
* Corresponding author Cell phone: +98-9363767625
E-mail: amin_aalaei@yahoo.com, amin_aalaei@aut.ac.ir (A. Aalaei)

© 2012 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2011.11.004

International Journal of Industrial Engineering Computations 3 (2012) 321–336

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Just-in-time preemptive single machine problem with costs of earliness/tardiness, interruption
and work-in-process

Mohammad Kazemia, Elnaz Nikoofaridb, Amin Aalaeic* and Reza Kiad

aDepartment of Industrial Engineering, Birjand University of Technology, Birjand, Iran
bDepartment of Industrial Engineering, Mazandaran University of Science & Technology, Babol, Iran
cDepartment of Industrial Engineering & Management Systems, Amirkabir University of Technology, Hafez Ave, Tehran, Iran
dDepartment of Industrial Engineering, Firoozkooh Branch, Islamic Azad University

A R T I C L E I N F O A B S T R A C T

Article history:
Received 20 October 2011
Received in revised form
November, 2, 2011
Accepted November, 18 2011
Available online
28 November 2011

 This paper considers preemption and idle time are allowed in a single machine scheduling
problem with just-in-time (JIT) approach. It incorporates Earliness/Tardiness (E/T) penalties,
interruption penalties and holding cost of jobs which are waiting to be processed as work-in-
process (WIP). Generally in non-preemptive problems, E/T penalties are a function of the
completion time of the jobs. Then, we introduce a non-linear preemptive scheduling model
where the earliness penalty depends on the starting time of a job. The model is liberalized by an
elaborately–designed procedure to reach the optimum solution. To validate and verify the
performance of proposed model, computational results are presented by solving a number of
numerical examples.

© 2012 Growing Science Ltd. All rights reserved

Keywords:
Just-in-time
Preemption
Earliness/Tardiness
Interruption Penalties
Work-In-Process
Single Machine Scheduling

1. Introduction

In the single machine scheduling problem with E/T, a set of jobs, each with an associated due date,
has to be scheduled on a single machine. Each job has a penalty per unit time associated with
completing before its due date, and a penalty per unit time associated with completing after its due
date. There are many extensive efforts in the recent years to minimize the weighted number of early
and tardy jobs in single machine scheduling problem (Seidmann et al. 1981; Bector et al. 1988; Davis
& Kanet, 1993; Nandkeolyar et al. 1993; Ventura & Weng, 1994; Szwarc & Mukhopadhyay, 1995;
Hoogeveen & Van De Velde, 1996; Wan & Yen, 2002; Luo et al. 2006; Hendel & Sourd, 2006; Liao
& Cheng, 2007; Sourd & Kedad-Sidhoum, 2003).

M’Hallah (2007) addressed a single machine scheduling problem in order to minimize the total
number of earliness and tardiness, where processing times of jobs are different and due dates also are
distinct and idle time is not allowed. He developed and analyzed a hybrid heuristic, which combines
local search heuristics such as dispatching rules, hill climbing and simulated annealing with an
evolutionary algorithm based on genetic algorithms.

 322

Gupta and Chantaravarapan (2008) presented a mixed-integer linear programming model for single
machine scheduling problem considering independent family (group) setup times where jobs in each
family are processed together. A sequence-independent setup time is required to process a job from a
different family.

Wan and Yen (2009) considered a single machine scheduling problem to minimize the total weighted
earliness subject to minimum number of tardy jobs. They developed a heuristic and a branch and
bound algorithm and compared these two algorithms for problems in different sizes. Hepdogan et al.
(2009) Investigated a meta-heuristic solution approach for the early/tardy single machine scheduling
problem with common due date and sequence-dependent setup times.

The objective of this problem is to minimize the total amount of earliness and tardiness of jobs, which
are assigned to a single machine. Shirazi et al. (2010) proposed a new approach called Tabu-Geno-
Simulated Annealing (TGSA) by hybridization of three well-known metaheuristics for solving single
machine scheduling problem for a common due date with arbitrary E/T penalties. The objective is to
determine the common due date and processing sequence of new jobs together with the re-sequencing
of old jobs to minimize the sum of total E/T, completion time, and due date related penalties.

2. Literature review

Just-in-time (JIT) scheduling problems establish a well-studied class of multi-criteria scheduling
problems. Indeed, these problems with earliness penalties are very useful to represent practical
problems, in which either perishable goods should be delivered or storage costs should be regarded.
Tardiness, Ti, and earliness, Ei, are computed by:

• Ti = max (0, Ci - di),
• Ei = max (0, di - Ci),

where Ci and di denote the completion time and due date of job i, respectively. Clearly, a task cannot
simultaneously have a positive tardiness and a positive earliness; a task is either tardy or early.
Moreover, earliness and tardiness are often similar in terms of costs induced by a delivery that is not
on time. Therefore, these two criteria are often aggregated into a single criterion fi(Ci) = aiEi + biTi,
which is called the weighted deviation of the task with respect to its due date. Interestingly, this
deviation function can be generalized to express more complex combinations of contradicting criteria
and soft or hard constraints on the due date obligated by a customer. Garey et al. (1988) proposed a
direct algorithm based on the blocks of adjacent jobs with computational complexity O(n log n), valid
for the JIT problem with symmetric earliness and tardiness penalties.

Tavakkoli-Moghaddam et al. (2005) studied a single machine scheduling problem to minimize the
sum of maximum earliness and tardiness by considering idle insertion. The proposed model, which
could be adapted by production systems such as JIT presented the optimal solutions. Additionally, the
authors developed a number of effective lemmas regarding idle insertion. For this type of scheduling
models, Tavakkoli-Moghaddam et al. (2006) introduced a branch-and-bound algorithm to solve the
problems, where a suitable lower and upper bound were represented. To show the effectiveness of the
proposed algorithm, they generated and solved different sizes of the model. Esteve et al. (2006)
studied the problem of scheduling JIT with a set of jobs on a single machine to minimize the mean
weighted deviation from distinct due dates. Recovering Beam Search algorithm was proposed by the
authors to show the efficiency of the solution approach.

In the classical one-machine problem with earliness-tardiness where preemption is allowed, each job
has two due dates instead of one; one of them deals with the starting time and the other with
completion time of jobs (Bülbül et al., 2007; Sourd & Kedad-Sidhoum, 2008; Hendel et al., 2009).
Hendel et al. (2009) investigated a new single machine scheduling problem with earliness and

M. Kazemi et al. / International Journal of Industrial Engineering Computations 3 (2012)

323

tardiness to capture the JIT philosophy, where the earliness costs depend on the start times of the jobs
and tardiness costs depend on completion times. They applied an efficient representation of dominant
schedules and introduced a polynomial algorithm to compute the best schedule for a given
representation. By using local search algorithm and a branch-and-bound procedure, the authors
showed there is a very small gap between their results and optimum solutions. Runge and Sourd
(2009) addressed a new model for the single machine E/T scheduling problem where preemption is
allowed. In this model, presented interruption costs are based on the WIP of the job. The WIP costs
are based on the differences among the start and completion times of the jobs. This model presented
two main advantages over an existing model HS presented by Hendel and Sourd (2005).

Primary, HS does not penalize interruption in all cases. And the next advantage is that liberty among
the E/T and the WIP costs allows them to design a new timing algorithm with a better time
complexity. Also they discussed for several dominance rules and the particular case of the scheduling
problem around a common due date. Furthermore, presented the lower bound for the timing
algorithm and explained that a local search algorithm based on their new timing algorithm is sooner
than a local search algorithm, which uses the timing algorithm presented by Hendel and Sourd
(2005). Khorshidian et al. (2011) presented a new mathematical model in the expansion of the
classical single machine E/T scheduling problem where preemption is allowed and idle time is also
considered. The proposed model finds the sequence configuration with the aim of minimizing the
scheduling costs. An efficient algorithm based on genetic algorithm (GA) was planned to solve the
mathematical model. Schematic representation of literature review for problem definition is
illustrated in Table 1.

Table 1
Scheduling attributes used in the present research and in a sample of published articles

Authors

Si
ng

le

m
ac

hi
ne

Objective

Pr
ee

m
pt

i
on

 jo
bs

En
vi

ro
n

m
en

t
(J

IT
)

Ei Ti Others
Seidmann et al. (1981) √ √ √ √
Garey et al. (1988) √ √ √ √
Bector et al. (1988) √ √ √
Davis & Kanet (1993) √ √ √
Nandkeolyar et al. (1993) √ √ √
Ventura & Weng, (1994) √ √ √
Szwarc & Mukhopadhyay (1995) √ √ √
Hoogeveen & Van De Velde (1996) √ √ √
Wan & Yen (2002) √ √ √
Sourd and Kedad-Sidhoum (2003) √ √ √
Tavakkoli-Moghaddam et al.(2005) √ √ √ √
Hendel & Sourd (2006) √ √ √
Esteve et al. (2006) √ √ √
M’Hallah (2007) √ √ √
Bülbül (2007) √ √ √ √ √
Liao & Cheng (2007) √ √ √
Gupta & Chantaravarapan (2008) √ √
Sourd & Kedad-Sidhoum (2008) √ √ √ √ √
Wan & Yen (2009) √ √
Hendel et al., (2009) √ √ √ √ √
Hepdogan et al. (2009) √ √ √
Shirazi et al. (2010) √ √ √
Khorshidian et al. (2011) √ √ √ √ √
Proposed model in this paper √ √ √ √ √ √

 324

Runge and Sourd (2009) calculated the total interruption and WIP penalties by the “idle” time (for
job Ji) is equal to Ci − Si − pi. However, in our model, we calculate the number of interruption and
work-in-process of each jab, separately. In addition, in our model, WIP penalties are commensurate
with percentage of a process improvement for each job, in other word, if a job is interrupted, the time
this job spends on the machine is extended and WIP increases.

The remainder of this paper is organized as follows. In Section 3, a new mathematical model is
presented for a single machine scheduling problem in JIT system where preemption and idle times are
allowed, with E/T penalties, interruption penalties and holding cost of jobs which are waiting to be
processed as work in process (WIP). The linearization procedure and the liberalized model are
presented in Section 4. Section 5 shows the numerical examples to validate and verify the
performance of proposed model. Finally, conclusion is given in Section 6.

3. Problem formulation

3.1. Problem description

In this section, a nonlinear programming mathematical model of a single machine scheduling
problem with preemptive jobs in JIT environment to minimize the total tardiness-earliness penalties,
interruption penalties and holding cost of jobs which are known as work- in-process is proposed.
Since this model permits preemption, we have to add a term to the objective function, which
penalizes the interruption of jobs. Certainly, if a job is interrupted, the time this job spends on the
machine is extended and work-in-process increases. We assume that the processing times, starting
times and due dates are integer numbers. The problem is formulated according to the following
assumptions.

1. The processing time for each job is known and deterministic.
2. Only one job can be processed on the machine simultaneously.
3. A job can be processed by the machine if it is idle.
4. The preemption of jobs is allowed.
5. Completing a job before its due date is not allowed.
6. Number of jobs to be processed is constant.
7. Work-in-process is allowed and its associated cost is considered.
8. More processed job will incur more cost of work-in-process if it is interrupted.
9. The interrupt cost of each job is considered.
10. Machine setup time is negligible.
11. The machine will never breakdown and be available throughout the scheduling period.

Consider a non-preemptive single machine scheduling problem with scheduling problem with just-in-
time (JIT) approach. Associated with each job i , i = 1, . . . , N, are several parameters: Pi , the
processing time for job i ; Di

c , the due date for job i ; iβ , the tardiness cost per unit time if job i
completes processing after Di

c ; and earliness costs as Ei = max(0, Di
s - Si) where this penalty

depends on the starting time of a job; Si where is the start time of job i ; and Di
s= Di

c- Pi +1 is the
ideal start time for job i (that is the target start time); and iα , the earliness cost per unit time if job i
starts processing before Di

s . We assume that the processing times, start times and due dates are
integers.

3.2. Notations

3.2.1. Subscripts

N Number of job

M. Kazemi et al. / International Journal of Industrial Engineering Computations 3 (2012)

325

J Number of position
i Index for job (i=1,2,…N)
j Index for position (j=1, 2,…J)

3.2.2. Input parameters

Pi Processing time of job i,
Di

c The ideal completion time (or due date) of job i,
iα The unitary earliness penalty of job i if it starts processing before Di

s,
iβ The unitary tardiness penalty of job i if it completes processing after Di

c,
iγ Unit cost of work-in-process holding of job i,
iη The unitary interruption penalty of job i,

A An arbitrary big positive number.

3.2.3. Decision variables

Ci Completion time of job i,
Di

s Ideal starting time for job i which is computed as Di
s = Di

c - Pi +1,
Xij 1 if job i is processed in position j, and 0 otherwise,
Ei Earliness of job i,
Ti Tardiness of job i,
Si Starting time of job i.

3.3. Mathematical model

min Z =

1
()

N

i i i i
i

E Tα β
=

+∑ (1.1)

1

1 1
1 1

1 . 2
2

N J

i ij ij iJ i
i j

X X X Xη
−

+
= =

⎡ ⎤⎛ ⎞
+ − + + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ (1.2)

1 1
.().

N J

ij i i
i j

X C j γ
= =

+ −∑∑ (1.3)

subject to

1

J

ij i
j

X P
=

=∑ ;i∀ (2)

1
1

N

ij
i

X
=

≤∑ ;i∀ (3)

c
i i iT C D≥ − ;i∀ (4)

s
i i iE D S≥ − ;i∀ (5)

{ }0,1ijX ∈ , ;i j∀ (6)
, 0i iT E ≥ ;i∀ (7)

max(.)i ijj
C X j= ;i∀ (8)

min (1)i ijj
S j A X⎡ ⎤= + −⎣ ⎦ ;i∀ (9)
The objective function consists of three components. The first component calculates earliness and
tardiness costs for all jobs. The second component computes interruption costs for all jobs. Finally,

 326

C1

the third component takes into account the holding cost of all jobs which are waiting to be processed
as works in process. Equality (2) guarantees that the number of positions in which job i is processed
is equal to the processing time of job i. Inequality (3) necessitates that in each position only one job is
processed. The tardiness and earliness of each job are calculated by Constraints (4) and (5).
Constraints (6) and (7) provide the logical binary and non-negativity integer necessities for the
decision variables. Eq. (8) and Eq. (9) present the completion time and starting time of each job,
respectively. In the following, the components of objective Fig 1 shows an example to illustrate the
calculation way of earliness and tardiness in the first component of objective function and related
constraints (4) and (5). As we can see, the completion time of job 1 (C1) happens after its due date
(D1

c). As a result, tardiness of job 1 happens and its value is equal to T1 = C1 - D1
c. Also, the starting

time of job 1 (S1) happens before its ideal starting time (D1
s). Therefore, earliness of job 1 happens

and its value is equal to E1 = D1
s - S1. The cost resulted from E/T is obtained by product unitary E/T

penalty and the related E/T quantities.

 1 6

 Fig. 1. Earliness and Tardiness cost

In the second component of objective function, the interruption cost is calculated by product the
number of interruptions on the machine and the unitary interruption penalty. By considering that

variable Xij is binary, one of the following situations will happen in term
1

1
1

J

ij ij
j

X X
−

+
=

−∑ of the

second component of objective function:
1. If 1ijX = and 1 1ijX + = , the absolute term returns 0 as the result which implies job i in

positions j and j+1 is processed on machine without any interruption.
2. If 1ijX = and 1 0ijX + = , the absolute term returns 1 as the result which implies job i is

processed in position j but not in position j+1. Therefore, an interruption happens between
positions j and j+1 for job i.

3. If 0ijX = and 1 1ijX + = , the absolute term returns 1 as the result which implies job i is not
processed in position j but in position j+1. Therefore, an interruption happens between
positions j and j+1 for job i.

4. If 0ijX = and 1 0ijX + = , the absolute term returns 0 as the result which implies job i in
positions j and j+1 is not processed on machine. Therefore, there is no interruption between
positions j and j+1 for job i.

If the starting position in which job i starts to be processed is any position except the beginning

position 1, term
1

1
1

J

ij ij
j

X X
−

+
=

−∑ takes into account an interruption while it doesn’t happen in reality.

Similarly, if the final position in which job i completes its process is any position except the ending

position J, term
1

1
1

J

ij ij
j

X X
−

+
=

−∑ takes into account an interruption while it doesn’t happen in reality.

To overcome this fault in calculating the number of interruptions, 2 units are subtracted from
1

1
1

J

ij ij
j

X X
−

+
=

−∑ . Since for a job variables 1iX or iJX may be equal to 1 that means the job is

I1 I1

Position

I1

D1

T1=C1 -D1
c E1= D1

S -S1

S1 D1
S

M. Kazemi et al. / International Journal of Industrial Engineering Computations 3 (2012)

327

I1 I1 I1

Positions

C1
Positions

I1 I1 I1

processed on the beginning or ending position, then it shouldn’t to subtract 2 units from term
1

1
1

J

ij ij
j

X X
−

+
=

−∑ and 1iX or iJX should be added to nullify the effect of that subtracting. Term

1

1 1
1 1

2
N J

ij ij iJ i
i j

X X X X
−

+
= =

⎡ ⎤⎛ ⎞
− + + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ takes into account the number of interruptions twice its real

value, therefore to reach the true number of interruptions the final value of that term should be
divided to 2.

To validate the presented formula for calculating the number of interruptions, two examples for job 1
with processing time 3 are presented. In the first example two interruptions and in the second
example one interruption happens.

.

 1 6 1 6
Fig. 2. Two examples to calculate the number of interruptions

As we can see, in the first example, one interruption happens between positions 2 and 3 and the other
happens between positions 5 and 6. Also, in the second example only one interruption happens
between positions 3 and 4. The number of interruptions for the first example based on the presented
formula is as below:

1 6 1

1 6 1
1 1

1 .[((|1 0 |) (| 0 1|) (|1 0 |) (| 0 0 |) (| 0 1|))1 . 2
2

1 1 2] 2
2ij ij i i

i j
X X X X

−

+
= =

⎡ ⎤⎛ ⎞
− + + −⎢ ⎥⎜ ⎟

⎢
=

⎥⎝
− + − + − + − + − +

⎦
+ − =

⎠⎣
∑ ∑

and for the second example is 1 .[((| 0 1|) (|1 0 |) (| 0 1|) (|1 1|) (|1 0 |)) 0 0 2] 1.
2

= − + − + − + − + − + + − =

It is proved that the presented formula calculates the number of interruptions exactly. In the third
component of the objective function, the holding cost of all jobs which are waiting to be processed as
works in process is computed. This component tries to complete a job after it starts to be processed as
soon as possible. Also, it aims to interrupt a job in the preliminary positions of its process provided
that the job is interrupted because of assumption 13. Fig 3 shows the effect of the interruption times
of a job on the work-in-process holding cost in the third component of the objective function. In all
three cases of this example, job 1 with process time 3 completes its process in position 6.

 1 2 3 4 5 6

 1 2 3 4 5 6

 1 2 3 4 5 6

Fig. 3. The effect of the work in process cost

(a) (b)

I1

Positions Positions

I1 I1

(b)

(c)

I1

C1

I1 I1

C1
Positions

I1 I1 I1

 328

The work-in-process holding costs for all three cases are calculated as follows.
That is for case (a):

1 7

1 1
1 1

[1.(6 1) 0.(6 2) 0.(6 3) 0.(6 4) 1.(6 5) 1.(6 6)]..() 6.ij i i
i j

X C j γ γ γ
= =

− + − + − + − + − + −= =−∑∑

That is for case (b):
1 1[1.(6 1) 1.(6 2) 0.(6 3) 0.(6 4) 0.(6 5) 1.(6 6)]. 9γ γ− + − += − + − + − + − =

That is for case (c):
1 1[0.(6 1) 0.(6 2) 0.(6 3) 1.(6 4) 1.(6 5) 1.(6 6)]. 3γ γ− + − += − + − + − + − =

The flow time for cases (a) and (b) is 6 and for case (c) is 3. Therefore, in case (c) a less holding cost
is incurred in compare to cases (a) and (b) which is equal to 13γ . The second time unit of process for
case (a) is done in position 5 and for case (b) is done in position 2. Then, the amount of work-in-
process in case (b) is more than it in case (a) and consequently it incurs more holding cost in compare
to case (a) based on assumption 13.

 4. Linearization of the proposed model

In this section, we present the linearization procedure and the liberalized model.

4.1. Linearization procedure

The linearization procedure that we propose here consists of four steps that are given by the four
propositions stated below. Terms (1.2), (1.3), (8) and (9) are non-linear, therefore, these four terms
will be liberalized using the following auxiliary variables XPij, XMij, Mij, Qij, Rij, Fij and Bij. Each
proposition for linearization is followed by a proof that illustrates the meaning of each auxiliary
(linearization) variable and additional constraints.

Proposition1. The non-linear term of the objective function (1.2) can be liberalized by the following
transformation 1ij ij ij ijX X X P XM+− = + , under the following set of constraints:

1 , ;ij ij ij ijX X XP XM i j+− = − ∀ (10)

The proof of this proposition is given in Appendix A.

Proposition2. The non-linear work-in-process holding cost terms in the objective function (1.3) can
be liberalized with .()ij i ijX C j M− = , under the following set of constraints:

() (1) , ;ij i ijM C j A X i j≥ − − − ∀ (11)

The proof of this proposition is given in Appendix B.

Proposition3. The non-linear constraint (8) can be liberalized by the following transformation
max(.)ij iJj

X j Q= , under the following sets of constraints:

1 1 ;i iQ X i= ∀ (12.1)

1.(1) (.) , ;ij ij ij ijQ Q X j X i j−= − + ∀ (12.2)

The proof of this proposition is given in Appendix C.

Proposition4. The non-linear constraint (9) can be liberalized by adding the following set of
constraints:

M. Kazemi et al. / International Journal of Industrial Engineering Computations 3 (2012)

329

1 1 ;i iB X i= ∀ (13.1)

1 1(1). , ;ij ij ij ijB B B X i j− −= + − ∀ (13.2)

1
1 ;

J

i ij
j

S J B i
=

= − + ∀∑
(13.3)

The proof of this proposition is given in Appendix D.

4.2. The liberalized model
We now present the linear mathematical model as follows:
min (1.1)z =

1

1
1 1

1 . 2
2

N J

i ij ij iJ i
i j

XP XM X Xη
−

= =

⎡ ⎤⎛ ⎞
+ + + + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ (1.2')

1 1

.
N J

ij i
i j

M γ
= =

+∑∑ (1.3')

Subject to:

(2), (3), (4), (5)
{ }, , 0,1ij ij ijXP XM X ∈ , ;i j∀ (6)

, , , , , , , , 0ij ij ij ij ij ij i i iG B F Q R M C T E ≥ , ;i j∀ (7)

i iJC Q= ;i∀ (8)

1ij ij ij ijX X XP XM+− = − , ;i j∀ (10)
() (1)ij i ijM C j A X≥ − − − , ;i j∀ (11)

1 1i iQ X= ;i∀ (12.1)

1ij ij ij ijQ Q R F−= − + , ;i j∀ (12.2)

1 (1)ij ij ijR Q A X−≤ + − , ;i j∀ (12.3)

1 (1)ij ij ijR Q A X−≥ − − , ;i j∀ (12.4)

.ij ijR A X≤ , ;i j∀ (12.5)

(1)ij ijF j A X≤ + − , ;i j∀ (12.6)

(1)ij ijF j A X≥ − − , ;i j∀ (12.7)

.ij ijF A X≤ , ;i j∀ (12.8)

1 1i iB X= ;i∀ (13.1)

1ij ij ij ijB B X G−= + − , ;i j∀ (13.2)

1

1
J

i ij
j

S J B
=

= − +∑ ;i∀ (13.3)

1 (1)ij ij ijG B A X−≤ + − , ;i j∀ (13.4)

1 (1)ij ij ijG B A X−≥ − − , ;i j∀ (13.5)

 330

.ij ijG A X≤ , ;i j∀ (13.6)

The number of variables and constraints in the liberalized model are presented parametrically in
Tables 1 and 2 respectively, based on the variable indices.

Table1
The number of variables in the liberalized model

Count Variable Count Variable Count Variable
N×J RijN×J MijN×J Xij

N×J XPijN×J FijN Ti

N×J XMijN×J Bij N Ei

 N×J Gij N×J Qij
Sum= 2 (N) +9 (N×J)

Table 2
The number of constraints in the liberalized model

Count Con. Count Con. Count Con.
N×J (12.8) N×J (11) N (2)

N (13.1) N (12.1) J (3)
N×J (13.2) N×J (12.2) N (4)

N (13.3) N×J (12.3) N (5)
N×J (13.4) N×J (12.4) N×J (6)
N×J (13.5) N×J (12.5) 3(N)+6(N×J) (7)
N×J (13.6) N×J (12.6) N (8)

 N×J (12.7) N×J (10)
Sum=20(N×J) + (J) + 10(N)

5. Numerical examples

To validate the proposed model, a numerical example in a small size with randomly generated data is
solved by a branch-and-bound (B&B) method under the Lingo 11.0 software on an Intel®
CoreTM2.4 GHz Personal Computer with 4 GB RAM. Table 3 presents the information related to
each job in this example and contains processing time, due date, the penalty of earliness, tardiness,
and interruption as well work-in-process holding cost.

Table 3
Job information
Job
number

Processing
Time Due date Ideal Start

Time
Earliness
Penalty

Tardiness
Penalty

Interruption
penalty

Work-in-process
holding cost

1 4 9 6 80$ 60$ 5$ 1$
2 6 12 7 60$ 40$ 8$ 2$
3 4 12 9 80$ 90$ 6$ 5$
4 5 17 13 70$ 80$ 3$ 2$
5 5 29 25 60$ 50$ 2$ 1$
6 3 29 27 30$ 60$ 4$ 2$

The objective function value (OFV) obtained after 36134124 iterations in a CPU time 1:16’:21” is
presented in Table 4. Fig 4 shows the positions in which the jobs are processed, the starting and
completion time of each job and the interruption interval for each job. For example, job 3 is started to
be processed in position 8, interrupted in position 9 and started again to be processed in position 10
until it is exactly terminated in its due date 12. As due date is 12 and its ideal starting time is 9, job 3

M. Kazemi et al. / International Journal of Industrial Engineering Computations 3 (2012)

331

incurs earliness penalty and no tardiness penalty, also imposes interruption penalty in addition to
work-in-process holding cost because of the interruption happened in position 9.

M
 5 8 10 12 15 20

 . . .
 20 25 30 32

Fig. 4. Job schedules

Table 4
Objective function and its cost components

OFV Earliness Tardiness Work-in-process Interruption
950 240 550 139 21

Table 5 presents the solution obtained for each job and it contains the starting and completion time,
number of interruptions and flow time. Furthermore, tardiness/earliness penalty imposed by each job
is calculated in Table 5.

Table 5
The solution obtained for each job

Job number Starting
Time

Completion
Time

No. of
interruptions Flow time Tardiness

Penalty
Earliness
penalty

1 4 9 1 4 – 9 0 2*80$
2 7 22 1 7 – 22 10*40 0
3 8 12 1 8-12 0 1*80$
4 13 17 0 13-17 0 0
5 25 32 1 25-32 3*50 0
6 27 29 0 27-29 0 0

We implement the sensitive analysis of model by increasing the interruption cost of job 3 from 6 to
300. The job schedules, objective function and the solution obtained for each job is presented in Fig 5
and tables 6 and 7, respectively. Increasing in the interruption cost of job 3 causes that model tries to
prevent interruption in processing of job 3. As a result, the flow time of jobs 1, 2 and 4 are increased.
As we can see, job 3 is processed without any interruption and the flow time of jobs 1, 2 and 4 are
increased from 6, 16 and 5 to 10, 17 and 6, respectively. Also the tardiness of job 1, 2 and 4 are
increased. By comparing the objective function values presented in Tables 4 and 6, we can
understand that in spite of processing job 3 without any interruption, increased flow time of jobs 1
and 2 raise the objective function from 950 to 1222.

M
 5 10 15 20

 . . .
 20 25 30 32

Fig. 5. Job schedules with increased interruption cost

 J1 J1 J1 J3J1 J3J2 J3 J4J4J4J4J3 J2J2J4 J2

J2 J6J6J5J5 J6J2 J5 J5 J5

 J1 J1 J1 J3 J1 J3J2 J3 J4J4 J4J4J3 J2

J2

J4 J2

J2 J6J6J5J5 J6J2 J5 J5 J5

 332

Table 6
Objective function and its cost components with increased interruption cost
OFV Earliness Tardiness Work-in-process Interruption
1222 80 970 149 23

Table 7
The solution obtained for each job with increased interruption cost

Job number Completion
Time

No. of
interruption Flow time Tardiness

Penalty
Earliness
penalty

1 9 0 6-9 0 0
2 14 1 1-14 2*60$ 0
3 12 1 5-12 0 0
4 19 0 15-19 2*80$ 0
5 29 1 22-29 0 0
6 28 0 26-28 0 1*30$

Further to the explained example, we have also solved several numerical examples of different sizes
and their results are shown in Table 8.

Table 8
Several numerical examples and related cost components of objective functions
No. of Jobs OFV Earliness Tardiness Work-in-process Interruption CPU time
8 1128 470 530 102 26 40’:32”
10 960 620 200 114 26 1:27’:11”
12 880 290 430 128 32 1:22”:49”
15 945 580 200 131 34 2:18’:47”
20 1345 360 690 247 48 3:05’:52”

6. Conclusions and further research

This paper presented a novel integer nonlinear programming model for the single machine scheduling
problem with preemptive jobs in JIT environment to minimize the total tardiness/earliness penalties,
interruption penalties and holding costs of all jobs which are work-in-process. The excellent
advantage of the proposed model is to incorporate penalties of interruption and work-in-process jobs.
The nonlinear formulation of the proposed model was liberalized using an innovative procedure. The
performance of the model was illustrated by a numerical example. Sensitive analysis performed on
interruption cost illustrated the impact of this feature on the model performance. CPU time required
to reach optimal solution for the presented examples shows that obtaining an optimal solution for
such hard problems in a reasonable time is computationally intractable.

An attractive future research trend is to investigate the preemptive jobs in JIT with parallel uniform or
different machines. Also it would be appropriate to consider the problem studied here with the
addition of some other assumptions like sequence dependent setup times. It is also interesting to work
on other solution methods like stochastic algorithms and meta-heuristic algorithms to achieve even
better results.

Appendix A. The Proof of proposition 1

This can be shown for each of the three possible cases that can arise.

M. Kazemi et al. / International Journal of Industrial Engineering Computations 3 (2012)

333

(i) Xij > Xij+1. By (10), XPij - XMij > 0. Since this is a minimization problem and the objective
function cost coefficients are strictly positive, XMij = 0 and XPij = Xij - Xij+1 will hold in the
optimal solution.

(ii) Xij < Xij+1. By (10), XPij - XMij < 0. In this case, again with the coefficients of XPij and XMij
being strictly positive, the objective function will ensure that XPij = 0 and thus XMij = Xij+1 -
Xij will hold in the optimal solution.

(iii) Xij = Xij+1. By (10), XPij - XMij = 0. In this case, both XPij = 0 and XMij = 0 will hold in the
optimal solution since their coefficients in the objective function are strictly positive.

Appendix B. The Proof of proposition 2

Consider the following two cases:

(i) Xij .(Ci - j) = 0. Such a situation arises under one of the following three sub-cases:

(a) Xij = 1 and (Ci - j) = 0. , ;i j∀
(b) Xij = 0 and (Ci - j) > 0. , ;i j∀
(c) Xij = 0 and (Ci - j) = 0. , ;i j∀

In all of the three sub-cases given above, the value of Mij = 0, because in these cases, constraint
(11) implies Mij ≥ 0 or -∞ and since Mij has a strictly positive cost coefficient, the minimizing
objective function ensures that Mij = 0.

(ii) Xij .(Ci - j) = (Ci - j) > 0. , ;i j∀

Such a situation arises when Xij = 1 and (Ci - j) > 0 so, constraint (11) implies Mij ≥ (Ci - j) and
since Mij has a strictly positive cost coefficient, the minimizing objective function ensures that
Mij = (Ci - j).

Appendix C. The Proof of proposition 3

Consider the following two sections:

(i) In term max(.)ijj
X j , we find the final position of process for job i, thus in constraint (12.2),

when for the final position, for example position j, Xij = 1, then Qij takes value j and for the
following positions which are larger than j, Xijs take value 0, then Qij finally turns value j
which implies the final position of process in constraint (12.2).

(ii) The non-linear constraint (12.2) can be liberalized by the following transformations
1.ij ij ijQ X R− = and . ij ijj X F= , under the following sets of constraints:

1 (1) , ;ij ij ijR Q A X i j−≤ + − ∀ (12.3)

1 (1) , ;ij ij ijR Q A X i j−≥ − − ∀ (12.4)
. , ;ij ijR A X i j≤ ∀ (12.5)

and

 334

(1) , ;ij ijF j A X i j≤ + − ∀ (12.6)
(1) , ;ij ijF j A X i j≥ − − ∀ (12.7)

. , ;ij ijF A X i j≤ ∀ (12.8)

This section can be shown for each of the two possible cases that can arise.
1. Xij . Qij-1 = Qij-1. , ;i j∀

Such a situation arises when Xij = 1 so, constraints (12.3) and (12.4) implies Rij ≤ Qij-1 and Rij ≥
Qij-1 and ensures that Rij = Qij-1.

2. Xij .Qij-1 = 0. Such a situation arises under one of the following three sub-cases:
(a) Xij = 1 and Qij-1 = 0. , ;i j∀
(b) Xij = 0 and Qij-1 > 0. , ;i j∀
(c) Xij = 0 and Qij-1 = 0. , ;i j∀

In all of the three sub-cases given above, Rij takes the value of 0, because in these cases,
constraint (12.5) implies Rij ≤ 0 and ensures that Rij = 0. Because Rij has not a strictly positive
cost coefficient, the minimizing objective function doesn’t ensures that Rij = 0. Thus, constraint
(12.5) should be added to the mathematical model.
The performance of constraints (12.6) - (12.8) is similar to constraints’ (12.3) and (12.5).

Appendix D. The Proof of proposition 4

Consider the following two sections:

(i) In term min (1)i ijj
S j A X⎡ ⎤= + −⎣ ⎦ , we find the first position of process for job i. In constraint

(13.2), when for the first position, for example position j, Xij = 1, then Bij takes value 1 and
since for the following positions which are larger than j, Bijs take value 1, then the summation
of Bijs implies the number of positions where job i is work-in-process. Thus Si returns the
first position number in constraint (13.3).

(ii) The non-linear constraint (13.2) can be liberalized by the following transformation
1.ij ij ijB X G− = , under the following sets of constraints:

1 (1) , ;ij ij ijG B A X i j−≤ + − ∀ (13.4)

1 (1) , ;ij ij ijG B A X i j−≥ − − ∀ (13.5)
. , ;ij ijG A X i j≤ ∀ (13.6)

Thus, constraints (13.1) - (13.6) should be added to the mathematical model. The performance of
constraints (13.4) - (13.6) is similar to constraints’ (12.3) - (12.5).

References

Bector, C.R., Gupta, Y.P., & Gupta, M.C. (1988). Determination of an optimal common due date and

optimal sequence in a single machine jobshop. International Journal of Production Research 26,
613–628.

Bülbül, K., Kaminsky, P., & Yano, C. (2007). Preemption in single machine earliness/tardiness
scheduling. Journal of Scheduling 10, 271-292.

M. Kazemi et al. / International Journal of Industrial Engineering Computations 3 (2012)

335

Davis, J.S., Kanet, J.J. (1993). Single-machine scheduling with early and tardy completion costs.
Naval Research Logistics 40, 85-101.

Esteve, B., Aubijoux, C., Chartier, A., & T’kindt, V. (2006). A recovering beam search algorithm for
the single machine Just-in-Time scheduling problem. European Journal of Operational Research
127, 798-813.

Garey, M.R., Tarjan, R.E., & Wilfong, G.T. (1988). One-processor scheduling with symmetric
earliness and tardiness penalties. Mathematics of Operations Research 13, 330-348.

Gupta, J.N.D., & Chantaravarapan S. (2008). Single machine group scheduling with family setups to
minimize total tardiness. International Journal of Production Research 46, 1707–1722.

Hendel, Y., Runge, N., & Sourd, F. (2009). The one-machine just-in-time scheduling problem with
preemption. Discrete Optimization 6, 10-22.

Hendel, Y., & Sourd, F. (2005). The single machine just-in-time scheduling problem with
preemptions. In: MISTA 2005: proceedings of the 2nd multidisciplinary international conference
on scheduling: theory and applications. p. 140–8.

Hendel, Y., & Sourd, F. (2006). Efficient neighborhood search for the one-machine
earliness/tardiness scheduling problem. European Journal of Operational Research 173, 108-119.

Hepdogan, S., Moraga, R., DePuy, G.W., & Whitehouse G.E. (2009). A meta-RaPS for the
early/tardy single machine scheduling problem. International Journal of Production Research 47,
1717–1732.

Hoogeveen, J.A., & Van de Velde, S.L. (1996). A branch-and-bound algorithm for single-machine
earliness/tardiness scheduling with idle time. INFORMS Journal on Computing 8, 402-412.

Khorshidian, H., Javadian, N., Zandieh, M., Rezaeian, J., & Rahmani, K. (2011). A genetic algorithm
for JIT single machine scheduling with preemption and machine idle time. Expert Systems with
Applications 38, 7911-7918.

Liao, C.-J., & Cheng, C.-C. (2007). A variable neighborhood search for minimizing single machine
weighted earliness and tardiness with common due date. Computers and Industrial Engineering
52, 404-413.

Luo, X., Chu, Ch., & Wang, Ch. (2006). Some dominance properties for single-machine tardiness
problem with sequence-dependent setup times. International Journal of Production Research 44,
3367–3378.

M’Hallah, R. (2007). Minimizing total earliness and tardiness on a single machine using a hybrid
heuristic. Computers & Operations Research 34, 3126-3142.

Nandkeolyar, U., Ahmed, M., & Sundararaghavan, P. (1993). Dynamic single-machine-weighted
absolute deviation problem: predictive heuristics and evaluation. International Journal of
Production Research 31(6), 1453–1466.

Runge, N., & Sourd, F. (2009). A new model for the preemptive earliness–tardiness scheduling
problem. Computers & Operation Research, 36, 2242-2249.

Seidmann, A., Panwalkar, S.S., & Smith, M.L. (1981). Optimal assignment of due dates for a single
processor scheduling problem. International Journal of Production Research 19, 393–399.

Shirazi, B., Fazlollahtabar, H., & Sahebjamnia, N. (2010). Minimizing arbitrary earliness/tardiness
penalties with common due date in single-machine scheduling problem using a Tabu-Geno-
Simulated Annealing. Materials and Manufacturing Processes 25, 515–525.

Sourd, F., & Kedad-Sidhoum, S. (2003). The one-machine scheduling with earliness and tardiness
penalties. Journal of Scheduling 6, 533-549.

Sourd, F., & Kedad-Sidhoum, S. (2008). A faster branch-and-bound algorithm for the
earliness_tardiness scheduling problem. Journal of Scheduling 11, 49-58.

Szwarc, W., & Mukhopadhyay, S.K. (1955). Optimal timing schedules in earliness/tardiness single
machine sequencing. Naval Research Logistics 42, 1109-1114.

Tavakkoli-Moghaddam, R., Moslehi, G., Vasei, M., & Azaron, A. (2005). Optimal scheduling for a
single machine to minimize the sum of maximum earliness and tardiness considering idle insert.
Applied Mathematics and Computation 167, 1430-1450.

 336

Tavakkoli-Moghaddam, R., Moslehi, G., Vasei, M., & Azaron, A. (2006). A branch-and-bound
algorithm for a single machine sequencing to minimize the sum of maximum earliness and
tardiness with idle insert. Applied Mathematics and Computation 174, 388-408.

Ventura, J.A., & Weng, M.X. (1994). Single-machine scheduling for minimizing total cost with
identical, asymmetrical earliness and tardiness penalties. International Journal of Production
Research 32, 2725–2729.

Wan, G., & Yen, B.P.C. (2002). Tabu search for single machine with distinct due windows and
weighted earliness/tardiness penalties. European Journal of Operational Research 142, 271-281.

Wan, G., & Yen, B.P.-C. (2009). Single machine scheduling to minimize total weighted earliness
subject to minimal number of tardy jobs. European Journal of Operational Research 195, 89-97.

	Just-in-time preemptive single machine problem with costs of earliness/tardiness, interruptionand work-in-process
	1. Introduction
	2. Literature review
	3. Problem formulation
	3.1. Problem description
	3.2. Notations
	3.2.1. Subscripts
	3.2.2. Input parameters
	3.2.3. Decision variables
	3.3. Mathematical model

	4. Linearization of the proposed model
	4.1. Linearization procedure
	4.2. The liberalized model

	5. Numerical examples
	6. Conclusions and further research
	References

