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 This paper considers preemption and idle time are allowed in a single machine scheduling 
problem with just-in-time (JIT) approach. It incorporates Earliness/Tardiness (E/T) penalties, 
interruption penalties and holding cost of jobs which are waiting to be processed as work-in-
process (WIP). Generally in non-preemptive problems, E/T penalties are a function of the 
completion time of the jobs. Then, we introduce a non-linear preemptive scheduling model 
where the earliness penalty depends on the starting time of a job. The model is liberalized by an 
elaborately–designed procedure to reach the optimum solution. To validate and verify the 
performance of proposed model, computational results are presented by solving a number of 
numerical examples. 
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1. Introduction 

In the single machine scheduling problem with E/T, a set of jobs, each with an associated due date, 
has to be scheduled on a single machine. Each job has a penalty per unit time associated with 
completing before its due date, and a penalty per unit time associated with completing after its due 
date. There are many extensive efforts in the recent years to minimize the weighted number of early 
and tardy jobs in single machine scheduling problem (Seidmann et al. 1981; Bector et al. 1988; Davis 
& Kanet, 1993; Nandkeolyar et al. 1993; Ventura & Weng, 1994; Szwarc & Mukhopadhyay, 1995; 
Hoogeveen & Van De Velde, 1996; Wan & Yen, 2002; Luo et al. 2006; Hendel & Sourd, 2006; Liao 
& Cheng, 2007; Sourd & Kedad-Sidhoum, 2003).  

M’Hallah (2007) addressed a single machine scheduling problem in order to minimize the total 
number of earliness and tardiness, where processing times of jobs are different and due dates also are 
distinct and idle time is not allowed. He developed and analyzed a hybrid heuristic, which combines 
local search heuristics such as dispatching rules, hill climbing and simulated annealing with an 
evolutionary algorithm based on genetic algorithms. 
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Gupta and Chantaravarapan (2008) presented a mixed-integer linear programming model for single 
machine scheduling problem considering independent family (group) setup times where jobs in each 
family are processed together. A sequence-independent setup time is required to process a job from a 
different family.   

Wan and Yen (2009) considered a single machine scheduling problem to minimize the total weighted 
earliness subject to minimum number of tardy jobs. They developed a heuristic and a branch and 
bound algorithm and compared these two algorithms for problems in different sizes. Hepdogan et al. 
(2009) Investigated a meta-heuristic solution approach for the early/tardy single machine scheduling 
problem with common due date and sequence-dependent setup times.  

The objective of this problem is to minimize the total amount of earliness and tardiness of jobs, which 
are assigned to a single machine. Shirazi et al. (2010) proposed a new approach called Tabu-Geno-
Simulated Annealing (TGSA) by hybridization of three well-known metaheuristics for solving single 
machine scheduling problem for a common due date with arbitrary E/T penalties. The objective is to 
determine the common due date and processing sequence of new jobs together with the re-sequencing 
of old jobs to minimize the sum of total E/T, completion time, and due date related penalties.  

2. Literature review 

Just-in-time (JIT) scheduling problems establish a well-studied class of multi-criteria scheduling 
problems. Indeed, these problems with earliness penalties are very useful to represent practical 
problems, in which either perishable goods should be delivered or storage costs should be regarded. 
Tardiness, Ti, and earliness, Ei, are computed by: 
 

• Ti = max (0, Ci - di), 
• Ei = max (0, di - Ci), 

 
where Ci and di denote the completion time and due date of job i, respectively. Clearly, a task cannot 
simultaneously have a positive tardiness and a positive earliness; a task is either tardy or early. 
Moreover, earliness and tardiness are often similar in terms of costs induced by a delivery that is not 
on time. Therefore, these two criteria are often aggregated into a single criterion fi(Ci) = aiEi + biTi, 
which is called the weighted deviation of the task with respect to its due date. Interestingly, this 
deviation function can be generalized to express more complex combinations of contradicting criteria 
and soft or hard constraints on the due date obligated by a customer. Garey et al. (1988) proposed a 
direct algorithm based on the blocks of adjacent jobs with computational complexity O(n log n), valid 
for the JIT problem with symmetric earliness and tardiness penalties.  
 
Tavakkoli-Moghaddam et al. (2005) studied a single machine scheduling problem to minimize the 
sum of maximum earliness and tardiness by considering idle insertion. The proposed model, which 
could be adapted by production systems such as JIT presented the optimal solutions. Additionally, the 
authors developed a number of effective lemmas regarding idle insertion. For this type of scheduling 
models, Tavakkoli-Moghaddam et al. (2006) introduced a branch-and-bound algorithm to solve the 
problems, where a suitable lower and upper bound were represented. To show the effectiveness of the 
proposed algorithm, they generated and solved different sizes of the model. Esteve et al. (2006) 
studied the problem of scheduling JIT with a set of jobs on a single machine to minimize the mean 
weighted deviation from distinct due dates. Recovering Beam Search algorithm was proposed by the 
authors to show the efficiency of the solution approach. 
 
In the classical one-machine problem with earliness-tardiness where preemption is allowed, each job 
has two due dates instead of one; one of them deals with the starting time and the other with 
completion time of jobs (Bülbül et al., 2007; Sourd & Kedad-Sidhoum, 2008; Hendel et al., 2009). 
Hendel et al. (2009) investigated a new single machine scheduling problem with earliness and 
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tardiness to capture the JIT philosophy, where the earliness costs depend on the start times of the jobs 
and tardiness costs depend on completion times. They applied an efficient representation of dominant 
schedules and introduced a polynomial algorithm to compute the best schedule for a given 
representation. By using local search algorithm and a branch-and-bound procedure, the authors 
showed there is a very small gap between their results and optimum solutions. Runge and Sourd 
(2009) addressed a new model for the single machine E/T scheduling problem where preemption is 
allowed. In this model, presented interruption costs are based on the WIP of the job.  The WIP costs 
are based on the differences among the start and completion times of the jobs.  This model presented 
two main advantages over an existing model HS presented by Hendel and Sourd (2005). 
 
Primary, HS does not penalize interruption in all cases. And the next advantage is that liberty among 
the E/T and the WIP costs allows them to design a new timing algorithm with a better time 
complexity. Also they discussed for several dominance rules and the particular case of the scheduling 
problem around a common due date. Furthermore, presented the lower bound for the timing 
algorithm and explained that a local search algorithm based on their new timing algorithm is sooner 
than a local search algorithm, which uses the timing algorithm presented by Hendel and Sourd 
(2005). Khorshidian et al. (2011) presented a new mathematical model in the expansion of the 
classical single machine E/T scheduling problem where preemption is allowed and idle time is also 
considered. The proposed model finds the sequence configuration with the aim of minimizing the 
scheduling costs. An efficient algorithm based on genetic algorithm (GA) was planned to solve the 
mathematical model. Schematic representation of literature review for problem definition is 
illustrated in Table 1. 
 
Table 1  
Scheduling attributes used in the present research and in a sample of published articles 

Authors 

Si
ng

le
 

m
ac

hi
ne

 

Objective 

Pr
ee

m
pt

i
on

 jo
bs

 

En
vi

ro
n

m
en

t 
(J

IT
) 

Ei Ti Others 
Seidmann et al. (1981) √ √ √ √   
Garey et al. (1988) √ √ √   √ 
Bector et al. (1988) √ √ √    
Davis & Kanet (1993) √ √ √    
Nandkeolyar et al. (1993) √ √ √    
Ventura & Weng, (1994) √ √ √    
Szwarc & Mukhopadhyay (1995) √ √ √    
Hoogeveen & Van De Velde (1996) √ √ √    
Wan & Yen (2002) √ √ √    
Sourd and Kedad-Sidhoum (2003) √ √ √    
Tavakkoli-Moghaddam et al.(2005) √ √ √  √
Hendel & Sourd (2006) √ √ √    
Esteve et al. (2006) √   √  √ 
M’Hallah (2007) √ √ √  
Bülbül (2007) √ √ √  √ √ 
Liao & Cheng (2007) √ √ √    
Gupta & Chantaravarapan (2008) √  √    
Sourd & Kedad-Sidhoum (2008) √ √ √  √ √ 
Wan & Yen (2009) √ √     
Hendel et al., (2009) √ √ √  √ √ 
Hepdogan et al. (2009) √ √ √    
Shirazi et al. (2010) √ √ √    
Khorshidian et al. (2011) √ √ √  √ √ 
Proposed model in this paper √ √ √ √ √ √ 
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Runge and Sourd (2009) calculated the total interruption and WIP penalties by the “idle” time (for 
job Ji) is equal to Ci − Si − pi. However, in our model, we calculate the number of interruption and 
work-in-process of each jab, separately. In addition, in our model, WIP penalties are commensurate 
with percentage of a process improvement for each job, in other word, if a job is interrupted, the time 
this job spends on the machine is extended and WIP increases. 
 
The remainder of this paper is organized as follows. In Section 3, a new mathematical model is 
presented for a single machine scheduling problem in JIT system where preemption and idle times are 
allowed, with E/T penalties, interruption penalties and holding cost of jobs which are waiting to be 
processed as work in process (WIP). The linearization procedure and the liberalized model are 
presented in Section 4. Section 5 shows the numerical examples to validate and verify the 
performance of proposed model. Finally, conclusion is given in Section 6. 
 

3. Problem formulation 

3.1. Problem description  

In this section, a nonlinear programming mathematical model of a single machine scheduling 
problem with preemptive jobs in JIT environment to minimize the total tardiness-earliness penalties, 
interruption penalties and holding cost of jobs which are known as work- in-process is proposed. 
Since this model permits preemption, we have to add a term to the objective function, which 
penalizes the interruption of jobs. Certainly, if a job is interrupted, the time this job spends on the 
machine is extended and work-in-process increases. We assume that the processing times, starting 
times and due dates are integer numbers.  The problem is formulated according to the following 
assumptions. 
 

1. The processing time for each job is known and deterministic.  
2. Only one job can be processed on the machine simultaneously. 
3. A job can be processed by the machine if it is idle. 
4. The preemption of jobs is allowed. 
5. Completing a job before its due date is not allowed. 
6. Number of jobs to be processed is constant. 
7. Work-in-process is allowed and its associated cost is considered. 
8. More processed job will incur more cost of work-in-process if it is interrupted. 
9. The interrupt cost of each job is considered. 
10. Machine setup time is negligible. 
11. The machine will never breakdown and be available throughout the scheduling period. 

Consider a non-preemptive single machine scheduling problem with scheduling problem with just-in-
time (JIT) approach. Associated with each job i , i = 1, . . . , N, are several parameters: Pi , the 
processing time for job i ; Di

c , the due date for job i ; iβ , the tardiness cost per unit time if job i 
completes processing after Di

c ; and earliness costs as Ei = max(0, Di
s - Si ) where this penalty 

depends on the starting time of a job; Si where is the start time of job i ; and Di
s= Di

c- Pi +1 is the 
ideal start time for job i (that is the target start time); and iα , the earliness cost per unit time if job i 
starts processing before Di

s . We assume that the processing times, start times and due dates are 
integers.  

3.2. Notations 
 
3.2.1. Subscripts 

N Number of job 
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J Number of position 
i Index for job (i=1,2,…N) 
j Index for position (j=1, 2,…J) 
 
3.2.2. Input parameters 

Pi Processing time of job i, 
Di

c The ideal completion time (or due date) of job i, 
iα  The unitary earliness penalty of job i if it starts processing before Di

s, 
iβ  The unitary tardiness penalty of job i if it completes processing after Di

c, 
iγ  Unit cost of work-in-process holding of job i, 
iη  The unitary interruption penalty of job i, 

A An arbitrary big positive number. 

3.2.3. Decision variables 

Ci Completion time of job i, 
Di

s Ideal starting time for job i which is computed as Di
s = Di

c - Pi +1,   
Xij 1 if job i is processed in position  j, and 0 otherwise, 
Ei Earliness of job i, 
Ti Tardiness of job i, 
Si Starting time of job i. 
 
3.3. Mathematical model 
 
min Z =  

1
( )

N

i i i i
i

E Tα β
=

+∑  (1.1) 

1

1 1
1 1

1 . 2
2

N J

i ij ij iJ i
i j

X X X Xη
−

+
= =

⎡ ⎤⎛ ⎞
+ − + + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑  (1.2) 

1 1
.( ).

N J

ij i i
i j

X C j γ
= =

+ −∑∑  (1.3)  

 
subject to   

1

J

ij i
j

X P
=

=∑  ;i∀  (2) 

1
1

N

ij
i

X
=

≤∑  ;i∀  (3) 

c
i i iT C D≥ −  ;i∀  (4) 

s
i i iE D S≥ −  ;i∀  (5) 

{ }0,1ijX ∈  , ;i j∀  (6) 
, 0i iT E ≥  ;i∀  (7) 

max( . )i ijj
C X j=  ;i∀  (8) 

min (1 )i ijj
S j A X⎡ ⎤= + −⎣ ⎦  ;i∀  (9) 
The objective function consists of three components. The first component calculates earliness and 
tardiness costs for all jobs. The second component computes interruption costs for all jobs. Finally, 
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C1 

the third component takes into account the holding cost of all jobs which are waiting to be processed 
as works in process. Equality (2) guarantees that the number of positions in which job i is processed 
is equal to the processing time of job i. Inequality (3) necessitates that in each position only one job is 
processed. The tardiness and earliness of each job are calculated by Constraints (4) and (5). 
Constraints (6) and (7) provide the logical binary and non-negativity integer necessities for the 
decision variables. Eq. (8) and Eq. (9) present the completion time and starting time of each job, 
respectively. In the following, the components of objective Fig 1 shows an example to illustrate the 
calculation way of earliness and tardiness in the first component of objective function and related 
constraints (4) and (5). As we can see, the completion time of job 1 (C1) happens after its due date 
(D1

c). As a result, tardiness of job 1 happens and its value is equal to T1 = C1 - D1
c. Also, the starting 

time of job 1 (S1) happens before its ideal starting time (D1
s). Therefore, earliness of job 1 happens 

and its value is equal to E1 = D1
s - S1. The cost resulted from E/T is obtained by product unitary E/T 

penalty and the related E/T quantities.  
 
 
 
                           
 
         1                                                 6                                                            

            Fig. 1. Earliness and Tardiness cost 

In the second component of objective function, the interruption cost is calculated by product the 
number of interruptions on the machine and the unitary interruption penalty. By considering that 

variable Xij is binary, one of the following situations will happen in term 
1

1
1

J

ij ij
j

X X
−

+
=

−∑  of the 

second component of objective function:     
1. If  1ijX =  and 1 1ijX + = , the absolute term returns 0 as the result which implies job i in 

positions j and j+1 is processed on machine without any interruption. 
2. If  1ijX =  and 1 0ijX + = , the absolute term returns 1 as the result which implies job i is 

processed in position j but not in position j+1. Therefore, an interruption happens between 
positions j and j+1 for job i. 

3. If 0ijX = and 1 1ijX + = , the absolute term returns 1 as the result which implies job i is not 
processed in position j but in position j+1. Therefore, an interruption happens between 
positions j and j+1 for job i. 

4. If 0ijX =  and 1 0ijX + = , the absolute term returns 0 as the result which implies job i in 
positions j and j+1 is not processed on machine. Therefore, there is no interruption between 
positions j and j+1 for job i.  

 
If the starting position in which job i starts to be processed is any position except the beginning 

position 1, term
1

1
1

J

ij ij
j

X X
−

+
=

−∑ takes into account an interruption while it doesn’t happen in reality. 

Similarly, if the final position in which job i completes its process is any position except the ending 

position J, term 
1

1
1

J

ij ij
j

X X
−

+
=

−∑  takes into account an interruption while it doesn’t happen in reality. 

To overcome this fault in calculating the number of interruptions, 2 units are subtracted from
1

1
1

J

ij ij
j

X X
−

+
=

−∑ . Since for a job variables 1iX  or iJX  may be equal to 1 that means the job is 

I1 I1  

Position

I1 

D1 

T1=C1 -D1
c E1= D1

S -S1 

S1 D1
S 
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I1  I1 I1 

Positions 

C1 
Positions 

I1  I1 I1 

processed on the beginning or ending position, then it shouldn’t to subtract 2 units from term 
1

1
1

J

ij ij
j

X X
−

+
=

−∑  and  1iX  or iJX  should be added to nullify the effect of that subtracting. Term 

1

1 1
1 1

2
N J

ij ij iJ i
i j

X X X X
−

+
= =

⎡ ⎤⎛ ⎞
− + + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑  takes into account the number of interruptions twice its real 

value, therefore to reach the true number of interruptions the final value of that term should be 
divided to 2.   
 
To validate the presented formula for calculating the number of interruptions, two examples for job 1 
with processing time 3 are presented. In the first example two interruptions and in the second 
example one interruption happens.  

.        

 
   
 

          1                                                6                                          1                                                6  
Fig. 2. Two examples to calculate the number of interruptions 

As we can see, in the first example, one interruption happens between positions 2 and 3 and the other 
happens between positions 5 and 6. Also, in the second example only one interruption happens 
between positions 3 and 4. The number of interruptions for the first example based on the presented 
formula is as below:    

1 6 1

1 6 1
1 1

1 .[((|1 0 |) (| 0 1|) (|1 0 |) (| 0 0 |) (| 0 1|))1 . 2
2

1 1 2] 2
2ij ij i i

i j
X X X X

−

+
= =

⎡ ⎤⎛ ⎞
− + + −⎢ ⎥⎜ ⎟

⎢
=

⎥⎝
− + − + − + − + − +

⎦
+ − =

⎠⎣
∑ ∑

and for the second example is 1 .[((| 0 1|) (|1 0 |) (| 0 1|) (|1 1|) (|1 0 |)) 0 0 2] 1.
2

= − + − + − + − + − + + − =  

It is proved that the presented formula calculates the number of interruptions exactly. In the third 
component of the objective function, the holding cost of all jobs which are waiting to be processed as 
works in process is computed. This component tries to complete a job after it starts to be processed as 
soon as possible. Also, it aims to interrupt a job in the preliminary positions of its process provided 
that the job is interrupted because of assumption 13. Fig 3 shows the effect of the interruption times 
of a job on the work-in-process holding cost in the third component of the objective function. In all 
three cases of this example, job 1 with process time 3 completes its process in position 6. 
   
 
 
          1       2       3       4        5       6 

 

                                                                           1       2       3       4        5       6 

  
  
          1       2       3       4        5       6 

Fig. 3. The effect of the work in process cost 

(a) (b) 

I1 

Positions                                                                                             Positions  

I1 I1 

(b) 

(c) 

I1 

C1 

I1 I1 

C1 
Positions 

I1  I1 I1 
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The work-in-process holding costs for all three cases are calculated as follows. 
That is for case (a): 

1 7

1 1
1 1

[1.(6 1) 0.(6 2) 0.(6 3) 0.(6 4) 1.(6 5) 1.(6 6)]..( ) 6.ij i i
i j

X C j γ γ γ
= =

− + − + − + − + − + −= =−∑∑  

That is for case (b): 
1 1[1.(6 1) 1.(6 2) 0.(6 3) 0.(6 4) 0.(6 5) 1.(6 6)]. 9γ γ− + − += − + − + − + − =  

That is for case (c): 
1 1[0.(6 1) 0.(6 2) 0.(6 3) 1.(6 4) 1.(6 5) 1.(6 6)]. 3γ γ− + − += − + − + − + − =  

The flow time for cases (a) and (b) is 6 and for case (c) is 3. Therefore, in case (c) a less holding cost 
is incurred in compare to cases (a) and (b) which is equal to 13γ . The second time unit of process for 
case (a) is done in position 5 and for case (b) is done in position 2. Then, the amount of work-in-
process in case (b) is more than it in case (a) and consequently it incurs more holding cost in compare 
to case (a) based on assumption 13. 

 4. Linearization of the proposed model 

In this section, we present the linearization procedure and the liberalized model. 
 
4.1. Linearization procedure 

The linearization procedure that we propose here consists of four steps that are given by the four 
propositions stated below. Terms (1.2), (1.3), (8) and (9) are non-linear, therefore, these four terms 
will be liberalized using the following auxiliary variables XPij, XMij, Mij, Qij, Rij, Fij and Bij. Each 
proposition for linearization is followed by a proof that illustrates the meaning of each auxiliary 
(linearization) variable and additional constraints.  

Proposition1. The non-linear term of the objective function (1.2) can be liberalized by the following 
transformation 1ij ij ij ijX X X P XM+− = + , under the following set of constraints: 

1 , ;ij ij ij ijX X XP XM i j+− = − ∀  (10)

The proof of this proposition is given in Appendix A. 
 
Proposition2. The non-linear work-in-process holding cost terms in the objective function (1.3) can 
be liberalized with .( )ij i ijX C j M− = , under the following set of constraints: 

( ) (1 ) , ;ij i ijM C j A X i j≥ − − − ∀  (11)

The proof of this proposition is given in Appendix B. 
 

Proposition3. The non-linear constraint (8) can be liberalized by the following transformation
max( . )ij iJj

X j Q= , under the following sets of constraints: 

1 1 ;i iQ X i= ∀  (12.1)

1.(1 ) ( . ) , ;ij ij ij ijQ Q X j X i j−= − + ∀  (12.2)

The proof of this proposition is given in Appendix C. 

Proposition4. The non-linear constraint (9) can be liberalized by adding the following set of 
constraints: 
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1 1 ;i iB X i= ∀  (13.1)

1 1(1 ). , ;ij ij ij ijB B B X i j− −= + − ∀  (13.2)

1
1 ;

J

i ij
j

S J B i
=

= − + ∀∑  
(13.3)

The proof of this proposition is given in Appendix D. 
 

4.2. The liberalized model 
We now present the linear mathematical model as follows: 
min (1.1)z =   

1

1
1 1

1 . 2
2

N J

i ij ij iJ i
i j

XP XM X Xη
−

= =

⎡ ⎤⎛ ⎞
+ + + + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑  (1.2') 

1 1

.
N J

ij i
i j

M γ
= =

+∑∑  (1.3') 

Subject to: 

(2), (3), (4), (5)   
{ }, , 0,1ij ij ijXP XM X ∈  , ;i j∀  (6) 

, , , , , , , , 0ij ij ij ij ij ij i i iG B F Q R M C T E ≥  , ;i j∀  (7) 

i iJC Q=  ;i∀  (8) 

1ij ij ij ijX X XP XM+− = −  , ;i j∀  (10) 
( ) (1 )ij i ijM C j A X≥ − − −  , ;i j∀  (11) 

1 1i iQ X=  ;i∀  (12.1) 

1ij ij ij ijQ Q R F−= − +  , ;i j∀  (12.2) 

1 (1 )ij ij ijR Q A X−≤ + −  , ;i j∀  (12.3) 

1 (1 )ij ij ijR Q A X−≥ − −  , ;i j∀  (12.4) 

.ij ijR A X≤  , ;i j∀  (12.5) 

(1 )ij ijF j A X≤ + −  , ;i j∀  (12.6) 

(1 )ij ijF j A X≥ − −  , ;i j∀  (12.7) 

.ij ijF A X≤  , ;i j∀  (12.8) 

1 1i iB X=  ;i∀  (13.1) 

1ij ij ij ijB B X G−= + −  , ;i j∀  (13.2) 

1

1
J

i ij
j

S J B
=

= − +∑  ;i∀  (13.3) 

1 (1 )ij ij ijG B A X−≤ + −  , ;i j∀  (13.4) 

1 (1 )ij ij ijG B A X−≥ − −  , ;i j∀  (13.5) 
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.ij ijG A X≤  , ;i j∀  (13.6) 

The number of variables and constraints in the liberalized model are presented parametrically in 
Tables 1 and 2 respectively, based on the variable indices. 
 
Table1  
The number of variables in the liberalized model 

Count Variable Count Variable Count Variable 
N×J RijN×J MijN×J Xij 

N×J XPijN×J FijN Ti 

N×J XMijN×J Bij   N Ei 

  N×J Gij   N×J Qij   
Sum= 2 (N) +9 (N×J) 
 
Table 2  
The number of constraints in the liberalized model 

Count Con. Count Con. Count Con. 
N×J (12.8) N×J (11) N (2) 

N (13.1) N (12.1) J (3) 
N×J (13.2) N×J (12.2) N (4) 

N (13.3) N×J (12.3) N (5) 
N×J (13.4) N×J (12.4) N×J (6) 
N×J (13.5) N×J (12.5) 3(N)+6(N×J) (7) 
N×J (13.6) N×J (12.6) N (8) 

  N×J (12.7) N×J (10) 
Sum=20(N×J) + (J) + 10(N) 
 
5. Numerical examples  
 
To validate the proposed model, a numerical example in a small size with randomly generated data is 
solved by a branch-and-bound (B&B) method under the Lingo 11.0 software on an Intel® 
CoreTM2.4 GHz Personal Computer with 4 GB RAM. Table 3 presents the information related to 
each job in this example and contains processing time, due date, the penalty of earliness, tardiness, 
and interruption as well work-in-process holding cost.  
 
Table 3  
Job information 
Job 
number 

Processing 
Time Due date Ideal Start 

Time 
Earliness 
Penalty 

Tardiness 
Penalty 

Interruption 
penalty 

Work-in-process 
holding cost 

1 4 9 6 80$ 60$ 5$ 1$ 
2 6 12 7 60$ 40$ 8$ 2$ 
3 4 12 9 80$ 90$ 6$ 5$ 
4 5 17 13 70$ 80$ 3$ 2$ 
5 5 29 25 60$ 50$ 2$ 1$ 
6 3 29 27 30$ 60$ 4$ 2$ 
 
The objective function value (OFV) obtained after 36134124 iterations in a CPU time 1:16’:21” is 
presented in Table 4. Fig 4 shows the positions in which the jobs are processed, the starting and 
completion time of each job and the interruption interval for each job. For example, job 3 is started to 
be processed in position 8, interrupted in position 9 and started again to be processed in position 10 
until it is exactly terminated in its due date 12. As due date is 12 and its ideal starting time is 9, job 3 
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incurs earliness penalty  and no tardiness penalty, also imposes interruption penalty in addition to 
work-in-process holding cost because of the interruption happened in position 9. 

 
 
  
M 
                                  5                   8          10         12                15                              20                        

 
                                                   . . . 
                                                     20                             25                              30         32 

Fig. 4. Job schedules 
 
Table 4  
Objective function and its cost components 

OFV Earliness Tardiness Work-in-process Interruption 
950 240 550 139 21 

Table 5 presents the solution obtained for each job and it contains the starting and completion time, 
number of interruptions and flow time. Furthermore, tardiness/earliness penalty imposed by each job 
is calculated in Table 5.   
 
Table 5  
The solution obtained for each job 

Job number Starting 
Time 

Completion 
Time 

No. of 
interruptions Flow time Tardiness 

Penalty 
Earliness 
penalty 

1 4 9 1 4 – 9 0 2*80$ 
2 7 22 1 7 – 22 10*40 0 
3 8 12 1 8-12 0 1*80$ 
4 13 17 0 13-17 0 0 
5 25 32 1 25-32 3*50 0 
6 27 29 0 27-29 0 0

 
We implement the sensitive analysis of model by increasing the interruption cost of job 3 from 6 to 
300. The job schedules, objective function and the solution obtained for each job is presented in Fig 5 
and tables 6 and 7, respectively. Increasing in the interruption cost of job 3 causes that model tries to 
prevent interruption in processing of job 3. As a result, the flow time of jobs 1, 2 and 4 are increased. 
As we can see, job 3 is processed without any interruption and the flow time of jobs 1, 2 and 4 are 
increased from 6, 16 and 5 to 10, 17 and 6, respectively. Also the tardiness of job 1, 2 and 4 are 
increased. By comparing the objective function values presented in Tables 4 and 6, we can 
understand that in spite of processing job 3 without any interruption, increased flow time of jobs 1 
and 2 raise the objective function from 950 to 1222. 
  
M 
                                  5                              10                              15                             20                        

 
                                                   . . . 
                                                     20                             25                              30         32 

Fig. 5. Job schedules with increased interruption cost 
 

   J1 J1 J1 J3J1 J3J2 J3 J4J4J4J4J3 J2J2J4 J2

J2 J6J6J5J5 J6J2 J5 J5 J5

   J1 J1 J1 J3 J1 J3J2 J3 J4J4 J4J4J3 J2

J2

J4 J2

J2 J6J6J5J5 J6J2 J5 J5 J5
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Table 6  
Objective function and its cost components with increased interruption cost 
OFV Earliness Tardiness Work-in-process Interruption 
1222 80 970 149 23 
 
Table 7  
The solution obtained for each job with increased interruption cost 

Job number Completion 
Time 

No. of 
interruption Flow time Tardiness 

Penalty 
Earliness 
penalty 

1 9 0 6-9 0 0 
2 14 1 1-14 2*60$ 0 
3 12 1 5-12 0 0 
4 19 0 15-19 2*80$ 0 
5 29 1 22-29 0 0 
6 28 0 26-28 0 1*30$ 

 
Further to the explained example, we have also solved several numerical examples of different sizes 
and their results are shown in Table 8.  
 
Table 8  
Several numerical examples and related cost components of objective functions  
No. of Jobs OFV Earliness Tardiness Work-in-process Interruption CPU time 
8 1128 470 530 102 26 40’:32” 
10 960 620 200 114 26 1:27’:11” 
12 880 290 430 128 32 1:22”:49” 
15 945 580 200 131 34 2:18’:47” 
20 1345 360 690 247 48 3:05’:52” 
 

6. Conclusions and further research 
 
This paper presented a novel integer nonlinear programming model for the single machine scheduling 
problem with preemptive jobs in JIT environment to minimize the total tardiness/earliness penalties, 
interruption penalties and holding costs of all jobs which are work-in-process. The excellent 
advantage of the proposed model is to incorporate penalties of interruption and work-in-process jobs. 
The nonlinear formulation of the proposed model was liberalized using an innovative procedure. The 
performance of the model was illustrated by a numerical example. Sensitive analysis performed on 
interruption cost illustrated the impact of this feature on the model performance. CPU time required 
to reach optimal solution for the presented examples shows that obtaining an optimal solution for 
such hard problems in a reasonable time is computationally intractable.  
 
An attractive future research trend is to investigate the preemptive jobs in JIT with parallel uniform or 
different machines. Also it would be appropriate to consider the problem studied here with the 
addition of some other assumptions like sequence dependent setup times. It is also interesting to work 
on other solution methods like stochastic algorithms and meta-heuristic algorithms to achieve even 
better results. 

 
Appendix A. The Proof of proposition 1 

This can be shown for each of the three possible cases that can arise. 
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(i) Xij > Xij+1. By (10), XPij - XMij > 0. Since this is a minimization problem and the objective 
function cost coefficients are strictly positive, XMij = 0 and XPij = Xij - Xij+1 will hold in the 
optimal solution.  
 

(ii) Xij < Xij+1. By (10), XPij - XMij < 0. In this case, again with the coefficients of XPij and XMij 
being strictly positive, the objective function will ensure that XPij = 0 and thus XMij = Xij+1 - 
Xij will hold in the optimal solution. 
  

(iii) Xij = Xij+1. By (10), XPij - XMij = 0. In this case, both XPij = 0 and XMij = 0 will hold in the 
optimal solution since their coefficients in the objective function are strictly positive.  

Appendix B. The Proof of proposition 2 

Consider the following two cases: 
 
(i) Xij .(Ci - j) = 0. Such a situation arises under one of the following three sub-cases:  

 
(a)  Xij = 1 and (Ci - j) = 0.                          , ;i j∀  
(b)  Xij = 0 and (Ci - j) > 0.                          , ;i j∀   
(c)  Xij = 0 and (Ci - j) = 0.                          , ;i j∀   
 
In all of the three sub-cases given above, the value of Mij = 0, because in these cases, constraint 
(11) implies Mij ≥ 0 or -∞ and since Mij has a strictly positive cost coefficient, the minimizing 
objective function ensures that Mij  = 0. 

  
(ii) Xij .(Ci - j) = (Ci - j) > 0.                                    , ;i j∀  

Such a situation arises when Xij = 1 and (Ci - j) > 0 so, constraint (11) implies Mij  ≥ (Ci - j) and 
since Mij has a strictly positive cost coefficient, the minimizing objective function ensures that 
Mij = (Ci - j). 

Appendix C. The Proof of proposition 3 

Consider the following two sections: 
 

(i) In term max( . )ijj
X j , we find the final position of process for job i, thus in constraint (12.2), 

when for the final position, for example position j, Xij = 1, then Qij takes value j and for the 
following positions which are larger than j, Xijs take value 0, then Qij finally turns value j 
which implies the final position of process in constraint (12.2). 
 

(ii) The non-linear constraint (12.2) can be liberalized by the following transformations 
1.ij ij ijQ X R− = and . ij ijj X F= , under the following sets of constraints: 

 
1 (1 ) , ;ij ij ijR Q A X i j−≤ + − ∀  (12.3)

1 (1 ) , ;ij ij ijR Q A X i j−≥ − − ∀  (12.4)
. , ;ij ijR A X i j≤ ∀  (12.5)

 
and  
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(1 ) , ;ij ijF j A X i j≤ + − ∀  (12.6)
(1 ) , ;ij ijF j A X i j≥ − − ∀  (12.7)

. , ;ij ijF A X i j≤ ∀  (12.8)
 
This section can be shown for each of the two possible cases that can arise.                                 
1. Xij . Qij-1 = Qij-1.                                     , ;i j∀  

Such a situation arises when Xij = 1 so, constraints (12.3) and (12.4) implies Rij  ≤ Qij-1 and Rij  ≥ 
Qij-1 and ensures that Rij = Qij-1. 

2. Xij .Qij-1 = 0. Such a situation arises under one of the following three sub-cases:  
(a)  Xij = 1 and Qij-1 = 0.                          , ;i j∀  
(b)  Xij = 0 and Qij-1 > 0.                          , ;i j∀   
(c)  Xij = 0 and Qij-1 = 0.                          , ;i j∀   
 
In all of the three sub-cases given above, Rij takes the value of 0, because in these cases, 
constraint (12.5) implies Rij ≤ 0 and ensures that Rij = 0. Because Rij has not a strictly positive 
cost coefficient, the minimizing objective function doesn’t ensures that Rij = 0. Thus, constraint 
(12.5) should be added to the mathematical model. 
The performance of constraints (12.6) - (12.8) is similar to constraints’ (12.3) and (12.5). 

Appendix D. The Proof of proposition 4 

Consider the following two sections: 

 

(i) In term min (1 )i ijj
S j A X⎡ ⎤= + −⎣ ⎦ , we find the first position of process for job i. In constraint 

(13.2), when for the first position, for example position  j, Xij = 1, then Bij takes value 1 and 
since for the following positions which are larger than j, Bijs take value 1, then the summation 
of Bijs implies the number of positions where job i is    work-in-process. Thus Si returns the 
first position number in constraint (13.3). 
 

(ii) The non-linear constraint (13.2) can be liberalized by the following transformation 
1.ij ij ijB X G− = , under the following sets of constraints: 

 
1 (1 ) , ;ij ij ijG B A X i j−≤ + − ∀  (13.4)

1 (1 ) , ;ij ij ijG B A X i j−≥ − − ∀  (13.5)
. , ;ij ijG A X i j≤ ∀  (13.6)

 
Thus, constraints (13.1) - (13.6) should be added to the mathematical model. The performance of 
constraints (13.4) - (13.6) is similar to constraints’ (12.3) - (12.5). 
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