
* Corresponding author. Tel.: +98 912 350 68 63 
E-mail: mazdeh@iust.ac.ir (M Mahdavi Mazdeh) 
 
© 2012 Growing Science Ltd. All rights reserved. 
doi: 10.5267/j.ijiec.2012.01.004 
 

 

 
 

International Journal of Industrial Engineering Computations 3 (2012) 347–364 
 

 

Contents lists available at GrowingScience
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 

 
 
Single-machine batch scheduling minimizing weighted flow times and delivery costs with job 
release times 

 

 
Mohammad Mahdavi Mazdeha*, Ali Naji Esfahania, Seyyed Ershad Sakkakia and Amir 
Ebrahimzadeh Pileroodb 
 

 
 
 
aDepartment of Industrial Engineering ,Iran University of Science & Technology, Tehran, Iran 
bDepartment of Industrial Engineering ,Sharif University of  Technology, Tehran, Iran 
A R T I C L E I N F O                            A B S T R A C T 

Article history:  
Received 25   November 2011 
Accepted 11 January 2011  
Available online  
22 January  2012 

 This paper addresses scheduling a set of weighted jobs on a single machine in presence of 
release date for delivery in batches to customers or to other machines for further processing. 
The problem is a natural extension of minimizing the sum of weighted flow times by 
considering the possibility of delivering jobs in batches and introducing batch delivery costs. 
The classical problem is NP-hard and then the extended version of the problem is NP-hard. The 
objective function is that of minimizing the sum of weighted flow times and delivery costs. The 
extended problem arises in a real supply chain network by cooperation between two layers of 
chain. Structural properties of the problem are investigated and used to devise a branch-and-
bound solution scheme. Computational experiments show the efficiency of suggested algorithm 
for solving instances up to 40 jobs.   

  © 2012 Growing Science Ltd.  All rights reserved

Keywords: 
Scheduling  
Single machine  
Batch delivery  
Branch and bound  
Weighted flowtimes 

 

 

 

1. Introduction 
 

In this paper, a specific type of batch scheduling problems named "batch delivery problems" is 
studied. In batch-delivery  scenario, a job may be immediately deliver to the customer after its 
process as a single job batch or it may stay to be delivered to customer later with other jobs as a batch 
with more than one job. In the first state, the number of delivery costs increases while in the second 
state the completion times increases. This kind of problem was first introduced by Cheng & 
Kahlbacher. They solved the problem for a single machine in order to minimize the sum of total 
weighted earliness and delivery costs when the jobs were to be dispatched to the customers in batches 
(Kahlbacher & Cheng, 1993). This paper addresses the problem of minimizing the sum of total 
weighted flow time and delivery costs in presence of release date when jobs are to be delivered to 
different customers in batches i.e. )(1 j jj i iF dr w δ+∑ ∑ . 

The problem of scheduling jobs with release dates on a single machine to minimize the total weighted 
completion time has been studied, extensively. Smith showed that the simplest form of the problem, 
i.e. while there is no release date and the weights of jobs are the same and equal to 1, will be solved 



  348

simply by using SPT rule and if the weights are not the same, i.e. 1 )( i iFw∑ , it can be solved by 
using WSPT method (Smith, 1956). Lenstra et al. (1997) showed that this problem is strongly NP-
Hard in presence of release date when the weights are either the same or different. The complexity of 
the problem leads authors to use heuristics and Branches and Bounds (B&B) methods. Dessouky and 
Deogun (1981), Chu (1992), Chandra (1979) presented a branch and bound algorithm for the problem 
of )(1 i iFr ∑ and other authors including Bianco and Ricciardelli ( 1982), Belouadah et al. ( 1992), 
Harriri and Potts ( 1983) presented a branch and bound algorithm for the weighted version of the 
problem, i.e. )(1 i i iFr w∑ . 

Problems that address objective functions with both machine scheduling and delivery costs appear to 
be rather complex, though, they are more practical than those which involve just one of these two 
factors. These types of combined optimizations are often encountered when a real-world supply chain 
management is considered. 

Hall and Potts (2003) offered a dynamic programming solution to solve the problem of 
)(1 j jiF dδ+∑ ∑ to  minimize the total flow time and delivery costs, simultaneously. Mahdavi et al ( 

2007) presented a branch and bound algorithm for the same problem. Hall and Potts (2003) also 
solved the problem when release dates are applied to each job and with the assumption of 1 2p p<  

then 1 2r r< and showed that the complexity of problem is 3( )hOn , when  and  show the number of 
jobs and customers, respectively. Mahdavi et al. ( 2008) offered a branch and bound algorithm for the 
same problem and showed an advantage over the dynamic programming solution of Hall and Potts. 

Ji et al. (et al., 2007) studied the problem of minimizing the sum of total weighted flow time and 
delivery costs when there is no release date and all jobs are processed for one customer i.e.

)(1 j ji iF dw δ+∑ ∑ . They showed that this problem is NP-hard even if the number of batches is 
constant. Mahdavi et al.  (2011) offered a branch and bound algorithm for this problem and the 
extended problem, i.e. the situation that there is no constraint on the number of batches. 

In this paper, we extend the same problem in the presence of release date and when the number of 

customers is more than one with the assumption that for each pair of jobs i and j, whenever i j

i j

p p
w w

≤  

then i jr r≤ , and for each customer the job with the smaller p
w

 should be delivered earlier where, p, w 

and r denote the processing times, weights and release times of jobs, respectively. This assumption 
may appear restrictive at first sight. However, within the framework of supply chain management, 
this condition may be enforced as part of the coordination between the supplier (upstream stage) and 
the manufacturer.  
In this paper, we study the structural properties of the problem, derive an efficient upper and lower 
bounds, offer a branch-and-bound solution scheme for solving it and consider the efficiency of 
computational results.  

2. Problem definition 

Let n be the jobs to be processed on a single machine, which can process at most one job at the 
moment and no preemption is allowed. Each job i has a processing time ip and a release date and a 
weight shown by ir  and iw , respectively. The jobs are to be delivered to customers in batches. A 
group of jobs, which are destined for a customer, may form a batch if they are all delivered to their 
customer together. The number of jobs in a batch identifies the size of that batch and a batch with size 
1 will be considered as single job batch. Let jd  be the non-negative cost of delivering a batch to 



M. Mahdavi Mazdeh et al. / International Journal of Industrial Engineering Computations 3 (2012) 
 

349

customer j. The objective function is to minimize total weighted flow time plus delivery costs in the 
presence of release dates. Thus, according to the standard classification scheme for scheduling 
problems introduced by Graham (Graham, 1979), the objective function is )(1 j ji i iF dr w δ+∑ ∑ , 
where jδ  identifies the number of batches delivered to customer j. Delivering each job separately in a 

single job batch will decrease the amount of  first term of the objective function( i iFw∑ ). However, 
delivering the jobs in the batches with the greater size will decrease the second term ( j jdδ∑ ). 
Therefore, the problem is to decide whether to form a batch or to deliver jobs, separately. According 
to Mahdvi et al. (2008) there are two strategies to form batches: One is to form continuous batches to 
be processed, successively when there is no idle time. Another is that of forming discontinuous 
batches, where the jobs are processed, separately but delivered together. In this scenario, there is at 
least one job which belongs to another customer or an idle time during the time in which the batch is 
being formed. In this paper, we offer an efficient branch-and-bound algorithm with the assumption 

that for each pair of jobs i and ,j  whenever ji

i j

pp
w w

≤  then i jr r≤  and for each customer the job with 

the smaller p
w

 should be delivered earlier.  

3. Propositions 

Property 1 

When two jobs 'i' and 'j', with i j

i j

p p
w w

≤ , form a continuous batch, the batch is ready for processing at 

time bR , where { }, ,b i j iR Max r r p t= − and 't' is defined as machine ready time. This property is 
easily extendable to more than two jobs.  

Proposition 1 

Consider a set of continuous batches with constraint on the release dates, R, such that whenever 

i jT T<  then i jR R< , where  is the batch effective time defined as b

b

FT
W

= , where bF  is the total 

processing time of the batch and bW is the total weight of the batch. The sequence ordered by the 
weighted shortest effective batch time (WSEBT) is optimal in terms of total weighted flow time. 

Proof 

Consider a schedule "s" that is not ordered by WSEBT. In this schedule, there must be at least two 
adjacent batches, say "Y" is followed by "X" when x yR R<  and x yT T< . Assume machine is ready 
for processing each one of the two batches at time "t". Total weighted flow time of the partial 
schedule composed of the two batches is: 

{ } { }( , ) ( , ) .y y y y y x xF Max t R F W Max t R F F W= + × + + + ×  

Now perform adjacent pairwise interchange on batches "Y" and "X" to form a new sequence, " s' ", 
with all other batches remaining in their original positions. The completion times of all preceding 
batches remain unchanged. However, the completion times of the two batches interchanged and all 
succeeding batches need to be considered. The new total flow time of the partial schedule of the two 
jobs is as follows, 



  350

{ } { }{ }' ( , ) ( , , ) .x x x y x x y yF Max t R F W Max R Max t R F F W= + × + + + ×  

We introduce parameters  and  as follows: 

{ } { }{ }( , ) ( , , ) ,x x x y y x y yA Max t R F W Max R Max t R F F W= + × + + + ×  

{ } { }( , ) ( , ) .y y y x y x xB Max t R F W Max t R F F W= + × + + + ×  

Since x yR R< then F' ≤ A and F ≥ B, 
After simplifying, we get 

{ } { }( , ) ( , ) .x x x y x y yA Max t R F W Max t R F F W= + × + + + ×  

On the other hand, y x x yB A F W F W− = − , and  x y

x y

F F
W W

<  , thus B > A and F > F'. 

Thus, interchanging the positions of "X" and "Y" reduces overall weighted flow time.  
 
By considering each batch as a single job batch, the following corollary then follows immediately. 

Corollary 1 

For a set of jobs, under the assumptions that for each pair of jobs, i jr r< whenever  i j

i j

p p
w w

< , the 

sequence ordered by WSPT is optimal in terms of total weighted flow time. 

Proposition 2 

For a set of discontinuous batches, with the following two constraints, the sequence ordered by 
weighted shortest effective discontinuous batch time (WSEDBT) is optimal in terms of total weighted 
flow time: 

- First: whenever i jQ Q≤  then i jr r< , where Q is effective discontinuous batch time defined 

as i
i

b

pQ
W

=  , where ip  is the processing time of job "i" and bW  is the total weight of the 

discontinuous batch that includes job "i" or it is a single job batch with weight iw , and "r" 
is the release date,  

- Second: for each job "k" of each discontinuous batch, 1k kF r +≤  , where kF  is the finish 
time of job k, and 1kr +  is the release date of the succeeding job of job "k" in the sequence.   

Proof:  

Consider the following sequence. Without any restriction, assume there is a set of single job batches 
where only one discontinuous batch, , which is formed by jobs "k" and "j".  

 
 
 
 

According to the assumptions, we have: 
1 2

1 2

... ... ... ... ... ...
( ) ( )

ja k i l n

a b k j i b k j l n

ppp p p p p p
w w w W w w w W w w W W

< < < < < < < < < < < < <
= + = +  

while   

1 2 ... ... ... ... ... ...a k i j l nr r r r r r r r< < < < < < < < < < < < <  

k  i j  l n 1  a 2  … … ……  ……  ...  …  



M. Mahdavi Mazdeh et al. / International Journal of Industrial Engineering Computations 3 (2012) 
 

351

Four cases need to be distinguished: 
1. Moving job "k" to a new position in the right side of the original position.   

This case is not possible according to the second part of the constraints 1k kF r +≤ . 
2. Moving job "k" to a new position in the left side of the original position.  

Since the completion time of batch "b" is equal to the completion time of the last job in the 
batch, i.e. job "j", thus moving the position of job "k" to the left side cannot decrease the total 
completion time of batch while, the completion times of jobs that move after job "k" will 
increase and therefore the total weighted flow time of sequence will obviously increase. 
 

3. Moving job "j" to a new position in the left side of the original position. 
4. Moving job "j" to a new position in the right side of the original position. 

 
It can be shown by standard interchange argument that moving job "j" to the left, if it is possible, or 
moving it to the right side will increase the total flow time of sequence.  
Thus, the proof is completed and it can be extended in the same manner for the situation where there 
is more than one discontinuous batch or while the sizes of batches are greater.  
 
However, it is worth to note that by establishing a discontinuous batch when the second assumption 
of the proposition 2 is not true, moving the position of job "k" to the right side may decrease the total 
weighted flow time. To make this matter clear, let us consider the following example. 

Example: 

Consider the following 3 jobs when job (1) and job (3) form a discontinuous batch. We show that the 
sequence ordered by WSEDBT is not optimal in terms of total weighted flow time. 

 

Jobs Processing time Weight Release date i

b

p
W

 

1 2 5 0 2
7

 

2 5 5 1 5
5

 

3 10 2 10 10
7

 

 
Sequencing the jobs according to WSEDBT leads to sequence (1) in which job 1 and job 3 form a 
discontinuous batch. The total weighted flow time of this sequence is as follows, 

(1) : 5 7 (5 2) 20 175× + + × =   
This is while the interchange of jobs 1 and 2 lead to Sequence (2) with the following total weighted 
flow time: 

(2) 5 6 (5 2) 20 170× + + × =   

 
Fig. 1. Sequence 1 and sequence 2. 



  352

As it is shown in Fig. 1, the batch (Chandra, 1979) will remain discontinues, because job 3 is not 
immediately ready for processing after the completion time of job 1.  

When the second assumption of the proposition 2 does not hold, the following algorithm will lead to 
the optimum sequence:  

Algorithm 1: 

Step 1: Make sure that all single job batches are ordered according to WSEDBT, 
Step 2: Consider a discontinuous batch that consists of jobs 1 to m  

For i = m-1 to 1 
Consider job (i) in position (k) of the sequence 
      While:  

a. There is at least one job between job i and next job of the batch. 
b.    1k kF r +> , 

      Do: Swap jobs in positions k and k+1, 
             Calculate the total weighted flow time, 
             If: it has improved, 
                  k= k+1, 
                  Continue while, 
            Else: 
                   Undo the change.  
      Exit while. 

 
The same process of step 2 must be repeated for all discontinuous batches of the sequence.  
 
In general, the sequence ordered by "Weighted Shortest Effective Remaining Batch Time" (WSERBT 
) is not optimal for the preemptive case and thus does not necessarily provide a lower bound on the 
optimal solution for the problem without preemption (Chou, 2004). But this on-line algorithm yields 
an optimal schedule under some circumstances (Labetoulle et al., 1984). In the next proposition, one 
of these circumstances will be considered. 

Proposition 3 

Consider a set of continuous batches, in the absence of any constraints on the inter-relationships 

among job release times. Assume that for each pair of jobs i and j, whenever i j

i j

p p
w w

≤  then i jr r≤ , if 

preempt–resume is allowed then the sequence ordered by the weighted shortest effective remaining 
batch time (WSERBT) is optimal in terms of total weighted flow time, with batch effective time 

being b

b

FT
W

= . 

Proof: 

Generalizing an idea from Baker for minimizing the sum of flow times for a set of jobs (Baker, 1974) 
and in the light of Proposition 1, we can show that when preempt–resume prevails, the optimal rule 
for a set of batches is always to keep the machine assigned to the available batch with minimum 
remaining weighted effective batch time.  

Proposition 4 

In a partial schedule, where some batches have been formed, but no decision has been taken yet on 
batching the remaining ' un-batched ' jobs, a lower bound on the sum of job flow times will be 



M. Mahdavi Mazdeh et al. / International Journal of Industrial Engineering Computations 3 (2012) 
 

353

computed by considering each un-batched job as a single-job batch and sequencing all batches in the 
order of WSEBT (by virtue of proposition 1),or WSEDBT (by virtue of proposition 2 and algorithm 1) 
or WSERBT (by virtue of proposition 3).  

Proof:  

By batching un-batched jobs, we will necessarily delay some jobs. Hence, considering each job as a 
single-job batch ensures no delay, after that, sequencing the batches by virtue of propositions 1, 2, 3 
and algorithm 1 (if necessary) ensures that the resulting schedule minimizes the total weighted flow 
time.  

Proposition 5 

In an optimal solution, any batch "b" with more than one job, destined for a customer "j" will have 
the property that ( )b l l jW w p d− × ≤ , where bW is defined as the sum of weights of the jobs in the 

batch "b"  and lw  and lp are the weight and processing time of the last job in batch "b" , 
respectively. 

Proof: 

Consider a batch, which does not have the indicated property. By removing the last job and delivering 
it in a single batch, by its own, the overall objective function will be decreased at least by
( )b l l jW w p d− × − .  

Corollary 2  

In an optimal solution, any job that has the property that k jp d> , will form a single job batch. 

Proposition 6 

In completing a partial schedule, a "batching penalty", ,kΔ  attaches to each un-batched job k. 

Moreover, { }, ,k b k k Min jMin W p w p dΔ = where jd is the delivery cost of customer "j" and kp  and 

kw  are the processing time and weight of job "k" and bW is the sum of weights of jobs in the 
considered batch and Minp  is the minimum processing time among unscheduled jobs belonged to 
customer "j". 

Proof: 

Let job "k" be an un-scheduled job. Adding this job to the last formed batch with the same customer 
will increase the total weighted flow time by at least b kW p  (Mazdeh et al., 2011). If job "k" may not 
be added to a formed batch, it would form a new batch by its own. In this situation, two cases should 
be distinguished:  
First case: There may, at least, one of the other un-scheduled jobs (say job "x") with the same 
customer form a batch with job "k". It is clear that in this case the total weighted flow time will 
increase by k kw p . As we do not know in advance the processing time of job "x" then we choose the 
job with the minimum processing time. Therefore, the minimum penalty is minkw p .  
Second case: job "k" remains as a single-job batch and then an additional batch delivery cost will be 
incurred.  
So the 'batching penalty' is the smallest of the three.  



  354

4. Branch and bound 

All the jobs are sorted according to WSPT rule. The root of the tree is taken to be a single-job batches 
made of the first job of each customer in the sequence. The search tree to explore the solution area is 
structured as a trivalent 0-1-2 tree, where each node is branched to 3 nodes. The first one indicates the 
start of a new batch (0), the second one indicates that a new job is added to an open batch 
continuously (1), and the third one indicates adding a job to an open batch discontinuously (2). The 
tree is constructed in a depth-first fashion. In the beginning, all the jobs to form a single job batch by 
virtue of corollary 2, are identified and separated from other jobs and their corresponding variable is 
set to zero. We will present the other components of the branch and bound scheme in the following 
subsections. 

4.1. Fathoming and backtracking a node 

A node is fathomed when: 
1. The lower bound calculated in the node exceeds the current upper bound. 
2. We reach a leaf node i.e. all variables are fixed 

Fathoming initiates backtracking to the parent of current node and the search will terminate when all 
nodes are fathomed. 

4.2. Upper bound 

An efficient upper bound is vital for branching. A low, sharp and accurate one will fathom more 
nodes, and reduce the time of calculation of branch and bound. In this paper, a heuristic algorithm to 

calculate the upper bound is offered. It consists of the following steps: 

Algorithm 2: 

- Form all jobs into single-job batches and sequence the batches in WSEBT (which, in this 
case, is equivalent to WSPT order). 

- Calculate the initial start time (S(i)) and initial finish time (F(i)) of all jobs according to the 
following: 

 
If i=1 then (i) (i) ( ) ( ) ( )S R  and  F i i iS P= = +  
Else  ( ) ( ) ( 1) ( ) ( ) ( )[ , ] and  Fi i i i i iS Max R F S P−= = +    

  
- Treating the sequence as a circular array, start with the first batch belonging to the current 

customer; 
 

Repeat 
Scan forward until the first batch that may profitably be joined with the current  batch 
is found. If  [( ) ( )]i i k k k js p s p w d+ − + × < , join two batches. 
Calculate the finish time and delivery cost of new batch. Move the newly formed 
batch forward to restore Algorithm 1 order, if necessary. 
Move to the next single job batch. 

Until  a complete scan of all batches results in no improvement. 
If the upper bound found is less than the incumbent one, the former replaces the latter. 

end. 

4.3. Lower bound 

In each node of the decision tree, a lower bound is calculated. The lower bound consists of three 
parts, which are as follows, 



M. Mahdavi Mazdeh et al. / International Journal of Industrial Engineering Computations 3 (2012) 
 

355

LBF: LBF is the lower bound on total weighted flow time, which can be calculated in virtue of 
proposition 4. 
LBD: LBD is the batch delivery costs of the batches already formed.  
LBP: LBP is the sum of the lower bounds on the batching penalties, which can be calculated by 
applying the logic of Proposition 6. 

5. Numerical Example 

Consider the following two-customer problem, with delivery costs of 2000 and 1800,        
respectively: 

2 1 customer 
5 4 3 2 1 Job 

70 20 150 30 15 ip  
10 5 18 6 5 iw  
70 10 80 40 0 ir  

7 4 8.3 5 3 i

i

p
W

 

 
Each batch is shown by  and if it is a discontinuous batch it is shown by {} .  

Upper Bound 

UB is calculated according to the method indicated before. The order is { }4,5 , {1,2} , 3 that brings 
UB= 13890.  

Branch and bound 

As it was mentioned before, the tree is depth-first. 

 0 1 , 4S = ; LBF= 7290, LBD= 3800, LBP=150+540+350=1040; LB= 12130. 

  

{ }1 1, 2 , 4S = ; LBF= 7565, LBD= 3800, LBP=1650+350= 2000; LB= 13365.  

 

{ } { }2 1,2 , 4,5S = ; LBF= 8090, LBD= 3800, LBP=1650; LB= 13540. 

 

{ } { }3 1,2,3 , 4,5S = ; LB= 14310 > UB, Backtrack. 



  356

 

Explanation: The batches are sorted in WRSPT order by virtue of Proposition 3. At 80t = job 3 

is ready, but as 
60 150
15 29

< then the machine continues the process of job"5". 

{ } { }4 1,2 , 4,5 , 3S = ; LB= 13890 = UB, Backtrack. 

  

{ } { }5 1, 2,3 , 4,5S = ; LB= 14600 > UB, Backtrack. 

 Explanation: 2,3 : 180, 24, 50.p w r= = =  

The batches are sorted in WRSPT order by virtue of Proposition 3. At 70t =  job 5 is ready, as 
70 160
15 29

< , then by using preempt- resume machine starts the process of job"5".  

{ }6 1,2 , 4 , 5S = ; LBF= 7565, LBD= 5600, LBP= 1650; LB= 14815 > UB, Backtrack.   

 

{ }7 1,2 , 4,5S = ; LBF= 8750, LBD= 3800, LBP=1650; LB= 14200 > UB Backtrack. 

 
Explanation: 4,5 : 90, 15, 50.p w r= = =  

As the first constraint
15 30 90

0 40 50
11 11 15

and
⎛ ⎞

< < < <⎜ ⎟
⎝ ⎠

and the second constraint ( )1k kF r +≤  of 

Proposition 2 are satisfied, then we have used WSEDBT. 

8 1 , 4 , 2S = ; LBF= 7290, LBD= 5800, LBP= 900+350= 1250; LB= 14340 > UB, Backtrack. 



M. Mahdavi Mazdeh et al. / International Journal of Industrial Engineering Computations 3 (2012) 
 

357

 

9 4 , 1, 2S = ; LBF= 7735, LBD= 3800, LBP=1650+ 350= 2000; LB= 13535. 

 

Explanation: 1, 2 : 45, 11, 25.p w r= = =   

As the constraint of proposition 1 
20 45

10 25
5 11

and
⎛ ⎞

< <⎜ ⎟
⎝ ⎠

is satisfied, then we have used WSEBT. 

{ }10 1,2 , 4,5S = ; LBF= 8310, LBD= 3800, LBP=1650; LB= 13760. 

 

Explanation: 1, 2 : 45, 11, 25.p w r= = =  

The first constraint of proposition 2   
20 45 70

10 25 70
15 11 15

and
⎛ ⎞

< < < <⎜ ⎟
⎝ ⎠

  is satisfied but the second 

constraint ( ) ( )4 1,230 25F r⎡ ⎤= > =⎣ ⎦
is not satisfied: According to algorithm 1, job 4 is swapped with 

batch 1, 2  and the total weighted flow time is calculated in both cases: 

1. The sequence ordered by WSEBT: LBF=8310. 
2. The sequence after swapping job 4 with batch 1, 2 : LBF=8750. 

{ } { }11 1,2 ,3 , 4,5S = ; LB= 14530 > UB, Backtrack.  

 
Explanation: 1, 2 : 45, 11, 25.p w r= = =  

 The batches are sorted in WRSPT order by virtue of Proposition 3. At 25t = batch "1,2" is ready, but 

as 
5 45

15 29
⎛ ⎞

<⎜ ⎟
⎝ ⎠

then the machine continues the process of . At 70t = job "5" is ready, but as 



  358

5 70
29 15

⎛ ⎞
<⎜ ⎟

⎝ ⎠
then the machine continues the process of job"5". At 80t = job "3" is ready, but as 

65 150
15 29

⎛ ⎞
<⎜ ⎟

⎝ ⎠
then the machine continues the process of job"5". 

{ }12 1,2 , 4,5 , 3S = ; LB= 14110 > UB, Backtrack. 

 

Explanation: 1, 2 : 45, 11, 25.p w r= = =  

The first constraint of proposition 2   
20 45 70 150

10 25 70 80
15 11 15 18

and
⎛ ⎞

< < < < < <⎜ ⎟
⎝ ⎠

  is satisfied, but 

the second constraint ( ) ( )4 1,230 25F r⎡ ⎤= > =⎣ ⎦
is not satisfied: According to algorithm 1, job 4 is 

swapped with batch 1, 2  and the total weighted flow time is calculated in both cases: 

1. The sequence ordered by WSEBT: LBF=14110. 
2. The sequence after swapping job 4 with batch 1, 2 : LBF=14550. 

{ }13 1,2,3 , 4,5S = ; LB= 14970 > UB, Backtrack.    

 

Explanation: 1, 2,3 : 195, 29, 35.p w r= = =   

The batches are sorted in WRSPT order by virtue of Proposition 3. At 70t =  job 5 is ready, as 
70 160
15 29

⎛ ⎞
<⎜ ⎟

⎝ ⎠
, then by using preempt- resume machine must start the process of job"5", however,  

since this node is a leaf, there must be a feasible sequence of the problem, therefore, preempt-resume 
is not allowed. So at this node both cases are calculated, according to permutation rule. 

1. LB= 15615 
2. LB= 14970  

14 4 , 1, 2 , 5S = ; LBF= 7735, LBD= 5600, LBP=1650; LB= 14985 > UB, Backtrack. 

 

Explanation: 1, 2 : 45, 11, 25.p w r= = =   



M. Mahdavi Mazdeh et al. / International Journal of Industrial Engineering Computations 3 (2012) 
 

359

As the constraint of proposition 1 
20 45 70

10 25 70
5 11 10

and
⎛ ⎞

< < < <⎜ ⎟
⎝ ⎠

is satisfied, then we have used 

WSEBT. 

15 1, 2 , 4,5S = ; LBF= 8750, LBD= 3800, LBP=1650; LB= 14200 > UB, Backtrack. 

 

Explanation: 1, 2 : 45, 11, 25p w r= = = , 4,5 : 90, 15, 50.p w r= = =  

As the constraint of proposition 1 
45 90

25 50
11 10

and
⎛ ⎞

< <⎜ ⎟
⎝ ⎠

is satisfied, then we have used WSEBT. 

 

0S

1S

2S

3S

4S

5S

6S

7S

8S

9S

10S

11S

12S

13S

14S

15S

1 , 4

{ }1, 2 , 4

{ } { }1,2 , 4,5

{ } { }1, 2,3 , 4,5

{ } { }1, 2 , 4,5 , 3

{ } { }1, 2,3 , 4,5

{ }1,2 , 4 , 5

{ }1,2 , 4,5

1 , 4 , 2

4 , 1, 2

{ }1, 2 , 4,5

{ } { }1, 2 ,3 , 4,5

{ }1, 2 , 4,5 , 3

{ }1, 2,3 , 4,5

4 , 1, 2 , 5

1, 2 , 4,5

 

Fig. 2. Search tree 



  360

6. Computational Results 

The computational tests were run with Pentium(R) 4 CPU 3.20 GHZ and 1.00 GB RAM computer. 
The branch & bound algorithm was coded in Visual basic application. 
There are no benchmark instances for B&B test implications. We, therefore, generate a set of 
problem instances, with 5-40 jobs randomly distributed among customers, where each customer is 
assigned at least two jobs. The number of customers varied from 2 to 10. Processing times, weights 
and release dates of jobs were randomly generated integer inside [1-100], [1-10] and [1-100], 
respectively. Because of the interaction between delivery cost and job weighted flow time that may 
affect the problem hardness, two classes of instances were generated. In class A, the delivery cost of 
each customer is randomly generated inside [1001-10000], which is far away from the job processing 
times, while in class B the delivery costs are randomly generated inside [1-1000]. To ensure that 
results are representative, each subset consists of 10 instances.  
 
Table 1  
Running times(Av. = average, SD = standard deviation, Min. = Minimum, Max. = Maximum) class A  

Running Times (seconds)
Number of 
Customers 

Number of 
Jobs  Av. (seconds) SD Min.  Max. 

2 5 0.01 0.02 0.00 0.06 
  7 0.02 0.01 0.01 0.03 
  10 1.28 0.44 0.53 2.27 
  13 40.86 38.42 4.78 120.87 
  15 204.28 67.98 119.88 331.26 
  17 411.34 102.46 275.36 585.12 
3 7 0.01 0.02 0.00 0.06 
  10 0.23 0.09 0.10 0.36 
  13 27.16 14.32 1.66 40.56 
  15 185.89 119.81 41.19 361.24 
  17 329.96 58.27 235.21 422.12 
  20 630.36 166.24 466.52 1073.21 
4 8 0.01 0.01 0.00 0.03 
  10 0.06 0.05 0.01 0.19 
  12 4.11 2.51 1.51 9.45 
  15 115.62 169.31 49.12 596.54
  17 300.29 84.22 125.61 381.23 
  20 558.73 71.17 452.15 705.63 
  23 734.98 95.24 552.53 850.26
5 10 0.02 0.03 0.00 0.09 
  15 29.27 4.78 21.23 37.39 
  17 262.85 109.81 39.02 363.22 
  20 429.88 66.98 312.32 525.62 
  23 623.78 42.53 536.56 692.52 
7 14 0.82 0.21 0.63 1.33 
  17 80.88 200.53 9.72 651.32 
  20 497.03 49.15 425.63 572.15 
  23 605.24 75.89 492.15 692.15
  25 825.97 106.73 591.23 992.12 
10 20 37.70 22.19 12.45 78.12 
  23 453.67 106.59 272.15 632.15 
  25 612.29 63.36 525.90 692.12 
 
 
Each of the running times in Tables 1 and 2 represent the average over 10 appropriate instances. The 
results show the efficiency of B&B algorithm for solving instances with 10 customers and up to 25 
jobs for class A and up to 40 jobs in class B. 



M. Mahdavi Mazdeh et al. / International Journal of Industrial Engineering Computations 3 (2012) 
 

361

Table 2  
Running times(Av. = average, SD = standard deviation, Min. = Minimum, Max. = Maximum) class B  

Running times Running times 
NoC NoJ Mean SD Min. Max. NoC NoJ Mean SD Min. Max. 

2 5 0.00 0.00 0.00 0.01 5 10 0.02 0.02 0.00 0.05 
  7 0.02 0.02 0.00 0.06 15 12.94 7.32 3.52 25.22 
  10 0.12 0.19 0.00 0.46 17 36.03 25.89 8.15 84.52 
  13 4.14 9.92 0.13 32.15 20 112.46 55.85 7.25 185.22 
  15 32.80 44.43 0.13 121.56 23 164.68 83.81 12.35 294.21 
  17 60.32 88.68 1.26 282.26 25 296.19 180.48 4.85 525.26 
  20 146.86 122.50 13.52 323.46 27 377.23 262.18 15.16 885.82 
  22 275.66 160.78 21.52 552.55   
  7 0.00 0.00 0.00 0.02 7 14 0.38 0.34 0.00 0.80 
3 10 0.09 0.12 0.00 0.36 17 31.79 77.23 0.77 251.32 
  13 11.23 11.87 0.33 32.24 20 103.71 71.19 14.15 243.26 
  15 25.98 25.14 1.05 72.32 23 148.57 134.26 14.52 435.41 
  17 42.76 30.98 12.57 100.33 25 289.87 260.60 17.33 732.51 
  20 116.24 120.92 15.22 355.13 27 307.19 200.37 13.51 712.15 
  22 211.50 183.42 49.25 605.47 30 367.67 220.29 45.21 663.15 
  35 371.45 234.72 72.86 792.15 
    40 442.30 306.94 32.49 825.63 
4 8 0.00 0.01 0.00 0.02 20 14.39 20.15 0.00 55.12 
  10 0.01 0.01 0.00 0.03 10 23 142.86 55.75 62.15 235.45 
  12 1.35 1.06 0.00 3.21 25 274.99 177.16 67.41 645.12 
  15 14.50 12.25 0.54 32.54 27 289.25 218.06 67.85 732.51 
  17 38.73 27.39 7.12 102.51 30 355.06 225.60 72.59 774.85 
  20 112.77 82.04 4.52 208.45 35 354.80 214.52 121.25 732.52 
  23 177.82 178.44 9.13 552.35 40 410.82 278.63 92.15 961.51 
  25 356.15 244.31 10.25 743.15   
NoC: Number of customer, NoJ: Number of Jobs 
 

The maximum number of nodes ( )N  that potentially could be extracted by search tree is countable 
by using 21 3 3 .... 3n kN −= + + + +  , where  is the number of jobs and  is the number of customers. 
Considering the effectiveness of B&B algorithm, the average number of nodes searched for each 
subset is compared with the maximum number of nodes, which potentially could be extracted.  
 

Table 3  
Average number of nodes searched in compare with the maximum number of nodes - class A 
NoC NoJ N  ANNS PRND NoC NoJ N  ANNS PRND 

2 5 40 33 17.50% 5 10 364 247 32.10% 
  7 364 278 23.57% 15 88573 56513 36.20%
  10 9841 7070 28.16%   17 797161 485934 39.04% 
  13 265720 185195 30.30%   20 21523360 12048845 44.02% 
  15 2391484 1585172 33.72% 23 581130733 313084613 46.12%
  17 21523360 13965032 35.12%     
  7 40 33 18.74% 7 14 3280 1976 39.74% 
3 10 121 88 27.69%   17 88573 50567 42.91% 
  13 3280 2330 28.96%   20 2391484 1301179 45.59% 
  15 88573 61736 30.30%   23 64570081 34015488 47.32% 
  17 797161 518957 34.90%   25 581130733 286155910 50.76% 
  20 7174453 4472073 37.67%     
  23 193710244 113432676 41.44% 
  8 121 88 27.16% 10 20 88573 46218 47.82% 
  10 1093 750 31.41%   23 2391484 1221631 48.92% 
4 12 9841 6381 35.16% 25 21523360 10395902 51.70% 
  15 265720 165142 37.85%   
  17 2391484 1465171 38.73%   
  20 64570081 37098228 42.55%   
  23 1743392200 981048849 43.73%   

NoC: Number of customer, NoJ: Number of Jobs, ANNS: Average number of nodes searched, PRND: Percents of reduced nodes 



  362

Tables 3 and 4 show that up to 95% of nodes is reduced by using the B&B algorithm.  Table 5 shows 

the average relative error, calculated as ( 1)UB
Optimal

−  for all replications of all instances for each 

number of customers. It can be seen that on average it produces solutions that are within 0.26% of the 
optimum. Moreover, the error is smaller for instances in class B. Effectiveness of the upper bound 
makes it possible to use it as a fast heuristic. 
 
Table 4  
Average number of nodes searched in compare with the maximum number of nodes - class B 
NoC NoJ N  ANNS % NoC NoJ N  ANNS %

2 5 40 22 44.00% 5 10 364 127 65.00%
  7 364 178 51.00% 15 88573 10629 88.00% 
  10 9841 984 90.00% 17 797161 49424 93.80% 
  13 265720 23915 91.00% 20 21523360 1162261 94.60% 
  15 2391484 167404 93.00% 23 581130733 27313144 95.30% 
  17 21523360 1485112 93.10% 25 5230176601 240588124 95.40% 
  20 581130733 33124452 94.30% 27 47071589413 2071149934 95.60% 
  22 5230176601 235357947 95.50% 
  7 121 54 55.00% 7 14 3280 328 90.00% 
3 10 3280 321 90.20% 17 88573 5580 93.70% 
  13 88573 7706 91.30% 20 2391484 126749 94.70% 
  15 797161 53410 93.30% 23 64570081 2905654 95.50% 
  17 7174453 459165 93.60% 25 581130733 25569752 95.60% 
  20 193710244 10847774 94.40% 27 5230176601 230127770 95.60% 
  22 1743392200 78452649 95.50% 30 141214768240 5648590730 96.00% 
  35 34315188682441 137260754730 99.60% 
  40 8338590849833280 8338590849833 99.90% 
4 8 121 48 60.00% 20 88573 17715 80.00% 
  10 1093 108 90.10% 10 23 2391484 160229 93.30%
  12 9841 876 91.10% 25 21523360 1162261 94.60% 
  15 265720 17538 93.40% 27 193710244 8910671 95.40% 
  17 2391484 153055 93.60% 30 5230176601 203976887 96.10% 
  20 64570081 3551354 94.50% 35 1270932914164 11438396227 99.10% 
  23 1743392200 83682826 95.20% 40 308836698141973 926510094426 99.70% 
  25 15690529804 721764371 95.40%   

NoC: Number of customer, NoJ: Number of Jobs, ANNS: Average number of nodes searched, PRND: Percents of reduced nodes 
 
Table 5  
Average percentage relative error for upper bound heuristic in class A and B 
# of jobs 5 7 10 13 15 17 20 22 25 30 35 40 
Class A 0.11 0.19 0.20 0.21 0.22 0.24 0.26 0.25     
Class B 0.01 0.02 0.05 0.05 0.06 0.06 0.06 0.14 0.12 0.11 0.06 0.06

 

7. Conclusions 

A branch-and-bound algorithm for scheduling a set of jobs with specified weight and release times to 
be processed on a single machine for delivery in batches to customers has been presented. The 
objective function is that of minimizing the sum of weighted flow times and delivery costs. The 
problem arises in a real supply chain network by cooperation between two layers of chain. 
The branch-and-bound algorithm proved to be efficient for solving instances with 10 customers and 
up to 25 jobs, when the delivery cost is far away from the job processing times and up to 40 jobs 
while the delivery costs are randomly generated inside [1-1000].  
 



M. Mahdavi Mazdeh et al. / International Journal of Industrial Engineering Computations 3 (2012) 
 

363

Future work aimed at solving larger problem instances would have to concentrate mainly on 
sharpening the lower bounds and tightening the upper bounds. However, solving much larger 
problem instances, albeit approximately, would require developing effective heuristics. 
 
Acknowledgment  
 
This paper was financially supported by a Iran university grant and the authors would like to thank 
for the support. The authors would like to thank the anonymous referees for their constructive 
comments on earlier version of this paper.  
 
References 
 
Baker KR. (1974). Introduction to Sequencing and Scheduling. Wiley, NewYork, Wiley.  

 
Belouadah, H., Posner, M.E., & Potts, C.N. (1992). Scheduling with release dates on a single 

machine to minimize total weighted completion time. Discrete Applied Mathematics, 36(3), 213-
231. 

Bianco, L. & Ricciardelli, S. (1982). Scheduling of a single machine to minimize total weighted 
completion time subject to release dates. Naval Research Logistics Quarterly, 29(1), 151-167. 

Chandra, R. (1979). On n/1/F¦ dynamic deterministic problems. Naval Research Logistics Quarterly, 
26(3), 537-544. 

Chou, C.F.M. (2004). Asymptotic performance ratio of an online algorithm for the single machine 
scheduling with release dates. IEEE Transactions on Automatic Control, 49(5), 772-776. 

Chu,C. (1992). A branch-and-bound algorithm to minimize total flow time with unequal release 
dates. Naval Research Logistics (NRL), 39(6), 859-875. 

Dessouky, M. I. & Deogun, J. S. (1981). Sequencing Jobs with Unequal Ready Times to Minimize 
Mean Flow Time. SIAM Journal on Computing, 10(1), 192-202. 

Graham, R.L., Lawler, E.L., Lenstra, J.K., & Kan, A.H.G.R. (1979). Optimization and 
Approximation in Deterministic Sequencing and Scheduling: a Survey. InP.L.Hammer (Ed.), 
Annals of Discrete Mathematics Discrete Optimization II, Proceedings of the Advanced Research 
Institute on Discrete Optimization and Systems Applications of the Systems Science Panel of 
NATO and of the Discrete Optimization Symposium co-sponsored by IBM Canada and SIAM 
Banff, Aha. and Vancouver (287-326). Elsevier. 

Hall, N. & Potts, C.N. (2003). Supply chain scheduling: batching and delivery. Operations Research, 
51, 566-584. 

Hariri, A.M.A. & Potts, C.N. (1983). An algorithm for single machine sequencing with release dates 
to minimize total weighted completion time. Discrete Applied Mathematics, 5(1), 99-109. 

Ji,M., He,Y., & Cheng, T.C.E. (2007). Batch delivery scheduling with batch delivery cost on a single 
machine. European Journal of Operational Research, 176(2), 745-755. 

Kahlbacher,H.G. & Cheng,T.C.E. (1993). Parallel machine scheduling to minimize costs for earliness 
and number of tardy jobs. Discrete Applied Mathematics, 47(2), 139-164. 

Labetoulle, J, Lawler, Eugene L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1984). Preemptive 
scheduling of uniform machines subject to release dates. Stichting Mathematisch Centrum, 245-
261.  

Lenstra, J.K., Rinnooy Kan, A.H.G., & Brucker,P. (1977). Complexity of Machine Scheduling 
Problems. InP.L.Hammer (Ed.), Annals of Discrete Mathematics Studies in Integer Programming, 
343-362. 

Mahdavi Mazdeh, M., Sarhadi, M., & Hindi, K.S. (2008). A branch-and-bound algorithm for single-
machine scheduling with batch delivery and job release times. Computers & Operations Research, 
35(4), 1099-1111. 



  364

Mazdeh, M.M., Sarhadi, M., & Hindi, K.S. (2007). A branch-and-bound algorithm for single-
machine scheduling with batch delivery minimizing flow times and delivery costs. European 
Journal of Operational Research, 183(1), 74-86. 

Mazdeh, M.M., Shashaani, S., Ashouri, A., & Hindi, K.S. (2011). Single-machine batch scheduling 
minimizing weighted flow times and delivery costs. Applied Mathematical Modelling, 35(1), 563-
570. 

Smith,W.E. (1956). Various optimizers for single-stage production. Naval Research Logistics 
Quarterly, 3(1-2), 59-66. 

 

 
 

 


	Single-machine batch scheduling minimizing weighted flow times and delivery costs with jobrelease times
	1. Introduction
	2. Problem definition
	3. Propositions
	4. Branch and bound
	4.1. Fathoming and backtracking a node
	4.2. Upper bound
	4.3. Lower bound

	5. Numerical Example
	6. Computational Results
	7. Conclusions
	References


