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  In this paper, a single item deterministic inventory model with two separate warehouses called 
owned warehouse/show-room (OW) and rented warehouse (RW) is developed. The proposed 
model of this paper also considers a realistic assumption regarding the storage capacity of the 
rented warehouse. Demand is a function of selling price, advertisement of an item and 
displayed inventory level in OW. The stocks of RW are shipped to OW under bulk release 
pattern where shortages are not allowed. We discuss different scenarios of the proposed model 
to address relative size of stock dependency parameters and the capacity of owned warehouse. 
For each scenario, the corresponding problem is formulated as a constrained mixed integer 
nonlinear programming problem with three integer and two non-integer variables and a real 
coded genetic algorithm (RCGA) is developed to solve the resulted problem. The proposed 
model of the paper is also examined using some numerical examples and sensitivity analysis is 
performed. 

 © 2011 Growing Science Ltd.  All rights reserved. 
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1. Introduction 
 

The primary assumption in most of the inventory problems is that there is an owned warehouse with 
unlimited storage. However, in reality, this assumption does not hold as a warehouse normally has 
limited storage capacity. On the other hand, when the cost of procuring goods is higher than the 
inventory related cost or the attractive price discount for bulk purchase is available or the demand of 
the items is very high, the inventory management procures a large quantity of items at a time. This 
large quantity of items cannot be stored in the existing warehouse called owned warehouse (OW) 
with limited storage capacity. Then for storing the excess items, one or more warehouse called rented 
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warehouse (RW) is rented either away from or near to OW and these items are sold to the customers 
at OW only. Generally, the inventory cost of RW is greater than OW. Hence, to reduce the inventory 
carrying cost, the items are stored first in OW and the excess stock is stored in RW. Further, the 
stocks of RW are cleared first by transferring the stock from RW to OW in either continuous or bulk 
release pattern. This inventory system is known as two-storage inventory system.  

During the last three decades, several researchers have developed different types of two-storage 
inventory models. Hartely (1976) first introduced this type of purchasing inventory model in his 
book. In his formulation, assuming higher holding cost in RW than that in OW and ignoring the 
transportation cost for transferring the goods from RW to OW, he proposed a heuristic procedure to 
determine the optimal order quantity. Sarma  (1983, 1987) extended Hartely’s model considering the 
fixed transportation cost, independent of the quantity transferred from RW to OW for non-
deteriorating as well as deteriorating items. However, in both models, he did not consider shortages. 
During the past two decades, there have been extensive works dedicated to two-warehouse inventory 
models under different scenarios (Dave, 1988; Pakkala & Achary, 1992-a, 1992-b; Goswami & 
Chowdhuri , 1992; Bhunia & Maiti, 1994, 1995, 1998; Benkherouf, 1997; Zhou, 1998, 2003; Kar et 
al., 2001; Zhou & Yang, 2003; Yang, 2004, 2006; Pal et al., 2005; Das et al., 2007; Dye et al., 2007; 
Dey et al., 2008; Niu & Xie, 2008; Rong et al., 2008;  Mondal et al., 2007; Jaggi & Arneja, 2011). 

In the present competitive market situation, a product is promoted to the customers through the 
advertisement in the well-known print/electronic media and also through the sales representatives 
and/or by the glamorous display of that item in large numbers with the help of modern light and 
electronic arrangements. This type of advertisement and glamorous display of items increase its 
demand among the public. Considering only the effects of advertising and price variation on demand 
rate, many researchers developed different types of inventory models (Kotler, 1971; Ladany & 
Sternleib, 1974;  Subramanyam & Kumaraswamy, 1981; Urban , 1992; Goyal & Gunasekaran, 1995; 
Abad, 1996; Luo, 1998; Mandal et al., 1989). Again, in the last few years, very few researchers 
developed inventory models incorporating demand rate depending only on displayed stock level. 
Baker and Urban (Baker & Urban, 1985) were first who enlightened that demand rate would be 
declined along with the displayed inventory level throughout the entire cycle. They developed an 
inventory model for polynomial type of demand rate. Mandal and Phaujdar (Mandal & Phaujdar, 
1989) proposed independently a production inventory model where demand rate is a general function 
of the on-hand stock level during the stock-in and stock-out period. Dutta and Pal (Dutta & Pal, 1990) 
modified the model of Baker and Urban ( Baker & Urban, 1985) by assuming that demand rate of an 
item depends on displayed inventory level until a given level is achieved once it becomes constant. 
Since then, very few researchers have given considerable attention on inventory problems with 
displayed inventory level dependent demand rate (Urban, 1992, 1995;  Pal et al., 1993;  Giri et al., 
1996;  Padmanabhan and Vrat , 1995;  Sarkar et al., 1997; Giri & Chaudhuri, 1998). 

To the best of our knowledge, only Mondal et al. ( Mondal, 2007)  and Pal et al. (Pal et al., 2004, 
2006) considered the effects of displayed stock level, selling price and advertisement on demand in 
developing their inventory models. However, in their formulation, the frequency of advertisement in 
demand rate was a fixed value. In the inventory control theory, the transportation cost for 
replenishing the items plays an important role and it must be taken into account with other inventory 
related costs. In most of the existing literature, the transportation cost is not considered separately, it 
is included in the replenishment cost which is independent of the order quantity. Different 
transportation alternatives have various speed, reliability and cost characteristics. Hence, the 
transportation cost depends on the order quantity. As a result, we cannot ignore this cost item from 
the analysis of the inventory system. Recently, very few researchers incorporated this cost into the 
lot-size determination analysis. Baumol and Vinod (Baumol & Vinod, 1970) first considered an 
inventory model of freight transport where the order quantity and transportation alternative can be 
jointly determined. Constable and Whybark (Constable & Whybark, 1978) assumed that the 
transportation cost per unit is independent of the order quantities. Buffa and Munn (Buffa & Munn, 
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1989) developed the model considering the transportation cost per unit to be a negative exponential 
function of the order quantity. Anily and Federgruen (1990) considered the transportation cost in 
terms of truck loading cost. 

In this paper, a deterministic two-warehouse inventory model for single item is developed by 
removing the existing unrealistic assumption regarding the storage capacity of the rented warehouse 
and it is considered as finite. The demand rate of the system is dependent on the selling price of the 
item, frequency of advertisement in the popular media and displayed inventory level in the show-
room or OW within a range and beyond this range, the rate is constant with respect to the displayed 
inventory level. The stocks of RW are transferred to OW under bulk release fashion and the 
associated transportation cost is taken into account. For replenishing the items, the transportation cost 
depends on the ordering quantity as well as the distance from the supplier’s store to the show-room 
and shortages are not allowed. According to the relative size of displayed inventory level dependency 
parameters and the capacity of the show-room, different scenarios of the system are clearly discussed. 
For each scenario, the corresponding problem is formulated as a constrained mixed integer nonlinear 
programming problem. To solve the said problem, we develop a real coded hybrid genetic algorithm 
by combining advanced real coded genetic algorithm and multi-section criteria of search region for 
continuous decision variables. The problems of different scenarios are solved for a given numerical 
example to illustrate the implementation of the proposed model. Finally, based on the example, 
sensitivity analyses are performed to study the effect of changes of different parameters of the 
proposed inventory system on the best found value of the optimal profit. 

2. Assumptions and Notations 

2.1. Assumptions 

The following assumptions are used to derive the proposed mathematical model: 

(i)     Replenishments are instantaneous with a known constant lead time. 

(ii) The inventory planning horizon is infinite and the inventory system involves only                  
one item and one stocking point. 

(iii) Only a single order occurs at the beginning of each cycle and the entire lot is delivered in one batch. 
(iv) Shortages are not allowed. 
(v) The replenishment cost (ordering cost) is constant excluding the transportation cost for 

replenishing the items. 
(vi) There is no quantity discount. 
(vii) After replenishment, first OW is filled completely and the excess items are stored in RW. In this 

situation, an additional transportation cost is incurred for special dispatch of goods to RW.  
(viii) The transportation cost is constant for a transport vehicle with a given capacity even                  

if the quantity shipped is less than a transport vehicle load by some quantity. 
 

2.2. Notations 

T Cycle length 
Ch Inventory carrying cost in OW  per unit per unit time 
Cf (>Ch) Inventory carrying cost in RW  per unit per unit time 
C1 Purchase cost per unit 
λ  Mark-up rate 
p(=λ C1,λ >1) Selling price per unit 
A Frequency of  advertisement per cycle 
G Cost  for each advertisement 
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N Number of shipments for transferring the items from RW to OW 
1P   maximum number of units to be transported under a fixed charge 

a′  Fixed transportation cost for 1P  units 
b′  Additional transportation cost per unit beyond 1P  units 

1t  Consumption period of K units 

( )1,2, ,it i n′ = L     Consumption period of first iK units i.e., 1it it′ =  
W Storage capacity of owned warehouse (OW) 
QR Storage capacity of rented warehouse (RW) 
S Order quantity of the system 
t2 Consumption period of the last W – K + S ′  units in OW 

( )q t  Instantaneous stock level at time t 
K ′   Capacity of a transport vehicle 
L Distance between the show-room/OW and the source of the items/ 

commodities from where items/ commodities are to be transported 
1jL −′  Lower cut off distances 

jL′  Upper cut off distances 
Ct = Ctj   Transportation cost for full load of transport vehicle where 

1   for 1,2,3,j jL L L j−′ ′≤ ≤ = L  
CtF = CtFj  Transportation cost per unit item where 1   for 1,2,3,j jL L L j−′ ′≤ ≤ = L  
Cad Additional transportation cost per item incurred for special dispatch of 

goods to the rented warehouse RW 
Uj  Upper break point for 1j jL L L−′ ′≤ ≤  
Ctj  Fixed transportation cost for the whole quantity or some quantity less 

than K ′  but above Uj 
/j tj tFjU C C⎡ ⎤= ⎣ ⎦   Greatest integer value which is less than or equal to  

 
3. The Demand Function 
 

According to Baker and Urban (Baker & Urban, 1985), the demand rate of an item is a function of the 
instantaneous stock level and reported that this rate is not constant. It changes along with the stock 
level of the show-room/shop throughout the order cycle. Therefore, the higher stock level will cause 
the greater demand rate during the beginning of the cycle and this is not always true. There are many 
cases to motivate the customers to purchase the stock displayed in the show-room/shop with a 
glamorous fashion with the help of modern light and electronic equipments. Therefore, the demand of 
customers varies with the displayed inventory level, not based on the total inventory of the shop. It 
also depends on the effect of marketing policies and conditions such as the price variations and the 
advertisement of the item.  

The deterministic demand rate ( , , )D A p q  of an item is a known function of marketing parameters 
with the frequency of advertisement ( )A , the selling price ( )p  and the displayed inventory level in the 
show-room / shop within the inventory level 0S  to 1S  and beyond this range it becomes constant with 
respect to the displayed inventory level. The functional form of this type demand is as follows, 
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where ( , , )f A p q is a function of , ,A p q .The functional form of the stock-dependent demand rate may 
be of different types. These may be power form ( )qβα , exponential form [ exp( )qα β ], linear form
( )qα β+ , quadratic form 2( )q qα β γ+ + with respect to the instantaneous stock-level. The power 
form demand rate results zero demand as the stock-level tends to zero but the demand of an item 
cannot be zero. Generally, demand rate does not fully depend on the instantaneous displayed stock-
level for many reasons such as goodwill, good quality, and genuine price-level of the goods where a 
limited number of customers arrive to purchase the goods. Hence, the demand rate of an item of a 
particular shop will be more appropriate if the linear form of the demand rate with respect to the 
stock-level is considered. In this paper, we shall consider the linear form of the displayed inventory, 
the selling price of an item and exponential form of the frequency of the advertisement for ( , , )f A p q . 
Suppose we have ( , , ) ( )f A p q A a bp cqγ= − +  where , , , 0a b c γ ≥ .        

4.  Transportation Costs 

When the order quantity is greater than the load of one transport vehicle, the order quantity S can be 
expressed as follows, 

 S mK qμ′ ′= +  where 0,1, 2,3,...; 0m μ= = or 1 and q K′ ′< . In this case, two situations may arise, 

(i) ,jmK S mK U′ ′< ≤ +      (ii) ( 1)jmK U S m K′ ′+ < ≤ + . 

For replenishing the items, the transportation cost 1TC  for a particular distance 1( )j jL L L L−′ ′≤ ≤   is 
given by 
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Again, the transportation cost 2TC  for transferring the items/goods from RW to OW in n shipments is 
given by 
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Hence, the total transportation cost of the system is given by .21 TCTCCtran +=  

5. Mathematical Formulation 

Initially, an enterprise purchases units, of which units are stored in the owned 
warehouse (OW) and the remaining units in the rented warehouse (RW). At first, the stocks 
of OW are used to meet the customer’s demand until the stock level in OW drops to units at 
the end of time 1t . At this stage, ( )K K W≤ units from RW are transported to OW so that the stock 
level of OW again becomes W to meet further demands and the process continues for (n-1) such 
shipments. In the last shipment, the remaining units in RW are transported to OW. After 
the last shipment, the stock level of OW will be units which are used as usual to satisfy 
the demand during[ , ]nt T . This entire cycle is repeated after each scheduling period T . 

( )S S W> W
( )S W−

( )W K−

( )S S K′ ′ ≤
( )W K S ′− +
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To analyze this model, nine different scenarios (first 3 scenarios for 1S W> and last 6 scenarios for 
WS <1 ) may arise according to the relative size of 0 1, ,S S W and the transported amounts K and S ′

per shipment. 

Scenario-1: 1 0,S W S W K> > −  and 0W K S S′− + >  
Scenario-2: 1 0,S W S W K> > −  and 0W K S S′− + <  
Scenario-3: 1 0,S W S W K> < −   
Scenario-4: 1 0,S W S W K< > −  and 1W K S S′− + >  
Scenario-5: 1 0,S W S W K< > −  and 0 1S W K S S′< − + <  
Scenario-6: 1 0,S W S W K< > −  and 0W K S S′− + <  
Scenario-7: 1 0,S W S W K< < −  and 1W K S S′− + >  
Scenario-8: 1 0,S W S W K< > −  and 1W K S S′− + <  
Scenario-9: 1S W K< −   
Note that 0S  may be greater thanW .  In that case, the demand rate will be constant with respect to the 
displayed stock-level in the show-room OW which is in contradiction to the pattern of proposed 
demand rate. As a result, we shall reject the Case  Now, we shall study the Scenario-1 in 
details. 

Scenario-1: 1 0,S W S W K> > −  and 0W K S S′− + >  

In this scenario, the displayed stock-level dependent demand rate is observed when the inventory 
level drops from W to 0S and beyond 0S , it is constant. The pictorial representations of the inventory 
system in RW and OW are given in Fig. 1 and Fig. 2, respectively. 

 

Fig. 1. The inventory situation in RW 

 

0 .S W>
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Fig. 2. The inventory situation in OW 

As the demands are met only from the owned warehouse (OW), the stock depletion at OW is only 
due to the demand of the items only. Therefore, the inventory level ( )q t at time 1(0 )t t t< < satisfies 
the following differential equations, 
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(2)

According to the assumption (ix), the relation among ,S K and S ′ is given by 

SKnWS ′+−=− )1(  (3)

Since demand rate is a function of instantaneous displayed stock-level in OW, the time taken for the 
consumption of units and the last W K S′− + units in OW depends on the stock-level. Therefore 
we have,  

0

0

1
0( , , ) ( , , )

SW

S W K

dq dqt
f A p q f A p S−

= +∫ ∫ , 
(4) 

 

and  

0

0

2
00( , , ) ( , , )

SW K S

S

dq dqt
f A p q f A p S

′− +

= +∫ ∫ . 
(5)

Again, the total time period T is given by 

1 2T nt t= + . (6)

K
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The total cost in a cycle consists of the following components: 

(i) Ordering cost 4( )C , (ii) Inventory carrying cost ( )holC , (iii) Transportation cost ( )tranC , (iv) 
Purchase cost , (v) Advertisement cost ( )advC  

The inventory carrying cost per unit time can be expressed as the product of the inventory level and 
the carrying cost per unit time. Thus, the total inventory carrying cost is given by 

1 1 1{ ( 1) / 2 } ( )hol f h hC C n n K nS t C W K nt C b′= − + + − + , (7)

where 
0 0

0 0

1
0 00( , , ) ( , , ) ( , , ) ( , , )

S SW W K S

S W K S

qdq qdq qdq qdqb n
f A p q f A p S f A p q f A p S

′− +

−

⎧ ⎫⎪ ⎪= + + +⎨ ⎬
⎪ ⎪⎩ ⎭
∫ ∫ ∫ ∫ . The details of the 

calculations are given in Appendix-A. The total advertisement cost is given by .AGCadv =  The total 
cost of the system (Scenario-1) is given by 

.14 advtranhol CCCSCCTC ++++=  (8)

The net profit for the entire system (Scenario-1) is the difference between the sales per revenue per 
cycle and the total cost of the system i.e., 

1 4( ) hol tran advX p C S C C C C= − − − − − . (9)

Therefore, for the fixed value of the mark-up rate, the profit function 1( , , , , )m n A S Kπ   (Average 
profit per unit time for the cycle) of the inventory system (Scenario-1) is given by 

1( , , , , ) /m n A S K X Tπ = . (10)

Here, the profit function is a function of two continuous variables S and K  and three discrete 
variables m, n and A. Hence, the problem is to find the optimal values of m, n, A, S and K  by 
maximizing the profit function 1( , , , , )m n A S Kπ . Then the optimal values of S ′ and T can be 
calculated by Eq. (3) and Eq. (6), respectively.  

In Scenario-1, let * * * *, , ,m n A S and *K  be the optimal values of , , ,m n A S and K . However, this 
solution is obtained without considering the capacity constraint of RW i.e., RS W Q− ≤  as the storage 
capacity of RW is limited. If RS W Q− ≤ , it is obvious that * * * *, , ,m n A S and *K  be the feasible 
solution of  Scenario-1 and be the optimal profit. Otherwise, *

1π  is equal to 
the optimal boundary profit  when RS Q W= + (in that case, m is fixed and easily be 
obtained). Now, we shall determine the optimal boundary profit. At first, fixing S by RQ W+ , then 
from Eq. (3), we have ( 1)RQ n K S′= − +  i.e., 

.)1( KnQS R −−=′  (11)

In this case, the boundary profit function of Scenario-1 is given by 

( ) ( )( ) ( ){ }1 1 4 1, , 1 / 2R f Rn A K p C Q W C C nQ n n K tπ ⎡′ = − + − − − −⎣  
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0

0 00

] /
( , , ) ( , , )

SW K S

tran
S

qdq qdq C AG T
f A p q f A p S

′− + ⎫⎪+ + − −⎬
⎪⎭

∫ ∫ .                                                    (12) 

Clearly, 1π ′ is a function of ,n A  and K only. 

For the other Scenarios, the profit functions, iπ , where i represents the number of Scenario, are as 
follows: 

( ) ( ){ } ( )1 4 1 11 / 2 / ,i f h h i tranp C S C C n n K nS t C W K nt C b C AG Tπ ⎡ ⎤′= − − − − + − − − − −⎣ ⎦              (13) 

 2,3, ,9i = L    

where  

( ) ( ) ( )
0

0

2
0 00, , , , , ,

SW W K S

S W K

qdq qdq qdqb n
f A p q f A p S f A p S

′− +
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⎧ ⎫⎪ ⎪= + +⎨ ⎬
⎪ ⎪⎩ ⎭
∫ ∫ ∫ , 

 

(14)
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The solutions of these scenarios along with optimal profit *
iπ ( 2,3, ,9)i = L can be obtained by the 

same procedure used in Scenario-1. The optimal solution in this system will be the solution 
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corresponding to the maximum average profit (for case 1S W> and 1 )S W< of the above mentioned 
Scenarios. Let *π  be the average profit then 

⎪
⎩

⎪
⎨

⎧

≥=

>=
=∗

Wi

Wi

1

1

i

Sfor9,,4

Sfor3,2,1
max

L

ππ  

 

(22)

6.  Solution Procedure 

The optimization problem of each scenario is a nonlinear mixed integer programming. To solve the 
resulted problems, we shall develop hybrid genetic algorithm combining advanced genetic algorithm 
and multi-section criteria. 

6.1 Hybrid Genetic Algorithm     

When an optimization problem is solved by genetic algorithm (GA), the bounds of the decision 
variables are required i.e., the optimization problem with known search space can be solved by this 
method. However, when the search space of an optimization problem is unknown, a large search 
space is considered. Again, GA does not work properly to find optimal solution or near optimal 
solution when the search space is large. To overcome the difficulty i.e., for the application of GA 
with smaller search space, we develop a hybrid algorithm combing advanced GA and multi-section 
criteria.   

6.2 Multi-section 

Multi-section means using multiple bisection where more than one bisection can be made in a single 
iteration cycle. In this criterion, the search space is divided into several subspaces of equal size. In 
case of optimization problem with two decision variables, the search space is a rectangle which can 
be multi-sectioned into 22 = 4 (double bisection) subspaces. Similarly, in case of optimization 
problem with three decision variables, the search space can be multi-sectioned into 23 = 8 (triple 
bisection) subspaces. Thus, in general, if we consider multiple bisection (say m sections) in each 
direction of the search space, the total number of subspaces will be nm  (for optimization problem 
with n-decision variables). The pictorial diagram is shown in Fig 3 for m = 2 and n = 3.  

 

Multi-splitting is a special type of multi-section where m equal size subspaces are produced. In this 
case, we can optimize the computation by using the most promising direction (i.e., the direction of 
the longest edge of the accepted/initial search space for subdivision). This type of multi-section 

Fig.  3. Multi-section of search space 
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where m is the number of subspaces is formed and it will be known as multi-splitting. Fig. 4 shows a 
special case when m = 4, n = 3. 

 
6.3 Genetic Algorithm           

Genetic Algorithm (GA) is a computerized stochastic search and iterative optimization algorithm 
based on the mechanics of natural evolution and genetics (Goldberg, 1989; Michalawicz, 1996 and 
Gen et al., 2000). GA has been successfully applied to different types of optimization problems, for 
its several advantages over traditional optimization methods. Holland (cf. Holland, 1975) was 
inspired by Darwin's theory about the natural evolution and then he constructed an evolutionary 
algorithm based on the fundamental principle of the Darwin’s theory: ‘Survival of the fittest’. This 
algorithm is known as genetic algorithm.  

To implement the above mentioned GA for the proposed model, the following basic components are 
considered. 

(i)  GA parameters 
(ii)  Chromosome representation for potential solutions to the problem 
(iii)  Initialization of chromosomes 
(iv)  Evaluation of fitness function 
(v)  Selection process 
(vi)  Genetic operators – crossover and mutation 

The implementation of GA depends on different parameters such as population size (p_size), 
maximum number of generations (m_gen), probability of crossover (p_cross) and probability of 
mutation (p_mute). Usually, the crossover rate varies from 0.6 to 0.95 whereas the mutation rate 
changes from 0.1 to 0.15. Sometimes, the mutation rate is considered as 1/n where n is the number of 
genes of the individuals. 

For proper and successful functioning of GA, it is important to design an appropriate chromosome for 
the solutions of the problem. For the initial implementation of GAs, the chromosomes are represented 
by the strings of binary numbers called binary GAs. These are robust search techniques since they 
avoid the local optimum but the computational cost is relatively higher than the deterministic 
optimization techniques. There are a number of difficulties when we seek high precession for 
problems with large search space. One alternative solution to overcome the difficulties is to use real 
numbers to represent the chromosomes in GAs. In this case, a chromosome is coded in the form of 
vector/matrix of integer or floating-point numbers and every component of that chromosome 

Fig. 4. Multi-splitting of search space 
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represents a decision variable of the problem. This type of GA is known as real coded genetic 
algorithm (RCGA). 

Once a chromosome representation is selected we must initialize the chromosomes which will take 
part in the artificial genetic operations. The procedure produces population size number of 
chromosomes in which every component is randomly generated within the bounds of the 
corresponding decision variable. After initialization of chromosome representation, the next step is to 
check the fitness of each chromosome. For this purpose, the fitness value for each chromosome is 
calculated. In our work, the objective function of the problem is considered as the fitness function.  

Selection operator is one of the most important features of the genetic algorithm. The process is 
stochastic and biased towards the best chromosome/solution. The primary objective of this operator is 
to emphasize on the above average solutions and to eliminate the below average solutions from the 
population for the next generation based on the well-known evolutionary principle “Survival of the 
fittest”. There are several selection schemes, such as roulette wheel selection, ranking selection, elitist 
preserving selection, stochastic universal sampling selection, truncation selection, tournament 
selection, etc. In our work, we use ranking selection as a selection operator. In this selection process, 
the population is actually sorted from the best to the worst fashion according to the fitness value of 
chromosomes. The selection probability of each chromosome is determined according to their 
ranking.    

After the selection process, the resulting chromosomes will be improved by two genetic operations: 
crossover and mutation. In crossover operation, two or more parent chromosomes are selected at a 
time and two or more offspring are generated by combining the features of all the parent 
chromosomes. For this operation, expected [p_cross × p_size]   ([ ] denotes the integral value) 
number of chromosomes will take part. Here, we perform this operation by selecting two parent 
chromosomes at a time. The different steps of crossover operations are as follows: 

Step-1 :   Find the integral value of the product of p_cross and p_size and store it in N 

Step-2 :   Select the chromosomes jV  and kV  randomly from the population  

Step-3 :   Generate a random real number λ  in [0, 1] 

Step-4  :  The i-th component jiV ′  and kiV ′  of two offspring corresponding to continuous (non-integer) 
variable will be created by  

  ( )1ji ji kiV V Vλ λ′ = + −  

  ( )1ki ki jiV V Vλ λ′ = + −  

Step-5 :   The l-th component jlV ′  and klV ′  corresponding to integer variable will be created by either  

     and    if  jl jl kl kl jl klV V g V V g V V′ ′= − = + >  

      or,   and  ,jl jl kl klV V g V V g′ ′= + = −  otherwise 

      where g is a random integer number between 0 and jl klV V− . 

Step-6 :   Repeat Step-2 to Step-5 for 
2
N  times  
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The primary objective of the mutation operator is to introduce the genetic diversity of the population. 
This operator is used to enhance the fine tuning capabilities of the system. This is implemented to a 
single chromosome only with lower probability. By modifying one or more of the gene values of an 
existing parent chromosome, mutation creates new offspring, increasing the variability of the 
population. We perform this operation on single gene by using non-uniform mutation for non-integer 
variable or by considering a random integer number between the bounds of the integer variables. 

7. Numerical Result 

To illustrate the proposed model, a numerical example is considered. The values of model parameters 
considered are not collected from any case study, but these values are considered to be realistic. 
 

Example: 

Let    4 1200, 1, 1.5, 20, 1.3, 100, 700, 500,h f rC C C C W Q aλ= = = = = = = = 0.5,b =  

0.3,c = S1=150 (in case of  S1 >W), S1=75 (in case of  S1 <W),  

0 50, 50, 20, 0.5, 20,S G a b P′ ′ ′= = = = = 0.2, 0.2, 100,adC Kγ ′= = =  

100, 1.25t tFC C= =  for L = 90 in appropriate units. 

This example was solved to find the best found values of , , , , , ,S K S T A m n′  along with the best 
found profit per unit time of the system. For this purpose, 20 independent runs were performed by the 
proposed hybrid GA. Also, to test the performance of our developed hybrid GA to solve the problems 
for each scenario, best found value, mean, median and standard deviation for 20 independent runs 
have been computed. Table 1 and Table 2 summarize the details of the implementation. In this 
computation, the following values of GA parameters are used:   

                                      p_size = 200 ,   m_gen = 500 ,  p_cross=0.8 ,   p_mute=0.15   

All the simulations have  been  conducted on a PC with Intel Core-2 duo processor, 1 GB RAM and 
2.0 GHz speed. 

Table 1  
Computational results of different scenarios of the proposed model     

    

 

Scenario Best found profit  
value 

Statistical characteristics of profit value 

Mean Median Standard 
Deviation 

1 2157.27 2157.25 2157.26 0.01440 
2 2143.11 2143.11 2143.11 0.0 
3 2074.74 2074.54 2074.56 0.13998 
4 2152.40 2152.40 2152.40 0.00115 
5 2135.52 2135.52 2135.52 0.0 
6 2138.23 2138.23 2138.23 0.0 
7 2065.77 2065.70 2065.74 0.06399 
8 2051.95 2051.94 2051.95 0.01832 
9 1922.81 1922.65 1922.67 0.10641 
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Table 2  
Performance analysis of different scenarios 

Scenario 
Performance analysis of different scenarios 

S K S ′  T A m n Z 
1 700.00 100.00 100.00 0.8920 9 7 7 2157.27 
2 700.00 96.67 20.00 0.8920 9 7 8 2143.11 
3 700.00 50.00 50.00 0.8863 9 7 14 2074.74 
4 700.00 100.00 100.00 0.8936 9 7 7 2152.40 
5 700.00 92.86 42.86 0.8936 9 7 8 2135.52 
6 700.00 96.67 20.00 0.8936 9 7 8 2138.23 
7 700.00 50.00 50.00 0.8893 9 7 14 2065.77 
8 700.00 48.08 23.08 0.8891 9 7 15 2051.95 
9 700.00 24.99 24.99 0.8865 9 7 28 1922.80 
 

8. Sensitivity Analysis 

Considering the earlier mentioned example, sensitivity analyses have been performed graphically to 
study the effect of changes of different parameters on the best found average profit of the proposed 
problem. These analyses have been carried out by changing, increasing and decreasing, the 
parameters from -20% to +20%, taking one or more parameters at a time and keeping the others at 
their original values. In each case, the best found value of the optimal profit has been considered from 
20 independent runs and the results are shown by Fig. 5 to Fig. 8.  

From Fig. 5 and Fig. 7, it is observed that the best found profit is insensitive with respect to the 
parameters like holding costs ( ,h fC C and both) in OW and RW, ordering cost ( 4C ), capacity of the 
show-room (W) and the shape parameters ( , )b c . On the other hand, from Fig. 6 to Fig 8., it is clear 
that the best average profit is more sensitive with respect to the location parameter (a) of demand, all 
demand parameters ( , , , )a b c γ , purchase cost 1( )C  and all cost parameters. For these cases, for 20% 
increase (or decrease) of the said parameters, the average profit is increased (or decreased) by 40% or 
more. 

Fig. 5. Fig. 6. 
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Fig. 7. Fig. 8. 

9. Concluding Remarks 

In this paper, a deterministic two-storage inventory model for single item has been developed by 
removing the unrealistic assumption “The storage capacity of rented warehouse is unlimited” 
considered in the existing literature. This model has been formulated for single non-deteriorated items 
considering different scenarios based on the stock dependency factors in the proposed demand rate, 
storage capacity of show-room and the order quantity of the system. 

Another feature of this paper is the consideration of a new type of demand rate which depends on the 
frequency of advertisement of the item in the popular electronic and print media, selling price of the 
item and displayed stock level in the show-room. The proposed model of this paper can be seen in the 
situations where the customers arrive to purchase goods attracted by advertisement and glamorous 
display of goods in a show-room. This effect continues within a certain range of displayed inventory 
level in the show-room and beyond the upper level it will be constant. Also, beyond the lower level, 
only a limited numbers, may be considered as constant, of customers arrive to purchase the goods due 
to goodwill of the shop, good quality, genuine price of goods, locality of the shop, etc. 

The proposed two-storage inventory model can be applied in several practical situations. Presently, 
due to the introduction of open market policy, the business is becoming more competitive and to 
attract more customers, a better purchasing environment such as well-decorated show-room with 
modern light and electronic arrangements and enough free space for choosing items is needed. 
However, the physical expansion of the show-room may need significant amount of investment. As a 
result, the authority of departmental store is limited to hire a separate storage on rental basis at a 
distance place for storing of excess items. Hence, from the economic point of view, the proposed two- 
storage system is more beneficial than the single storage system. 

For future research work in this area, one can extend the model considering quantity discount policy, 
stochastic demand, multiple and deteriorating items. 

 Appendix A 

The inventory time units in RW is  

 (A.1)

and hence the inventory carrying cost for these units in RW is { } .2/)1( 1tSnKnnC f ′+−  Between (i-
1)-th and i-th shipment for transferring items /goods from RW to OW, only K units in 
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OW are used to meet the demand and the rest units are kept unused in OW for a period of 
length i.e, . Therefore, the inventory carrying cost for these items in OW is as follows, 

0

0

1
0

( )
( , , ) ( , , )

SW

h
S W K

qdq qdqC W K t
f A p q f A p S−

⎧ ⎫⎪ ⎪+ + −⎨ ⎬
⎪ ⎪⎩ ⎭
∫ ∫ . 

 

(A.2)

Again, when the last shipment arrives in OW, the on-hand inventory in OW becomes . 
The inventory carrying cost for these units during usage in OW is as follows, 

0

0 00( , , ) ( , , )

SW K S

h
S

qdq qdqC
f A p q f A p S

′− +⎧ ⎫⎪ ⎪+⎨ ⎬
⎪ ⎪⎩ ⎭
∫ ∫ . 

 

(A.3)

Hence, the total inventory carrying cost in OW is 

0 0

0 0

1
0 00

( )
( , , ) ( , , ) ( , , ) ( , , )

S SW W K S

h
S W K S

qdq qdq qdq qdqC n W K nt
f A p q f A p S f A p q f A p S

′− +

−

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥+ + − + +⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

∫ ∫ ∫ ∫  

 

(A.4)  
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