constraints in Eqs. (13) and (14). Eq. (15) 
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states that the makespan of the schedule, ܿ௠௔௫, is greater or equal to the completion time of any 
sublot on any stage. At optimality, ܿ௠௔௫ takes the value of the completion time of the last sublot to be 
processed in the system. Eq. (16) is the integrality requirement. 

3. Numerical Examples 

In flowshop lot streaming literature, most existing models and solution techniques are for pure 
flowshop systems. Research for hybrid flowshops has been limited, although lot streaming can be 
more effective in hybrid flowshops than in pure flowshops. In this numerical example, we 
demonstrate this fact by considering a small problem instance consisting of processing two jobs in 
three-stage pure and hybrid flowshops. The hybrid flowshop for this example consists of three 
identical machines in stage 1, two identical machines in stage 2, and other two identical machines in 
stage 3. The complete data for this example is given in Tables 1 and 2. For this small problem, the 
developed model was solved to optimality using CPLEX (version 11.2.0). The Gantt charts in Fig. 1-
a and Fig. 1-b show the schedules for the pure flowshop without and with lot streaming, respectively. 
The makespans for these two schedules are 1680 and 1152 minutes. The corresponding schedules for 
the hybrid flowshop are given in Fig. 2-a and Fig. 2-b with makespans of 1320 and 706 minutes, 
respectively. The percentages of makespan reduction due to lot streaming in pure and hybrid 
flowshop are 31% and 47%, respectively. This result was obtained by setting the maximum possible 
number of sublots for each job to 3. This problem was repeatedly solved by varying the maximum 
possible number of sublots for each job. The resulting makespans and the percentage makespan 
reductions are plotted in Fig. 3. As shown in Fig. 3-a, the makespans of the schedule in hybrid 
flowshop are shorter than those in pure flowshop because of the presence of parallel machines. A 
more interesting result is depicted in Fig. 3-b which shows the percentage of makespan reduction as 
the function of the maximum number of sublots for each job. The best makespan reduction in pure 
flowshop is 36% with maximum possible number of sublots being 6. Increasing this number beyond 
6 does not improve the makespan as the actual number of sublots does not increase due to the setup 
time for the sublots. The maximum makespan reduction in hybrid flowshop is 54%. This is much 
better than the one achieved in the pure flowshop. 

Table 1 
Data set-1 for the example problem 

Stage Machine 
 ௠,௜ ܴ௠,௜ܨ

Job 
݊ ൌ 1 ݊ ൌ 2 

௡,௠.௜ܦ ௡,௜ܣ ௡,௜ܤ ݉ ݅ ௡ܶ,௠,௜ ܤ௡,௜ ܣ௡,௜ ܦ௡,௠.௜ ௡ܶ,௠,௜ 
1    1 1   1 1   
 1 0    1 4   1 6 
 2 0    1 4   1 6 
 3 0    1 4   1 6 
2    1 1   1 1   
 1 0 6   1 5   1 4 
 2 0 6   1 5   1 4 
3    1 1   1 1   
 1 0 6   1 6   1 5 
 2 0 6   1 6   1 5 

 ௡ 3 3ܬ
ܳ௡ 80 60 
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Table 2 
Data set-2 for the example problem 

Stage Machine 
Job 

݊ ൌ 1 ݊ ൌ 2 
݅ ݉ ܵ௠,௜,௡,଴ ܵ௠,௜,௡,ଵ ܵ௠,௜,௡,ଶ ܵ௠,௜,௡,଴ ܵ௠,௜,௡,ଵ ܵ௠,௜,௡,ଶ 
1 1 40 15 60 30 70 10 
 2 40 15 60 30 70 10 
 3 40 15 60 30 70 10 
2 1 30 10 45 20 50 16 
 2 30 10 45 20 50 16 
3 1 50 10 50 40 60 10 
 2 50 10 50 40 60 10 
 

 

(a) 

 

(b) 

Fig. 1. Pure flowshop lot streaming for the example problem (a) without lot streaming and (b) with 
lot streaming 
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(a) 

 

(b) 

Fig. 2. Hybrid flowshop lot streaming for the example problem (a) without lot streaming and (b) with 
lot streaming. 

We observed greater makespan reduction in hybrid flowshop which is basically because of the 
following two reasons: The first reason is that hybrid flowshops allow the overlapping of the 
operation of sublots of a given job not only across stages but also within stages as can be easily seen 
in Fig. 2-b. Another reason is that some stages in pure flowshop can easily pose bottleneck inhibiting 
further splitting of certain jobs. In order to elaborate this fact let us examine the schedule with lot 
streaming for the pure flowshop given in Fig. 1-b. This schedule is generated by assuming a 
maximum of 3 sublots for each job. However, an optimal solution was reached with three sublots for 
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job 1 and with only two sublots for job 2. This is because, further splitting of job 2 will not improve 
the makespan as the third machine becomes a bottleneck. For instance, if the first sublot of job 2 
(with size equal to 27) is split into two sublots of certain sizes, the completion time of these sublots 
can be shortened in the second stage. However, the completion time of these sublots in stage 3 cannot 
be shortened as this stage is occupied by sublot 3 of job 1 and cannot immediately process them. In 
the hybrid flowshop case, as can be seen in Fig. 2-b, all the three potential sublots of job 2 were 
generated to further reduce the makespan. Fig. 4 shows the number of sublots generated as a function 
of the maximum number of sublots in pure and hybrid flowshops. As can be seen in this figure, the 
actual number of sublots in the hybrid flowshop is larger to enable further makespan reduction. 

 

  

(a) (b) 

Fig. 3. (a) Makespan and (b) the percentage makespan reduction as functions of the maximum 
possible number of sublots of each job 

 

Fig. 4. Total actual number of sublots generated in pure and hybrid flowshops as the function of the 
maximum allowable number of sublots 
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4. Discussion and Conclusion 

This work was motivated by the gap we perceived in research efforts in pure flowshop lot streaming 
and hybrid flowshop scheduling. On one hand, because of a significant makespan reduction using lot 
streaming, there is a huge literature in pure flowshop lot streaming. On the other hand, because of the 
applicability of hybrid flowshops in different manufacturing settings, the scheduling of these types of 
shops is also extensively studied by several authors. However, lot streaming research in hybrid 
flowshops has been quite limited. In this paper, we aim to initiate research in bridging the gap 
between the research efforts in pure flowshop lot streaming and hybrid flowshop scheduling by 
presenting a comprehensive mathematical model for hybrid flowshop lot streaming. In addition to lot 
streaming, the mathematical model incorporates several other practical issues such as unrelated 
parallel machines, the possibility of certain jobs to skip certain stages, sequence-dependent setup 
times, anticipatory or non-anticipatory nature of setups, release dates for machines, and machine 
eligibility. The proposed model was solved to optimality for small problem size. The numerical 
example demonstrated that lot streaming can result in larger makespan reduction in hybrid flowshop 
where there is a limited research than in pure flowshop where research is abundant. In our future 
research, we plan to develop meta-heuristic algorithms to solve the proposed mathematical model 
efficiently. The model will also be further expanded to account for capacitated buffer size and 
capacitated material handling equipment, and inter-dependence of jobs because of assembly 
requirements. We also plan to develop models and solution procedures for lot streaming in non-
conventional manufacturing system such as those based on cellular, fractal and distributed layouts 
where research is quite limited.  

Acknowledgements: The author sincerely thanks the two anonymous referees for their thorough 
reviews of the early versions of this paper and their very valuable comments.  
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