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 This study investigates optimal pricing and inventory policies for non-instantaneous deteriorating 
items with permissible delay in payment. The demand rate is as known, continuous and 
differentiable function of price while holding cost rate, interest paid rate and interest earned rate 
are characterized as independent fuzzy variables rather than fuzzy numbers as in previous studies. 
Under these general assumptions, we first formulated a fuzzy expected value model (EVM) and 
then some useful theoretical results have been derived to characterize the optimal solutions. An 
efficient algorithm is designed to determine the optimal pricing and inventory policy for the 
proposed model. The algorithmic procedure is demonstrated by means of numerical examples.       
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1. Introduction 

According to the modern view, uncertainty is considered essential to science; it is not only an 
unavoidable phenomenon but has, in fact, a great utility in real world applications. In essence, 
uncertainty occurs not only due to a lack of information but also as a result of ambiguity 
(impreciseness) due to the semantic statements by experts. In context of the inventory management, 
experts usually make interval-valued or linguistic statements about the time parameters and relevant 
data of inventory system. These interval-valued or linguistic statements lead to non-stochastic 
uncertainties. The fuzzy set theory was developed to model uncertainties in non-stochastic sense.  

During last two decades, several researchers have investigated various types of inventory problems in 
fuzzy environments to model uncertainties in non-stochastic sense (e.g. Park; 1987, Chen et al.; 1996, 
Roy and Maiti; 1997, Chang and Yao; 1998, Lee and Yao; 1999, Kao and Hsu; 2002, Chen and 
Ouyang; 2006, De & Goswami, 2006; Roy et al.; 2008). In aforementioned studies, the common 
feature is that the parameters (demand, cost coefficients etc.) were assumed to be triangular fuzzy 
numbers or trapezoidal fuzzy numbers. From literature survey, there are few literatures considered the 
parameters to be fuzzy variables. For instance, Wang et al. (2007) constructed EVM for EOQ model 
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without backordering by characterizing the holding cost and ordering cost as fuzzy variables. Wang and 
Tang (2009) considered EVM for the EPQ problem with backorder in which the setup cost, the holding 
cost and the backorder cost are characterized as fuzzy variables, respectively. Recently, Soni and Shah 
(2011) developed fuzzy expected value production model by characterizing demand and production 
preparation time as fuzzy variables.   

In recent years, researchers studied inventory problems for non-instantaneous items under different 
conditions.  For example, Ouyang et al. (2006) studied an inventory model for non-instantaneous 
deteriorating items with permissible delay in payments. Geetha and Uthayakumar (2010) extended 
Ouyang et al.’s model incorporating time-dependent backlogging rate. However, both models consider 
constant demand rate and cost minimization objective. The assumption of constant demand is quite 
impractical in reality. It would be more realistic to consider the demand as selling price dependent. The 
basic idea is that price setting will influence the demand and potential profit. Therefore, we consider 
demand to be price sensitive.  

Based on above discussion, we consider the time parameters, the holding cost rate and interest 
paid/earned rate in Geetha and Uthayakumar (2010) model may be varied slightly owing to some 
uncertainties in non-stochastic sense or uncontrolled environments. In addition, instead of constant 
demand rate we have assumed the demand rate as known, continuous and differentiable function of 
price. By incorporating above concepts we solve the new inventory model in the fuzzy sense.  The 
main purpose of this study is to extend the paper of Geetha and Uthayakumar (2010) with a view to 
make the model more relevant and applicable practically.  

The rest of the paper is organized as follows: In Section 2, the assumptions and notations which are 
used throughout the article are presented. In Section 3, fuzzy expected value model to maximize the 
total profit is formulated. Solution methodology comprising some useful theoretical results and 
algorithm to find the optimal solution is carried out in Section 4. Numerical examples are provided in 
Section 5 to illustrate the theory and the solution procedure. Finally, we draw a conclusion in Section 6. 

2. Assumptions and Notations 

The following notations and assumptions have been used in developing the mathematical model in this 
article.   

2.1 Notations 

A : The ordering cost per order. 
M : Trade credit period. 
c : The purchasing cost per unit. 
p : The selling price per unit (p > c). 
h  : The inventory holding cost rate excluding interest charges rate which is imprecise in nature. 

sc  : Unit shortage cost per unit time.  

lc  : The cost of lost sale per unit.  

pi  : The interest paid per dollar per unit time which is imprecise in nature. 

ei  : The interest earned per dollar per unit time which is imprecise in nature. 

Q : The order quantity. 
t1 : The length of time in which the product has no deterioration.  
t2 : The length of time in which the inventory has no shortage.  
t3 : The length of period during which shortages are allowed.  
T : Length of replenishment cycle, hence T = t2 + t3. 
θ  : The deterioration rate of the on-hand inventory over [t1, t2]. 
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( )2 3, ,p t tΠ  : The total profit per unit time of inventory system. 

( ).E  : Expected value of ( ).  
 

2.2 Assumptions 

(1) The inventory system involves single non-instantaneous deteriorating item. 
(2) Demand rate D (p) is any non-negative, continuous, decreasing function of the selling price. 
(3) During the fixed period, t1, the product has no deterioration. After that the on-hand inventory 

deteriorate with constant rate θ, where 0 < θ < 1. For simplicity, we assume that t1 is given 
constant and t1 ≤ t2. 

(4) There is no replacement or repair of deteriorated units during the period under consideration. 
(5) Shortages are allowed and backlogged partially. We assume the fraction of shortages backorder 

is ( )1 1 xδ+ , where x is the waiting time up to the next replenishment and δ is backlogging 
parameter 0 ≤ δ ≤ 1. This function has been utilized by many researchers (e.g. Abad (1996, 
2001), Dye (2007), Geetha and Uthayakumar (2010)). 

(6) During the trade credit period, M, the account is not settled; the revenue is deposited in an 
interest bearing account. At the end of the period, the retailer pays off the item ordered, and 
starts to pay the interest charged on the item in stock.  

(7) Replenishment rate is infinite and lead time is zero. 
(8) The system operates for an infinite planning horizon. 
(9) Holding cost rate, interest paid rate and interest earned rate are imprecise in nature and assumed 

to be non-interactive fuzzy variables defined on credibility space ( )( ), ,Cr , 1,2,3i i iX P X i = .  
3. Model Formulation 

3.1 The crisp inventory model 

The inventory system evolves as follows:  Q1 units of items arrive at the inventory system at the 
beginning of each cycle. The inventory level is declining only due to demand rate over time interval [0, 
t1]. The inventory level is reducing to zero owing to demand and deterioration during the time interval 
[t1, t2]. After that, inventory level becomes zero and shortages begin to be accumulated during [t2, T]. 
The process is repeated as mentioned above.  

Based on above description, the status of inventory at any instant of time [ ]0,t T∈ is governed by 
differential equation  

( )
( )
( ) ( )
( ) ( )( )

1

1 2

2

                        0

           

1  

D p t t
dI t

I t D p t t t
dt

D p T t t t T

θ

δ

⎧− ≤ ≤
⎪⎪= − − ≤ ≤⎨
⎪
− + − ≤ ≤⎪⎩

 

 
 

(1)

with boundary condition ( ) 10I Q=  and  ( )2 0I t = . The solution of Eq. (1) is  

( )
( )
( )
( )

1 1

2 1 2

3 2

  for 0

  for 

  for 

I t t t
dI t

I t t t t
dt

I t t t T

≤ ≤⎧
⎪

= ≤ ≤⎨
⎪ ≤ ≤⎩

 

 
 

(2)

where  

( ) ( ) ( ) ( )2 1
1 1 1t tD p

I t e t tθ θ
θ

−⎡ ⎤= − − −⎣ ⎦  
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( ) ( ) ( )2
2 1t tD p

I t eθ
θ

−⎡ ⎤= −⎣ ⎦  

( ) ( ) ( )( ) ( )( )3 2ln 1 ln 1
D p

I t T t T tδ δ
δ

−
⎡ ⎤= + − − + −⎣ ⎦  

Also, the ordering quantity over the replenishment cycle can be determined as 

( ) ( ) ( ) ( ) ( ) ( )
2 1 3

1 3 1

ln 1
0 1t tD p D p t

Q I I T e tθ δ
θ

θ δ
− +⎡ ⎤= − = − + +⎣ ⎦

(3)

The profit of the inventory system consists of the following components. 

1. The ordering cost ( oC ) is A. 
2. The inventory holding cost ( hC ) per cycle is given by 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 2 2 1 2 1

1

2
1 1

1 2 2 120

11 1      
2

t t t t t t
h t

t tC h I t dt h I t dt hD p e e t tθ θ θ
θ θ

− −⎡ ⎤
= + = − + + − − −⎢ ⎥

⎣ ⎦
∫ ∫  

 

3. The shortage cost ( sC ) per cycle due to backlog is given by 

( ) ( ) ( ) ( )( ) ( ) ( )
2

3 2 2 3 32 2ln 1 ln 1  
T s s

s s t

c D p c D p
C c I t dt T t T t t tδ δ δ δ

δ δ
⎡ ⎤= − = − − + − = − +⎡ ⎤⎣ ⎦⎣ ⎦∫  

4. The opportunity cost ( lC ) due to lost sale per cycle is given by 

   ( ) ( )
( ) ( )

2
3 3

11 ln 1
1

T l
l l t

c D p
C c D p dt t t

T t
δ δ

δ δ
⎡ ⎤

= − = − +⎡ ⎤⎢ ⎥ ⎣ ⎦+ −⎣ ⎦
∫  

5. The purchase cost ( pC ) is given by 

           ( ) ( ) ( ) ( ) ( ) ( )( )2 1
2 1 3 3 2 31 ln 1t t

p

cD p cD p
C c Q e t t t t cD p t tθ θ δ δ

θ δ
−⎡ ⎤= × = − − − − − + + +⎡ ⎤⎣ ⎦⎣ ⎦  

6. The sale revenue (R) is given by 
               

( ) ( ) ( )( ) ( )( ) ( ) ( )2

2
2 3 3 30

1 ln 1   
t T

t

pD p
R p D p dt D p T t dt pD p t t t tδ δ δ

δ
⎡ ⎤= × + + − = + − − +⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦∫ ∫  

Next, based on the parameter values t1, t2 and M, there are three cases to be explored. 

Case 1: 0 < M ≤ t1 

Interest paid = ( ) ( )1 2

1
1 1 2

t t

p pM t
IP ci I t dt ci I t dt= +∫ ∫   

                       ( ) ( ) ( )( ) ( ) ( ) ( )( )2 1 2 1

2
1 1

2 12

1    1 1
2

t t t t
p

t M t M
ci D p e e t tθ θ θ

θ θ
− −

⎡ ⎤− −
= − + + − − −⎢ ⎥

⎢ ⎥⎣ ⎦
 

Interest earned = ( ) ( ) 2

1 0 2
M e

e

pi D p M
IE pi D p tdt= =∫  

Case 2: t1 < M ≤ t2 
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Interest paid = ( ) ( ) ( ) ( )( )2 2
2 2 22 1

t p t M
p M

ci D p
IP ci I t dt e t Mθ θ

θ
−= = − − −∫   

Interest earned = ( ) ( ) 2

2 0 2
M e

e

pi D p M
IE pi D p tdt= =∫  

Case 3: M > t2 

Interest paid = 3IP = 0 

Interest earned = ( ) ( ) ( ) ( ) ( )2

3 2 2 2 20
2

t

e eIE pi D p tdt M t D p t pi D p t M t⎡ ⎤= + − = −⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦∫  

 Hence, the total profit per unit time for each case is 

( ) ( )2 3
2 3

1, , , 1, 2,3i o h s l p i ip t t R C C C C C IP IE i
t t

⎡ ⎤Π = − + + + + + − =⎣ ⎦+
(4)

Hence our crisp problem is  

( )
( )
( )
( )

1 2 3 1

2 3 2 2 3 1 2

3 2 3 2

, ,  if 0

max   , , , ,  if 

, ,  if 

p t t M t

p t t p t t t M t

p t t M t

Π < ≤⎧
⎪

Π = Π < ≤⎨
⎪Π >⎩

  

where ( )2 3, , , 1,2,3i p t t iΠ = is given by Eq. (4).  

3.2 Fuzzy Expected Value inventory model 

In this article, we have considered the holding cost rate, interest paid rate and interest earned rate as 
fuzzy variables to tackle the reality in more effective way. When the parameters h , pi and ei  (as per 
assumption) treated as fuzzy variables, the above inventory expressions become fuzzy and thereby the 
total profit per unit time becomes fuzzy variable on the credibility space ( )( ), ,CrX P X . If the decision 
maker wants to determine optimal pricing and inventory policy such that fuzzy expected value of the 
total profit is maximal, a fuzzy EVM can be constructed as follows, 

( )
( )
( )
( )

1 2 3 1

2 3 2 2 3 1 2

3 2 3 2

, ,  if 0

max   , , , ,  if 

, ,  if 

E p t t M t

E p t t E p t t t M t

E p t t M t

⎧ Π < ≤⎡ ⎤⎣ ⎦⎪⎪Π = Π < ≤⎡ ⎤ ⎡ ⎤⎨⎣ ⎦ ⎣ ⎦
⎪

Π >⎡ ⎤⎪ ⎣ ⎦⎩

 

(5)

  

( ) ( ){ }2 3
2 3

1where , , , 1, 2,3i o h s l p i iE p t t E R C C C C C IP IE i
t t

⎡ ⎤
⎡ ⎤ ⎢ ⎥Π = − + + + + + − =⎣ ⎦ ⎢ ⎥+⎣ ⎦

 

Next section carried out the solution methodology for fuzzy EVM along with theoretical results to 
identify global optimal solution for ( )2 3, ,p t t . 
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4. Solution Methodology  

Using linearity of operator E the fuzzy EVM given by Eq. (5) can be reduced to following single 
objective crisp problem. 

( )
( )
( )
( )

1 2 3 1

2 3 2 2 3 1 2

3 2 3 2

, ,  if 0

max   , , , ,  if 

, ,  if 

E p t t M t

E p t t E p t t t M t

E p t t M t

⎧ Π < ≤⎡ ⎤⎣ ⎦⎪⎪Π = Π < ≤⎡ ⎤ ⎡ ⎤⎨⎣ ⎦ ⎣ ⎦
⎪

Π >⎡ ⎤⎪ ⎣ ⎦⎩

 
 

(6)

( ) ( )2 3
2 3

1where , ,i o h s l p i iE p t t R C E C C C C E IP E IE
t t

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤Π = − + + + + + −⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦+
 

for 1, 2,3i = . 

Case 1: 0 < M ≤ t1 

From Eq. (6), the expected value of the total profit during the replenishment cycle per unit time can be 
written as follows, 

( ) ( ) ( ) ( )
( )

( ) ( )( ) ( )( )
2 1

2 1

1 2 3 2
2 3

1
, ,

t t

p

e t tD p
E p t t p c D p E h c E i

t t

θ θ
θ

θ

−⎡⎧ − − −⎪⎢ ⎡ ⎤ ⎡ ⎤Π = − − + +⎡ ⎤ ⎨⎣ ⎦ ⎣ ⎦⎣ ⎦⎢+ ⎪⎩⎣

 

                             
( ) ( ) ( )( )2 1

22
1 1 11 1

2 2
pp t t

E h t E h t cE i t McE i t M
eθ

θ
−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ −⎡ ⎤ − ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦+ + + −  

           

( )( ) ( )( ) ( )

2

3 32 ln 1
2
epE i Ms p c l At t

D p
δ

δ δ
δ

⎤⎡ ⎤⎫+ − + ⎪ ⎣ ⎦ ⎥+ − + + −⎬
⎥⎪⎭ ⎦

. 

 
 
 
 

(7)

 
To maximize the expected total profit per unit time, it is necessary to solve the following equations 
simultaneously. 

( )
( )

( ) ( ) ( )
( )( ) ( )

2 1

2 1
11 2 3 1

1 2 3 2
2 2 3

1, , 1 , , 0
t t

t t
U eE p t t

p t t D p U e
t t t

θ

θ

θ

−

−
⎡ ⎤⎧ ⎫−∂ Π⎡ ⎤ ⎪ ⎪⎣ ⎦ ⎢ ⎥= Π − + =⎨ ⎬⎢ ⎥∂ + ⎪ ⎪⎩ ⎭⎣ ⎦

 
 

(8)

( )
( )

( ) ( ) ( ) ( )1 2 3 1 3
1 2 3

3 2 3 3

, , 1 , , 0
1

E p t t V p t
p t t D p

t t t tδ
∂ Π⎡ ⎤ ⎡ ⎤⎧ ⎫⎣ ⎦ = Π − =⎢ ⎥⎨ ⎬∂ + +⎢ ⎥⎩ ⎭⎣ ⎦

 
(9)

( ) ( ) ( )( ) ( )
( ) ( )

2
1 2 3 3 3

2 3 2 3

, , ln 1
' 1

2
eE i ME p t t t t

D p D p p c
p t t t t

δ δ
δ

⎡ ⎤⎡ ⎤∂ Π⎡ ⎤ − +⎣ ⎦ ⎣ ⎦⎢ ⎥= + − − +⎡ ⎤⎣ ⎦∂ + +⎢ ⎥⎣ ⎦
 

                             

( )
( )

( ) ( )( ) ( )2 1 22
2 1 1 1 1
2

2 3

1'
2 2

t t
pe t t U E h t cE i t MD p

t t

θ θ

θ

−⎡ ⎡ ⎤− − − ⎡ ⎤ −⎣ ⎦ ⎣ ⎦⎢− + +
⎢+
⎣

 

                            

( )( ) ( ) ( )( ) ( )

2 1 2
2

3 32

1
ln 1

2

t t
ee U cE i Ms l At t

D p

θ
δ

δ δ
θ δ

− ⎤⎡ ⎤− + ⎣ ⎦ ⎥+ + − + + −
⎥
⎦

=0   

 
 
 
 
 

(10)
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( ) ( )1 2 1 1where ,p pU E h c E i U E h t cE i t Mθ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= + + = + −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ , ( ) ( )V p s p c lδ= + − +        

( ) ( ) ( ) ( ) ( )1
1 2 3 1 2 3and , , , ,p t t p c D p E p t tΠ = − − Π⎡ ⎤⎣ ⎦ . 

In order to identify optimal solution for ( )2 3, ,p t t , firstly we prove that for any given p, the optimal pair 

of values ( )2 3,t t not only exists but also is unique. Once this is done, we shall derive the existence of p 

for optimal pair of values ( )2 3,t t .  

From Eqs. (8) and (9) we obtain respectively, 

( ) ( ) ( )
( )( ) ( )

2 1

2 1
11

1 2 3 2

1
, ,

t t

t t
U e

p t t D p U e
θ

θ

θ

−

−
⎧ ⎫−⎪ ⎪Π = +⎨ ⎬
⎪ ⎪⎩ ⎭

, 
(11)

( ) ( ) ( ) ( )1 3
1 2 3

3

, ,
1

V p t
p t t D p

tδ
⎧ ⎫

Π = ⎨ ⎬+⎩ ⎭
. 

(12)

Equating right hand side of Eqs. (11) and (12) we have 

( )( ) ( ) ( )2 1

2 1
1 3

2
3

1

1

t t
t t

U e V p t
U e

t

θ

θ

θ δ

−

−
−

+ =
+

. 
 

(13)

For convenience, let ( )1 2K t denote the left hand side of Eq. (13), that is, 

( )
( )( ) ( )

2 1

2 1
1

1 2 2

1t t
t t

U e
K t U e

θ

θ

θ

−

−
−

= + , 

which implies 

( )
( ) ( )

1 2
3

1 2

K t
t

V p K tδ
=

−
 

(14)

Thus, t3 is a function of t2 and p.  

Now, we substitute ( ) ( )1
1 2 3, ,p t tΠ  into Eq. (11) and making some algebraic manipulation, we obtain  

( )
( )

( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( )

2 1

2 1

22
1 2 3 1 11 2 1

2
2 3

2
2 2 3 3 32

2

1 1

2 2

1 ln 1
0

2

t t
p

t t
p

U e t t E h t cE i t MD p U t t
t t

pE i MU e t t V p t tU A
D p

θ

θ

θ

θ θ

θ δ δ
θ θ δ

−

−

⎧ ⎡ ⎤− − + ⎡ ⎤ −−⎪ ⎣ ⎦ ⎣ ⎦− + +⎨
+ ⎪⎩

⎫⎡ ⎤− + − + ⎪⎣ ⎦+ − + + − =⎬
⎪⎭

 

 
 
 

(15)

Motivated by Eq. (15), we assume an auxiliary function, say ( ) [ )1 2 2 1, ,F t t t∈ ∞ , where 
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( )
( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( )

2 1

2 1

22
1 2 3 1 11 2 1

1 2 2

2
2 2 3 3 32

2

1 1

2 2
1 ln 1

         
2

t t
p

t t
p

U e t t E h t cE i t MU t t
F t

pE i MU e t t V p t tU A
D p

θ

θ

θ

θ θ
θ δ δ

θ θ δ

−

−

⎡ ⎤− − + ⎡ ⎤ −− ⎣ ⎦ ⎣ ⎦= − + +

⎡ ⎤− + − + ⎣ ⎦+ − + + −

 

 

 

(16)

and t3 is given as in Eq. (14). Differentiating ( )1 2F t with respect to t2, and using the relation in Eqs. 
(13) and (14) we get  

( ) ( ) ( ) ( )2 11 2
1 2 2 3

2

0t tdF t
U U e t t

dt
θθ −= − + + <  

(17)

Thus, ( )1 2F t is strictly decreasing function with respect to [ )2 1,t t∈ ∞  and it can be shown that as t2 gets 

larger ( )1 2F t  approaches to−∞ . Moreover,  

( )
( ) ( )( ) ( ) ( )( )

( )

2 ' ' '2 2
2 1 3 3 31 1 2

1 1 2

1 ln 1

2 2 2
           

p pU t t V p t tE h t cE i t M pE i MU AF t
D p

θ δ δ

θ θ δ

⎡ ⎤ − + − +⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦ ⎣ ⎦= + + − + + −

( )
' 2
3

2

where Ut
V p Uθ

=
−

 

Now, the optimal value of t2 depends on sign of ( )1 1F t  so we examine two sub-cases as follows: 

Sub-case 1.1: Let ( )1 1 0F t ≥ . As ( )1 2F t is strictly decreasing function of [ )2 1,t t∈ ∞ , using intermediate 

value theorem, there exists unique value of t2 (say [ )2.1 1,t t∈ ∞ ) such that ( )1 2.1 0F t =  i.e. 2.1t  is the 
unique solution of Eq. (8).  The corresponding value of 3.1t  can be found from Eq. (14).  

Sub-case 1.2: If ( )1 1 0F t <  then ( )1 1F t . Since ( )1 2F t  is strictly decreasing function of [ )2 1,t t∈ ∞ and

( ) [ )1 2 3 2 2 1, , 0, ,E p t t t t t∂ Π ∂ < ∀ ∈ ∞⎡ ⎤⎣ ⎦ . Hence, optimal value occurs at point 2 1t t=  and corresponding 

optimal value of 3t can be found from Eq. (14) and is given by
( )

2

2

U
V p Uθ −

.  

Summarizing the above arguments, we obtain the following result. 

  

Lemma 4.1: For known p, we have 

(a) If ( )1 1 0F t ≥ then there exist unique pair of values ( ) ( )2 3 2.1 3.1, ,t t t t=  which satisfies Eqs. (8-9).  

(b) If ( )1 1 0F t < then the optimal value occurs at point ( ) ( )
2

2 3 1
2

, , Ut t t
V p Uθ

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

. 

Suppose ( )* *
2.1 3.1,t t  denotes the optimal value of ( )2 3,t t then we can obtain following result.  

Theorem 4.1:  For known p, the expected value of total profit function ( )1 2 3, ,E p t tΠ⎡ ⎤⎣ ⎦  is concave 

and attains its global maximum at point ( ) ( )* *
2 3 2.1 3.1, ,t t t t= . 
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Proof:  From lemma 4.1 the pair of values ( )* *
2.1 3.1,t t  which maximizes expected profit function 

( )1 2 3, ,E p t tΠ⎡ ⎤⎣ ⎦  for any p is given by 

( )
( ) ( )

( ) ( )

2.1 3.1

* *
2.1 3.1 2

1
2

, ,                 if  , 0

,
, ,   if  , 0

t t A p

t t Ut A p
V p Uθ

Δ ≥⎧
⎪

= ⎛ ⎞⎨
Δ <⎜ ⎟⎪⎜ ⎟−⎝ ⎠⎩

 

 
(18)

From Eqs. (8), (15) and (16) we have 

( ) ( ) ( )
( )

1 2 3 1 2

2 2 3

, ,E p t t D p F t
t t t

∂ Π⎡ ⎤⎣ ⎦ =
∂ +

 
(19)

At point ( ) ( )* *
2 3 2.1 3.1, ,t t t t=  

( )

( ) ( )
( ) ( ) ( )

*
2.1 1

* *
2 3 2.1 3.1

2
1 2 3 * *

1 2 2.1 3.12
2 , ,

, ,
0t t

t t t t

E p t t
U U e t t

t
θ

θ
−

=

⎡ ⎤∂ Π⎡ ⎤⎣ ⎦ = − + + <⎢ ⎥
∂⎢ ⎥⎣ ⎦

 

Furthermore, we can obtain from Eq. (9) 
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( )

* *
2 3 2.1 3.1

* *
2 3 2.1 3.1

2 *
1 2 3 1 3.1* *

1 2.1 3.122 ** *
3 3.12.1 3.1, ,

1
1 2 3

* *
32.1 3.1 , ,

, , 1 , ,
1

, ,1                                                

t t t t

t t t t

E p t t V p t
p t t D p

t tt t

p t t
tt t

δ
=

=

⎡ ⎤ ⎡ ⎤∂ Π⎡ ⎤ ⎛ ⎞⎣ ⎦ = − Π −⎢ ⎥ ⎢ ⎥⎜ ⎟
∂ +⎢ ⎥+⎢ ⎥ ⎝ ⎠⎣ ⎦⎣ ⎦

∂Π
+

∂+
( ) ( )

( )2*
3.11

D p V p

tδ

⎡ ⎤
⎢ ⎥−⎢ ⎥+⎢ ⎥⎣ ⎦

  

   

( )
( )

( ) ( )

( ) ( )
( )

( ) ( )
( )( )* *

2 3 2 .1 3 .1

1 2 3
2 2* * * * * *

32 .1 3 .1 3 .1 2 .1 3 .1 3 .1, ,

, ,1                          0
1 1

                                           

t t t t

E p t t D p V p D p V p
tt t t t t tδ δ=

⎡ ⎤∂ Π⎡ ⎤⎣ ⎦⎢ ⎥= − = − <⎢ ⎥∂+ + + +⎢ ⎥⎣ ⎦

 

and 
( )

( ) ( )* *
2 3 2.1 3.1

2
1 2 3

2 3 , ,

, ,
0

t t t t

E p t t
t t

=

⎡ ⎤∂ Π⎡ ⎤⎣ ⎦ =⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

. Moreover, the determinant of the Hessian matrix at point 

( ) ( )* *
2 3 2.1 3.1, ,t t t t= gives 

( )( ) ( ) ( )

( )

*
2.1 1

1 2
2*

3.1

0
1

t tD p U U V p e
H

t

θ
θ

δ

−
+

= >
+

 

Thus, the Hessian matrix is positive definite at point ( ) ( )* *
2 3 2.1 3.1, ,t t t t= . Hence, the pair of values 

( )* *
2.1 3.1,t t gives global maximum of the optimization problem (5). This completes the proof.  
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Next, we analyze the condition under which the optimal selling price also exists and is unique. For the 
pair of values ( ) ( )* *

2 3 2.1 3.1, ,t t t t= the necessary condition for ( )* *
1 2.1 3.1, ,E p t t⎡ ⎤Π⎣ ⎦  to be maximum is

( )* *
1 2.1 3.1, , 0E p t t p⎡ ⎤∂ Π ∂ =⎣ ⎦ . That is, 

( )
( ) ( )( ) ( )

( ) ( )
* * 2* *

1 2.1 3.1 3.1 3.1

* * * *
2.1 3.1 2.1 3.1

, , ln 1
' 1

2
eE p t t E i Mt t

D p D p p c
p t t t t

δ δ

δ

⎡ ⎤⎡ ⎤ ⎡ ⎤∂ Π − +⎣ ⎦ ⎣ ⎦⎢ ⎥= + − − +⎡ ⎤⎣ ⎦∂ ⎢ ⎥+ +⎣ ⎦
 

                              

( )
( )

( ) ( ) ( )
*
2.1 1 * 222.1 1 1 1 1

2* *
2.1 3.1

1'
2 2

t t

p
e t t U E h t cE i t MD p

t t

θ θ

θ

−⎡⎛ ⎞− − −⎜ ⎟ ⎡ ⎤ ⎡ ⎤ −⎢⎝ ⎠ ⎣ ⎦ ⎣ ⎦− + +⎢
+ ⎢

⎣

 

                              
( )

( ) ( )( ) ( )

*
2.1 1 2

2
* *
3.1 3.12

1
ln 1

2

t t

e
e U cE i Ms l At t

D p

θ

δ
δ δ

θ δ

− ⎤⎛ ⎞−⎜ ⎟ ⎡ ⎤ ⎥+⎝ ⎠ ⎣ ⎦+ + − + + − ⎥
⎥
⎦

=0 

 

 
 
 
 
 
 
 

(20)

Since, 

( )
( ) ( )

( )
( )

( )
( )

2 2 2* * * * *
3.1 3.1 3.1 3.1 3.1

* ** * * * * * * *
3.1 3.12.1 3.1 2.1 3.1 2.1 3.1 2.1 3.1

ln 1 ln 1 ln 1
1 1 0

2 2 2
e e eE i M E i M E i Mt t t t t

t tt t t t t t t t

δ δ δ δ δ

δ δδ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− + − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦− + > − + = + >
+ + + +

 

It follows from (20) that ( )* *
1 2.1 3.1, , 0E p t t p⎡ ⎤∂ Π ∂ =⎣ ⎦ has a solution if   

( ) ( )( )' 0D p D p p c+ − < (cf. Dye; 2007) 

Furthermore, following Dye (2007) we have, 

( )
( ) ( ) ( )

( ) ( )
2 * * 2* *

1 2.1 3.1 3.1 3.1
2 * * * *

2.1 3.1 2.1 3.1

, , ln 1
2 ' '' 1

2
eE p t t E i Mt t

D p pD p
p t t t t

δ δ

δ

⎡ ⎤⎡ ⎤ ⎡ ⎤∂ Π − +⎣ ⎦ ⎣ ⎦⎢ ⎥= + − +⎡ ⎤⎣ ⎦∂ ⎢ ⎥+ +⎣ ⎦
 

    

                                 

( )
( ) ( ) ( )

( )
* *
3.1 3.1* *

2.1 3.1* * * *
2.1 3.1 2.1 3.1

ln 1''
1

t tD p
c t t

t t t t

δ δ

δ

⎡ ⎡ ⎤− +
⎢ ⎢ ⎥− + −

+ +⎢ ⎢ ⎥⎣ ⎦⎣
 

                                     

( ) ( ) ( )
*
2.1 1 * 222.1 1 1 1 1

2

1

2 2

t t

p
e t t U E h t cE i t M
θ θ

θ

−⎛ ⎞− − −⎜ ⎟ ⎡ ⎤ ⎡ ⎤ −⎝ ⎠ ⎣ ⎦ ⎣ ⎦+ + +        

( )
( ) ( )( ) ( )

*
2.1 1 2

2
* *
3.1 3.12

1
ln 1 0

2

t t

e
e U cE i Ms l At t

D p

θ

δ
δ δ

θ δ

−⎛ ⎞− ⎤⎜ ⎟ ⎡ ⎤+⎝ ⎠ ⎣ ⎦ ⎥+ + − + + − <
⎥
⎦

 

                              

 

 

 

 

 

 

(21)
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Thus, there exist unique optimal selling price *
1p that satisfy (10). Note that the lower bound of optimal 

selling price (say lp ) is the solution of ( ) ( )( )' 0D p D p p c+ − = such that ( )* *
1 2.1 3.1, , 0E p t t p⎡ ⎤∂ Π ∂ =⎣ ⎦ .  

Case 2: t1 < M ≤ t2 

From (6), the expected value of the total profit during the replenishment cycle per unit time can be 
written as follows. 

( ) ( ) ( ) ( )
( )

( ) ( )( ) ( )
2 1

2 1
2 2 3 2

2 3

1
, ,

t te t tD p
E p t t p c D p E h c

t t

θ θ
θ

θ

−⎡⎧ − − −⎪⎢ ⎡ ⎤Π = − − +⎡ ⎤ ⎨⎣ ⎦ ⎣ ⎦⎢+ ⎪⎩⎣

 

                      
( )( ) ( )( ) ( )( )2 1

2
1 1

3 321 ln 1
2

t t
E h t E h t s p c l

e t tθ δ
δ δ

θ δ
−

⎡ ⎤ ⎡ ⎤ + − +⎣ ⎦ ⎣ ⎦+ + − + − +  

                      

( ) ( )( )
( )

2 2
2

2

1

2

t M
p

p

e t M pE i MAcE i
D p

θ θ

θ

− ⎤⎫− − − ⎡ ⎤⎪ ⎣ ⎦ ⎥⎡ ⎤+ + −⎬⎣ ⎦ ⎥⎪⎭ ⎦

 

 

 

 

 

(22) 

For known p, the necessary conditions for the expected total profit function in (22) to be maximum are 
( )2 2 3 2, , 0E p t t t∂ Π ∂ =⎡ ⎤⎣ ⎦  and ( )2 2 3 3, , 0E p t t t∂ Π ∂ =⎡ ⎤⎣ ⎦ , which give 

( )
( )

( ) ( ) ( ) ( )( ) ( ){ ( )( )}2 1 2 1 22 2 3 1
2 2 3 3 4 5

2 2 3

, , 1 , , 1 1 0t t t t t ME p t t
p t t D p U e U e U e

t t t
θ θ θ− − −∂ Π⎡ ⎤⎣ ⎦ ⎡ ⎤= Π − − + + − =⎢ ⎥⎣ ⎦∂ +

 

 

(23)

( )
( )

( ) ( ) ( ) ( )2 2 3 1 3
2 2 3

3 2 3 3

, , 1 , , 0
1

E p t t V p t
p t t D p

t t t tδ
∂ Π⎡ ⎤ ⎡ ⎤⎧ ⎫⎣ ⎦ = Π − =⎢ ⎥⎨ ⎬∂ + +⎢ ⎥⎩ ⎭⎣ ⎦

 

(24)

3 4 1 5where , , pE h c cE i
U U E h t U

θ

θ θ

⎡ ⎤ + ⎡ ⎤⎣ ⎦ ⎣ ⎦⎡ ⎤= = =⎣ ⎦ , ( ) ( )V p s p c lδ= + − +        

( ) ( ) ( ) ( ) ( )1
2 2 3 2 2 3and , , , ,p t t p c D p E p t tΠ = − − Π⎡ ⎤⎣ ⎦  

We want to find the pair of values ( )2 3,t t which satisfies Eqs. (23) and (24) simultaneously. From Eqs. 
(23) and (24) we obtain respectively, 

( ) ( ) ( ) ( )( ) ( ) ( )( ){ }2 1 2 1 21
2 2 3 3 4 5, , 1 1t t t t t Mp t t D p U e U e U eθ θ θ− − −Π = − + + − (25)

( ) ( ) ( ) ( )1 3
2 2 3

3

, ,
1

V p t
p t t D p

tδ
⎧ ⎫

Π = ⎨ ⎬+⎩ ⎭  

(26)

Equating right hand side of Eq.  (25) and Eq. (26) we have 

( )( ) ( ) ( )( ) ( )
2 1 2 1 2 3

3 4 5
3

1 1
1

t t t t t M V p t
U e U e U e

t
θ θ θ

δ
− − −− + + − =

+

 

(27)
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For convenience, let ( )2 2K t denote the left hand side of Eq. (27), that is, 

( ) ( )( ) ( ) ( )( )2 1 2 1 2
2 2 3 4 51 1t t t t t MK t U e U e U eθ θ θ− − −= − + + −  

which implies 

( )
( ) ( )

2 2
3

2 2

K t
t

V p K tδ
=

−
 

(28)

Thus, t3 is a function of t2 and p.  

Now, we substitute ( ) ( )1
2 2 3, ,p t tΠ  into Eq. (25) and after little calculation we obtain  

( )
( )

( )( ) ( )( )
( )

( ) ( )( )

( ) ( )( ) ( )( ) ( )( )
( ) ( )

2 1 2 1

2

2
3 2 3 1 4 2 3

3 2 1
2 3

2
5 2 33 34

5 22

1 1 1
2

1 1ln 1
2

t t t t

t M
e

U e t t E h t U e t tD p
U t t

t t

U e t t pE i MV p t tU AU t M
D p

θ θ

θ

θ θ
θ θ

θδ δ
θ δ θ

− −

−

⎧ ⎡ ⎤− − + − +⎪ ⎣ ⎦− − + +⎨+ ⎪⎩
⎫⎡ ⎤− − +− + ⎪⎣ ⎦− + + − − + − =⎬
⎪⎭

 

(29)

Motivated by Eq. (29), we assume an auxiliary function, say ( ) [ )2 2 2, ,F t t M∈ ∞ , where 

( )
( )( ) ( )( )

( )
( ) ( )( )2 1 2 12

3 2 3 1 4 2 3
2 2 3 2 1

1 1 1
2

t t t tU e t t E h t U e t t
F t U t t

θ θθ θ
θ θ

− −⎡ ⎤− − + − +⎣ ⎦= − − + +  

      
( ) ( )( ) ( )( ) ( )( )

( ) ( )

2 2
5 2 33 34

5 22

1 1ln 1
.

2

t M
eU e t t pE i MV p t tU AU t M

D p

θ θδ δ
θ δ θ

− ⎡ ⎤− − +− + ⎣ ⎦− + + − − + −  

  and t3 is given as in Eq. (28). Differentiating ( )2 2F t with respect to t2, and using the relation in Eqs. 
(27) and (28) we get  

( ) ( ) ( ) ( ) ( )2 1 22 2
3 4 5 2 3

2

0t t t MdF t
U U e e U t t

dt
θ θ θ− −⎡ ⎤= − + + + <⎣ ⎦

(30)

Thus, ( )2 2F t is strictly decreasing function with respect to [ )2 ,t M∈ ∞  and it can be shown that as t2 

gets larger ( )2 2F t  approaches to−∞ .  

Summarizing the above arguments and as discussed earlier in case 1, we can obtain the following 
result.  

Lemma 4.2: For known p, we have 

(a) If ( )2 0F M ≥ then there exist unique pair of values ( ) ( )2 3 2.2 3.2, ,t t t t=  which satisfies (23) and 
(24). 

(b) If ( )2 0F M < then the optimal value occurs at point ( ) ( )
( ) ( )

2
2 3

2

, ,
K M

t t M
V p K Mδ

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

. 
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Suppose ( )* *
2.2 3.2,t t  denotes the optimal value of ( )2 3,t t for case 2 then we can obtain following result. 

Theorem 4.2:  For known p, the expected value of total profit function ( )2 2 3, ,E p t tΠ⎡ ⎤⎣ ⎦  is concave 

and attains its global maximum at point ( ) ( )* *
2 3 2.2 3.2, ,t t t t= . 

Proof:  Analogous to theorem 4.1.  

Next, the condition for existence and uniqueness for the optimal selling price can be derived 
analogously as in Case 1. Consequently, there exist unique optimal selling price, denoted by *

2p , that 

satisfy ( )* *
1 2.2 3.2, , 0E p t t p⎡ ⎤∂ Π ∂ =⎣ ⎦ which is given by 

( )
( ) ( )( ) ( )

( ) ( )
* * 2* *

1 2.2 3.2 3.2 3.2

* * * *
2.2 3.2 2.2 3.2

, , ln 1
' 1

2
eE p t t E i Mt t

D p D p p c
p t t t t

δ δ

δ

⎡ ⎤⎡ ⎤ ⎡ ⎤∂ Π − +⎣ ⎦ ⎣ ⎦⎢ ⎥= + − − +⎡ ⎤⎣ ⎦∂ ⎢ ⎥+ +⎣ ⎦
 

( )
( )

( ) ( ) ( )
( ) ( )(

* *
2.2 1 2.2 1* 2

2.2 1 3 1 * *
4 3.2 3.22* *

2.2 3.2

1 1'
ln 1

2

t t t te t t U eE h tD p s l
U t t

t t

θ θθ δ
δ δ

θ θ δ

− −⎡⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟⎡ ⎤⎢ +⎝ ⎠ ⎣ ⎦ ⎝ ⎠− + + + − +⎢
+ ⎢

⎣
( ) ( )

( )

*
2.2 * 2

2.2

5

1

2

t M

e
e t M cE i MAU

D p

θ θ

θ

− ⎤⎛ ⎞− − −⎜ ⎟ ⎡ ⎤ ⎥⎝ ⎠ ⎣ ⎦+ + − ⎥
⎥
⎦

 

 

 

 

 

 

(31)

Case 3: M > t2 

From Eq. (6), the expected value of the total profit during the replenishment cycle per unit time can be 
written as follows. 

( ) ( ) ( ) ( )
( )

( ) ( )( ) ( )
2 1

2 1

3 2 3 2
2 3

1
, ,

t te t tD p
E p t t p c D p E h c

t t

θ θ
θ

θ

−⎡⎧ − − −⎪⎢ ⎡ ⎤Π = − − +⎡ ⎤ ⎨⎣ ⎦ ⎣ ⎦⎢+ ⎪⎩⎣

 

                             ( )( ) ( )( ) ( )( )2 1

2
1 1

3 321 ln 1
2

t t
E h t E h t s p c l

e t tθ δ
δ δ

θ δ
−

⎡ ⎤ ⎡ ⎤ + − +⎣ ⎦ ⎣ ⎦+ + − + − +  

                          
( ) ( )2 2 2e
A pE i t M t

D p
⎤⎫⎪ ⎡ ⎤+ − − ⎥⎬ ⎣ ⎦⎪ ⎥⎭ ⎦

 

 

 

 

 

 

(32) 

For known p, the necessary conditions for the expected total profit function in (32) to be maximum are 
( )3 2 3 2, , 0E p t t t∂ Π ∂ =⎡ ⎤⎣ ⎦  and ( )3 2 3 3, , 0E p t t t∂ Π ∂ =⎡ ⎤⎣ ⎦ , which give 

( )
( )

( ) ( ) ( ) ( )( ) ( ){ ( )}2 1 2 13 2 3 1
3 2 3 3 4 2

2 2 3

, , 1 , , 1 0t t t t
e

E p t t
p t t D p U e U e pE i M t

t t t
θ θ− −∂ Π⎡ ⎤⎣ ⎦ ⎡ ⎤⎡ ⎤= Π − − + − − =⎣ ⎦⎢ ⎦⎣∂ +

 

 

 
(33)

( )
( )

( ) ( ) ( ) ( )3 2 3 1 3
3 2 3

3 2 3 3

, , 1 , , 0
1

E p t t V p t
p t t D p

t t t tδ
∂ Π⎡ ⎤ ⎡ ⎤⎧ ⎫⎣ ⎦ = Π − =⎢ ⎥⎨ ⎬∂ + +⎢ ⎥⎩ ⎭⎣ ⎦  

(34)
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( ) ( ) ( ) ( ) ( )1
3 2 3 3 2 3where , , , ,p t t p c D p E p t tΠ = − − Π⎡ ⎤⎣ ⎦  

Proceed in the same manner as Case 2 it follows from Eqs. (33) and (34), 

( )
( ) ( )

3 2
3

3 2

K t
t

V p K tδ
=

−
 

(35)

 ( ) ( )( ) ( ) ( )2 1 2 1
3 2 3 4 2where 1t t t t

eK t U e U e pE i M tθ θ− − ⎡ ⎤= − + − −⎣ ⎦  

Now, we substitute ( ) ( )1
3 2 3, ,p t tΠ  into Eq. (33) and after little calculation we obtain 

( )
( )

( )( ) ( )( )
( )

( ) ( )( )2 1 2 12
3 2 3 1 4 2 3

3 2 1
2 3

1 1 1
2

t t t tU e t t E h t U e t tD p
U t t

t t

θ θθ θ
θ θ

− −⎧ ⎡ ⎤− − + − +⎪ ⎣ ⎦− − + +⎨
+ ⎪⎩

 

( ) ( )( )
( ) ( ) ( )( ) }3 34

2 2 2 2 32

ln 1
                2 0

                

e

V p t tU A pE i t M t M t t t
D p

δ δ
θ δ

− +
⎡ ⎤− + + − − − − + =⎡ ⎤⎣ ⎦⎣ ⎦

 

 
 
 
(36)

Motivated by Eq. (36), we assume an auxiliary function, say ( ) [ ]3 2 2 1, ,F t t t M∈ , where 

( )
( )( ) ( )( )

( )
( ) ( )( )2 1 2 12

3 2 3 1 4 2 3
3 2 3 2 1

1 1 1
2

t t t tU e t t E h t U e t t
F t U t t

θ θθ θ
θ θ

− −⎡ ⎤− − + − +⎣ ⎦= − − + +  

                
( ) ( )( ) ( ) ( )( ) ( )

3 34
2 2 2 2 32

ln 1
2e

V p t tU ApE i t M t M t t t
D p

δ δ
θ δ

− +
⎡ ⎤− + − − − − + +⎡ ⎤⎣ ⎦⎣ ⎦  

 

 
 
 
(37) 

and t3 is given as in Eq. (35). Differentiating ( )3 2F t with respect to t2, we get  

( ) ( ) ( ) ( )2 12 2
3 4 2 3

2

0t t
e

dF t
U U e pE i t t

dt
θθ −⎡ ⎤⎡ ⎤= − + + + <⎣ ⎦⎣ ⎦

(38)

Thus, ( )3 2F t is strictly decreasing function with respect to [ ]2 1,t t M∈ . 

For notational convenience, let ( )1 3F MΔ = and ( )2 3 1F tΔ =  

Lemma 4.3: For known p, we have 

(a) If 1 20Δ ≤ ≤ Δ then there exist unique pair of values ( ) ( )2 3 2.3 3.3, ,t t t t=  which satisfies Eqs. (33-
34). 

(b) If 2 0Δ < then the optimal value occurs at point ( ) ( )
( ) ( )

3 1
2 3 1

3 1

, ,
K t

t t t
V p K tδ

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

. 

(c) If 1 0Δ >  then the optimal value occurs at point ( ) ( )
( ) ( )

3
2 3

3

, ,
K M

t t M
V p K Mδ

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

. 
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Proof: (a) Since ( )3 2F t is strictly decreasing function with respect to [ ]2 1,t t M∈ and by assumption 

( ) ( )1 2 3 3 10 0F M F tΔ ≤ ≤ Δ ⇒ ≤ ≤  we can find 2t (say [ ]2.3 1,t t M∈ ) such that ( )3 2.3F t = 0. 
The corresponding value of 3 3.3t t=  can be obtained from Eq. (34). This implies that the pair 
of values ( )2 3,t t which satisfies (33) and (34) not only exists but also is unique. 

(b) If 2 0Δ <  then ( )3 1 0F t < . Since ( )3 2F t is strictly decreasing function of [ ]2 1,t t M∈ ;

( )3 2 3 2, , 0E p t t t∂ Π ∂ <⎡ ⎤⎣ ⎦ , [ ]2 1,t t M∀ ∈ . Hence, optimal value occurs at point 2 1t t=  and 

corresponding optimal value of 3t can be found from Eq. (35) and is given by ( )
( ) ( )

3 1

3 1

K t
V p K tδ−

.  

(c) If 1 0Δ > then ( )3 0F M > . Since ( )3 2F t is strictly decreasing function of [ ]2 1,t t M∈ ; 

( ) ( ) ( ) ( )3 2 3 2 2 3 3 2, , 0E p t t t D p t t F t∂ Π ∂ = + >⎡ ⎤⎣ ⎦ , [ ]2 1,t t M∀ ∈ . Thus ( )3 2 3, ,E p t tΠ⎡ ⎤⎣ ⎦ is 

strictly increasing over[ ]1,t M . Hence, maximum value occurs at point 2t M=  and 

corresponding optimal value of 3t can be found from Eq. (35) and is given by ( )
( ) ( )

3

3

K M
V p K Mδ−

.  

Suppose ( )* *
2.3 3.3,t t  denotes the optimal value of ( )2 3,t t for Case 3 then we can obtain following result. 

Theorem 4.3:  For known p, the expected value of total profit function ( )3 2 3, ,E p t tΠ⎡ ⎤⎣ ⎦  is concave 

and attains its global maximum at point ( ) ( )* *
2 3 2.3 3.3, ,t t t t= . 

Proof:  Similar to theorem 4.1.  

Next, the condition for existence and uniqueness for the optimal selling price can be obtained similar 
manner as in Case 1. Therefore, there exist unique optimal selling price, denoted by *

3p , that satisfy

( )* *
1 2.3 3.3, , 0E p t t p⎡ ⎤∂ Π ∂ =⎣ ⎦  where ( )* *

1 2.3 3.3, ,E p t t p⎡ ⎤∂ Π ∂⎣ ⎦  given as,  

( )
( ) ( )( )

* *
1 2.3 3.3, ,

'
E p t t

D p D p p c
p

⎡ ⎤∂ Π⎣ ⎦ = + −⎡ ⎤⎣ ⎦∂
 

                  
( )

( )
( )

( )
* ** *
2.3 2.33.3 3.3

* * * *
2.3 3.3 2.3 3.3

2ln 1
1

2
eE i t M tt t

t t t t

δ δ

δ

⎡ ⎤⎡ ⎤ −− + ⎣ ⎦⎢ ⎥× − +
⎢ ⎥+ +⎣ ⎦

 

                
( )

( )

( ) ( )
*
2.3 1 * 2

2.3 1 3 1

* *
2.3 3.3

1'
2

t te t t U E h tD p
t t

θ θ

θ

−⎡⎛ ⎞− − −⎜ ⎟ ⎡ ⎤⎢⎝ ⎠ ⎣ ⎦− +⎢
+ ⎢

⎣

 

                 
( )

( ) ( )( ) ( )
( )

*
2.3 1 * *

4 2.3 2.3* *
3.3 3.32

1 2
ln 1

2

t t

e e
e U cE i E i t M ts l At t

D p

θ

δ
δ δ

θ δ

−⎛ ⎞− ⎤⎜ ⎟ ⎡ ⎤ ⎡ ⎤ −+⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎥+ + − + + −
⎥
⎦

               

 

 

 

 

 

(39) 
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Based on the concavity behavior of objective function with respect to the decision variables the 
following algorithmic procedure was developed to identify global optimal solutions for ( )2 3, ,p t t . 

Algorithm 4.1: 

Step 1: Input the values of all parameters. Select membership functions for holding cost rate, 
interest paid rate and interest earned rate with appropriate parametric values. 

Step 2: Set k = 1 and initialize the value of ( )k
lp p= , which is a solution of 

( ) ( ) ( )' 0D p p c D p+ − = . 

Step 3: Compare the values of M and t1. If M ≤ t1, then go to Step 4 otherwise go to Step 5. 

Step 4: Calculate ( )1 1F tΔ = by Eq. (16). Execute any one of the following cases (4.1), (4.2). 

(4.1) If 0Δ ≥ , obtain the values of ( ) ( )( )2 3,k kt t by solving Eqs. (8) and (9). Substitute the values 

of ( ) ( )( )2 3,k kt t  into Eq. (10) and solve to obtain the value of ( )
1

kp . Set ( ) ( )1
1

k kp p+ = .  

(4.2) 
If 0Δ < , then set ( ) ( )( ) ( )

2
2 3 1

2

, ,k k Ut t t
V p Uθ

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

. Substitute the values of ( ) ( )( )2 3,k kt t  into Eq. 

(10) and solve to obtain the value of ( )
1

kp . Set ( ) ( )1
1

k kp p+ = .  

Step 5: Calculate ( )1 3F MΔ = and ( )2 3 1F tΔ = by Eq. (37). Execute any one of the following 
cases (5.1), (5.2), (5.3). 

(5.1) If 1 20Δ ≤ ≤ Δ , obtain the values of ( ) ( )( )2 3,k kt t by solving Eqs. (33) and (34). Substitute the 

values of ( ) ( )( )2 3,k kt t  into Eq. (39) and solve to obtain the value of ( )
1

kp . Set ( ) ( )1
1

k kp p+ = .   

(5.2) 
If 2 0Δ < then set ( ) ( )( ) ( )

( ) ( )
3 1

2 3 1
3 1

, ,k k K t
t t t

V p K tδ
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠
. Substitute the values of ( ) ( )( )2 3,k kt t  into 

Eq. (39) and solve to obtain the value of ( )
1

kp . Set ( ) ( )1
1

k kp p+ = .   

(5.3) If 1 0Δ >  then perform following steps.  

 (5.3.1) Obtain the values of ( ) ( )( )2.2 3.2,k kt t by solving Eqs. (25) and (26).  Calculate
( ) ( ) ( )( )2 2.2 3.2, ,k k kE p t t⎡ ⎤Π⎣ ⎦ . 

 (5.3.2) 
Set ( ) ( )( )2 3,k kt t =

( )
( ) ( )

3

3

,
K M

M
V p K Mδ

⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠

 and then calculate 

( ) ( ) ( )( )3 2 3, ,k k kE p t t⎡ ⎤Π⎣ ⎦ . 

 (5.3.3) If ( ) ( ) ( )( ) ( ) ( ) ( )( )2 2.3 3.3 3 2 3, , , ,k k k k k kE p t t E p t t⎡ ⎤ ⎡ ⎤Π ≥ Π⎣ ⎦ ⎣ ⎦ then set ( ) ( )( )2 3,k kt t  = ( ) ( )( )2.2 3.2,k kt t  
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otherwise ( ) ( )( )2 3,k kt t =
( )

( ) ( )
3

3

,
K M

M
V p K Mδ

⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠

. 

 (5.3.4) Substitute the values of ( ) ( )( )2 3,k kt t  into Eq. (31) (or Eq. (39)) and solve to obtain 

the value of ( )
1

kp . Set ( ) ( )1
1

k kp p+ = .   

Step 6: If ( ) ( )1 tolerancek kp p+ − ≤ , then set ( ) ( ) ( ) ( )( )1* * *
2. 3. 2 3, , , ,k k k

i i ip t t p t t+= , i = 1 or 2 or 3, and go 

to Step 7. Otherwise set k = k + 1 and go to Step 2.  

Step 7: Compute ( ) ( )* * * * * *
2 3 2. 3.1 3

, , max , ,i i i ii
E p t t E p t t

≤ ≤
⎡ ⎤ ⎡ ⎤Π = Π⎣ ⎦ ⎣ ⎦  and corresponding *T and *Q .  

5. Numerical Example 

To illustrate the above solution methodology on fuzzy EVM developed in this paper, four examples 
(mostly of the data from Geetha and Uthayakumar; 2010) are considered. In this paper, we have 
assumed the holding cost rate, interest paid rate and interest earned rate as fuzzy variable. Without loss 
of generality, we characterize holding cost rate and interest paid rate as Trapezoidal and Triangle fuzzy 
variable which are given by respectively ( )12,14,16,18h=  and ( )0.13,0.15,0.17pi = . Furthermore, 

interest earned rate ( )ei  is characterized by arbitrary fuzzy variable ξ  with { }Cr tξ ≥ given by 

{ }
( )2

0                              for 0.13

5 0.12               for 0.12 0.13

1 1250 0.12   for 0.1 0.12
1                              otherwise

t

t t
Cr t

t t
ξ

>⎧
⎪

− ≤ ≤⎪≥ = ⎨
− − ≤ ≤⎪

⎪
⎩

 

Example 1: Consider an inventory system with following parametric values in appropriate units. A = 
250, c = 80, θ = 0.08, δ = 0.56, t1 = 0.0685, M = 0.1233, cs = 30, cl = 25, D (p) = 2000 – 2.8 p,

15E h⎡ ⎤ =⎣ ⎦ , 0.15pE i⎡ ⎤ =⎣ ⎦ , 0.12eE i⎡ ⎤ =⎣ ⎦ . By solving ( ) ( ) ( )'D p p c D p+ −  = 0, we obtain ( )1
lp p= =

397.14. Executing the procedure proposed in computational algorithm 4.1 we find that 
( ) ( )* * *

2 3, , 397.14,0.09264,0.00039p t t =  and hence corresponding    ( )* * *
2 3, ,E p t t⎡ ⎤Π⎣ ⎦ = $ 281,547.03, T* 

= 0.09303 and Q* = 82.60.  

Example 2: The same set of input data are considered as in the Example 1 except that t1 = 0.0904, M = 
0.1096. Applying the procedure proposed in computational algorithm 4.1 we find that ( )* * *

2 3, ,p t t =

( )397.20,0.09422,0.00319  and hence corresponding    ( )* * *
2 3, ,E p t t⎡ ⎤Π⎣ ⎦ = $ 280,996.68, T* = 0.09741 

and Q* = 83.92.  

Example 3: The identical set of input data are considered as in the Example 1 except t1 = 0.5014, M = 
0.0548. Performing the procedure proposed in computational algorithm 4.1 we find that ( )* * *

2 3, ,p t t =

( )400.05,0.5014,0.02907  and hence corresponding    ( )* * *
2 3, ,E p t t⎡ ⎤Π⎣ ⎦ = $ 275,980.40, T* = 0.53047 

and Q* = 466.61. 
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Example 4: The data are same as in the Example 1 except that t1 = 0.0822, M = 0.0548. Implementing 
the procedure proposed in computational algorithm 4.1 we find that ( )* * *

2 3, ,p t t =

( )397.61,0.11788,0.01253  and hence corresponding ( )* * *
2 3, ,E p t t⎡ ⎤Π⎣ ⎦ = $ 279,175.15, T* = 0.13041 and 

Q* = 115.64.  

To show the efficiency of proposed computational algorithm 4.1, we run the algorithm with starting 
value of p = 360. The graph (Fig. 1) shows clear concave function of t2 and t3 for given p. 
Consequently, the obtained solution is a global maximum solution.  

 

Fig. 1. Profit function (Example 4) with respect to t2 and t3 

6. Conclusion 

According to the model of Geetha and Uthayakumar (2010), a new fuzzy EVM with generalized price 
sensitive demand is formulated.  In contrast to previous studies, we characterized the holding cost rate, 
interest paid rate and interest earned rate as independent fuzzy variables to tackle the reality in more 
effective way. A solution methodology along with some useful theoretical results followed by an 
efficient computational algorithm is developed to determine the optimal pricing and inventory 
decisions. The extended model is more effective as it can help the decision maker in subjective 
decisions with control on selling price. In future research on this problem, it would be interesting to 
consider other parameters viz. variable demand rate, partial backlogging rate etc. as fuzzy or fuzzy 
stochastic.  
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Appendix.  Fuzzy Preliminary 

Let X be a nonempty set, P (X) the power set of X and Cr be a credibility measure. Then the triplet (X, 
P(X), Cr) is called a credibility space. Following Liu [9], the fuzzy variable is defined as follows 

Definition 2.1: A fuzzy variable is defined as a function from a credibility space (X, P(X), Cr) to the 
set of real numbers. 
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Let ξ be a fuzzy variable defined on the credibility space (X, P(X), Cr). Then its membership function 
µ is derived from the credibility measure through 

µ(x) = (2Cr {ξ = x}) ∧  1, x ∈ R. 

Definition 2.2: Let ξ be a fuzzy variable with membership function µ. Then for any Borel set B of real 
numbers,  

{ } ( ) ( )1Cr   sup 1 sup
2 Cx B x B

B x xξ μ μ
∈ ∈

⎛ ⎞∈ = + −⎜ ⎟
⎝ ⎠

 
(A.1)

Definition 2.7 (Liu and Liu [10]):  Let ξ and r be a fuzzy variable and crisp number respectively then 
the expected value [ ]E ξ is defined as 

[ ] { } { }
0

0
E Cr r dr Cr r drξ ξ ξ

+∞

−∞
= ≥ − ≤∫ ∫  (A.2)

 
provided that at least  one of the two integral is finite. Especially, if ξ is a positive fuzzy variable then 

[ ] { }
0

E Cr r drξ ξ
+∞

= ≥∫  (A.3)

 Definition 2.4: An trapezoidal fuzzy variable ξ is specified by four parameters ( )1 2 3 4, , ,a a a a  where 

1 2 3 4a a a a< < <  and is characterized by the membership function μξ , given by  

( )

1
1 2

2 1

2 3

4
3 4

4 3

    for 

1                  for 

    for 

0                  otherwise

x a a x a
a a

a x a
x

a x a x a
a a

μξ

⎧⎛ ⎞−
≤ ≤⎪⎜ ⎟−⎝ ⎠⎪

⎪ ≤ ≤⎪= ⎨
⎛ ⎞−⎪ ≤ ≤⎜ ⎟⎪ −⎝ ⎠⎪
⎪⎩

 

 
 
 

(A.4)

If ξ be a trapezoidal fuzzy variable and t be any crisp number. Then { }Cr tξ ≥ is given by 

{ }

1

1
1 2

2 1

2 3

4
3 4

4 3

0                          for 

1 0.5    for 

0.5                        for 

0.5         for 

1                           otherwise

t a

t a a t a
a a

Cr t a t a

a t a t a
a a

ξ

<⎧
⎪

⎛ ⎞−⎪ − ≤ ≤⎜ ⎟⎪ −⎝ ⎠⎪⎪≥ = ≤ ≤⎨
⎪ ⎛ ⎞−⎪ ≤ ≤⎜ ⎟⎪ −⎝ ⎠⎪
⎪⎩

 

 
 
 
 

(A.5)

Making use of (A.3) we determine the expected value of the trapezoidal fuzzy variable 
( )1 2 3 4, , ,a a a aξ =  to be,  

[ ] 1 2 3 4

4
a a a aE ξ + + +

=  (A.6)
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Note: If we take a2 = a3 in trapezoidal fuzzy variable then it reduced to triangle fuzzy variable.   
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