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 This paper addresses the scheduling of machines, an Automated Guided Vehicle (AGV) and two 
robots in a Flexible Manufacturing System (FMS) formed in three loop layouts, with objectives 
to minimize the makespan, mean flow time and mean tardiness. The scheduling optimization is 
carried out using Sheep Flock Heredity Algorithm (SFHA) and Artificial Immune System (AIS) 
algorithm. AGV is used for carrying jobs between the Load/Unload station and the machines. The 
robots are used for loading and unloading the jobs in the machines, and also used for transferring 
jobs between the machines. The algorithms are applied for test problems taken from the literature 
and the results obtained using the two algorithms are compared. The results indicate that SFHA 
performs better than AIS for this problem.      
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1. Introduction 

FMS is a highly automated manufacturing system well suited for the simultaneous production of a wide 
variety of part types in low to mid volume quantities at a low cost, while maintaining a high quality of 
the finished products. FMS has emerged as a viable alternative to conventional manufacturing system 
and existing FMS implementations have already demonstrated a number of benefits in terms of cost 
reductions, increased utilizations, reduced work-in-process levels, etc. Proper scheduling of an FMS is 
necessary for the efficient utilization of machines and other material handling equipment. 

In FMS scheduling, decisions that need to be made include not only sequencing of jobs on machines, 
but also the routing of the jobs through the system. Apart from the machines, other resources in the 
system such as material handling devices e.g., AGVs, robots must be considered. Effective scheduling 
reduces the non-productive time spent by the job in the FMS such as travelling time between 
stations/machines and the waiting time of the jobs. 

An AGV is a material handling system that uses independently operated, self-propelled vehicles that 
are guided along defined pathways in the floor. The vehicles are powered by means of on-board 
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batteries that allow operation for several hours between recharging. The definition of pathways is 
generally accomplished using wires embedded in the floor or reflective paint on the floor surface. 
Guidance is achieved by sensors on the vehicles that can follow the guide wires or paint. 

Robots are material handling systems that transport parts between machines, and also load and unload 
parts onto and from machines and AGVs. Industrial robots perform complex tasks in the minimum 
possible time in order to obtain high productivity and flexibility. 

2. Literature Review 

Stecke (1983) divided the FMS operation problem into two sub problems: preproduction setup and 
production operation. Buzacott and Yao (1986) presented a comprehensive review of the analytical 
models developed for the design and control of FMS. They strongly advocate the analytical methods as 
giving better insight into the system performance than the simulation models. Heragu and 
Kusiak(1988) illustrated the basic types of FMS layouts and presented two algorithms for solving the 
problem. El-Maraghy and Ravi (1992) developed modern tools for the design, modeling and evaluation 
of FMS. A model for simultaneous scheduling of machines and material handling system in an FMS 
for makespan minimization is presented by Bilge and Ulusoy (1995). The problem was formulated as a 
non-linear integer-programming model and was addressed using the sliding time window approach. 
Ulusoy et al. (1997) addressed the same problem using Genetic algorithms (GA). In this approach, the 
chromosome represents both the operation number and AGV assignment which requires the 
development of special genetic operators. Khoo et al. (2000) described the development of a prototype 
genetic algorithm-enhanced multi objective scheduler for a manufacturing system. Ronald and 
Uzsoy(2001) contributed to the development of heuristics, a major area within the field of operations 
research. Unlike exact algorithms, where time efficiency is the main measure of success, there are two 
burning issues in evaluating heuristics: how fast solutions can be obtained and how close do they come 
to being optimal.  

Engin and Doyen (2004) explained a new approach to solve hybrid flowshop scheduling problems 
using AIS. Abdelmaguid et al. (2004) presented a new hybrid genetic algorithm for the simultaneous 
scheduling problem for minimization of makespan. The hybrid GA is composed of GA and heuristic. 
The GA is used to address the first part of the problem that is theoretically similar to the job shop 
scheduling problem and the vehicle assignment is handled by a heuristic called Vehicle Assignment 
Algorithm (VAA). Lacomme et al. (2005) addressed the simultaneous job input sequencing and vehicle 
dispatching for a single AGV system. They solved the problem using a heuristic branch-and-bound 
approach coupled with a discrete event simulation model. Gobal and Kasilingam (1991) developed a 
simulation model to determine the number of AGVs needed to meet the material handling 
requirements. That calculation was done based on idle time of the machines and the vehicles, and the 
waiting time of parts. Reddy and Rao(2006) addressed the simultaneous scheduling problem as a multi 
objective problem in scheduling with conflicting objectives which are more complex and combinatorial 
in nature. They solved the problem by using evolutionary algorithm and non-dominated sorting. 
Srinivas and Deb (1994) explained that many traditional methods scalarize the objective vector into a 
single objective in multi objective optimization problems. 

Kats and Levner(1998) addressed cyclic scheduling of operations in an FMS handled by a single robot. 
They focused on periodic scheduling of parts in a robotic production system, functioning under a 
repetitive robot’s route. Crama et al (2000) developed cyclic scheduling in robotic flowshops. They 
discussed the cyclic scheduling problems by using robots as material handling devices. Zacharia and 
Aspragathos (2005) dealt with optimal robot task scheduling based on GAs. Abdelmaguid and Nassef 
(2009) applied the scheduling of multiple load material handling equipment to the traditional job shop 
scheduling problem. Udhayakumar and Kumanan(2010) addressed the scheduling of job and tool in an 
FMS using Ant Colony Optimization (ACO) algorithm. Satish Kumar et al. (2011) addressed 
simultaneous scheduling of both machines and vehicles with alternative machines for the makespan 
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minimization objective.So far in the literature, the scheduling of material handling devices such as 
AGV and robots in FMS simultaneously with machines has not been considered. Also, the robots have 
been used only for loading and unloading of the jobs. The present work focuses on the scheduling of 
robots that can serve two machines and an AGV. Also, the robots considered here are multifunctional, 
i.e., they are used for loading/unloading as well as transfer of jobs between machines. 

3. Problem Definition 

Three loop layouts each consisting of four machines, two identical robots and one AGV have been 
generated. The layouts are taken as inputs for the scheduling of machines, AGV and the robots. In 
majority of literature, AGVs are the only material handling devices, while the loading & unloading of 
jobs is assumed to be done manually. In this work, one AGV is used for material handling, while two 
robots, each situated between two machines are used for both material handling and for 
loading/unloading of jobs. This is done to improve the flexibility of the FMS. Here, three different 
layouts and ten job sets each consisting of one to eight different jobs are considered. The objective is to 
minimize makespan, mean flow time and mean tardiness. 

3.1 FMS Description 

The FMS layouts for this problem have been generated as loop layouts. A loop layout is a layout in 
which the machines in an FMS are arranged in a close ring-like network and the materials are 
transported around this network in only one direction. Minimal material handling and flexibility of 
access make the loop layout an attractive choice for FMS. 

The environment within which the FMS under consideration can be described as follows: 

(i) The types and number of machines are known. Operations are non-preemptive. There is 
sufficient input/output buffer space at each machine. 

(ii) Processing, set-up, loading and unloading times are available and are deterministic. 

(iii) Number of AGV(s) is known. 

(iv) Flow path layout is given and travel times on each segment of the path are known. 

(v) A Load/Unload (L/U) station serves as a distribution centre for parts not yet processed and 
as a collection centre for parts finished. All vehicles start from L/U station initially and 
return to thereafter accomplishing all their assignments. There is sufficient input/output 
buffer space at the (L/U) station. 

(vi) AGVs carry a single unit-load at a time. They move along predetermined shortest paths. 
Pre-emption of trips is not allowed. The trips are called loaded or deadheading (empty) trips 
depending on whether a part is carded or no part is carded during that trip, respectively. The 
durations for the deadheading trips are sequence dependent and are not known until the 
vehicle route is specified. 

(vii) Robots can handle only single unit-load at a time. They move along specially constructed 
tracks between the machines. Two kinds of motion are possible for the robots. They can 
move along the tracks to carry a job from one machine to another. Once the robot reaches a 
machine, it can transfer the job from the machine to AGV or vice versa or to itself using a 
combination of translatory and rotary motions. The duration of robot travel from one 
machine to other and the time taken for robot to transfer a job from/to machine and AGV 
are known. 

(viii) It is assumed that all the design and set-up issues within the hierarchy of OR/MS problems 
in an FMS as suggested by Stecke and Solberg (1981) have already been resolved. Machine 
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(i) All robots are identical in shape, configuration and capacity. 
(ii) All robots are capable of handling all the jobs in the job sets taken. 
(iii) Robot R1 caters to machines M1 and M2. Robot R2 caters to machines M3 and M4. 
(iv) The jobs are transferred through AGV when a direct transfer through robot is not possible. 
(v) The robot transfers the jobs to/from AGV at a common point for M1 and M2 as well as for 

M3 and M4. 
(vi) Transfer times between machines are known. 
(vii) There is no interference between AGV and robots. They operate independently of each other. 
(viii) The number of AGVs used is one and the number of robots is two. 
(ix) The speed of AGV is 20 m/min. 
(x) The speed of the robots is 20 m/min. 
(xi) The distances between the machines and distances between loading- unloading station and 

machines are known. 
3.3 Input Data 

The job sets for this problem are taken from Bilge and Ulusoy (1995). The time taken for a job to be 
transferred from one station to another through AGV and/or robot is expressed in the transfer time matrices 
given in Tables 1-3. Data for the job sets used in the example problems are given in Tables 4-6. Each of the 
ten job sets contains four to eight different jobs to be processed on three to five machines. The number 
after the letter ‘M’ denotes the machine number and the number within the parentheses is the 
processing time of the job on that machine. 

Table 1  
Transfer time matrix for Layout 1 

Destination 

So
ur

ce
 

L/U M1 M2 M3 M4 
L/U 0 6 6 8 8 
M1 8 0 2 5 5 
M2 8 2 0 5 5 
M3 6 10 10 0 2 
M4 6 10 10 2 0 

 
Table 2  
Transfer time matrix for Layout 2 

Destination 

So
ur

ce
 

L/U M1 M2 M3 M4 
L/U 0 3 3 13 13 
M1 13 0 2 13 13 
M2 13 2 0 13 13 
M3 3 5 5 0 2 
M4 3 5 5 2 0 

 
 

Table 3  
Transfer time matrix for Layout 3 

Destination 

So
ur

ce
 

L/U M1 M2 M3 M4 
L/U 0 3 3 7 7 
M1 10 0 2 7 7 
M2 10 2 0 7 7 
M3 7 7 7 0 2 
M4 7 7 7 2 0
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Table 4  
Data for Job sets 1 to 6 

Job Set 1 
Job 1 M1(8) M2(16) M4(12) 
Job 2 M1(20) M3(10) M2(18) 
Job 3 M3(12) M4(8) M1(5) 
Job 4 M4(14) M2(18) 
Job 5 M3(10) M1(15) 

Job Set 2 
Job 1 M1(10) M4(18) 
Job 2 M2(10) M4(18) 
Job 3 M1(10) M3(20) 
Job 4 M2(10) M3(15) M4(12) 
Job 5 M1(10) M2(15) M4(12) 
Job 6 M1(10) M2(15) M3(12) 

Job Set 3 
Job 1 M1(16) M3(15)
Job 2 M2(18) M4(15) 
Job 3 M1(20) M2(10) 
Job 4 M3(15) M4(10) 
Job 5 M1(8) M2(10) M3(15) M4(17) 
Job 6 M2(10) M3(15) M4(8) M1(15) 

Job Set 4 
Job 1 M4(11) M1(10) M2(7) 
Job 2 M3(12) M2(10) M4(8) 
Job 3 M2(7) M3(10) M1(9) M3(8) 
Job 4 M2(7) M4(8) M1(12) M2(6) 
Job 5 M1(9) M2(7) M4(8) M2(10) M3(8) 

Job Set 5 
Job 1 M1(6) M2(12) M4(9) 
Job 2 M1(18) M3(6) M2(15) 
Job 3 M3(9) M4(3) M1(12) 
Job 4 M4(6) M2(15) 
Job 5 M3(3) M1(9) 

Job Set 6 
Job 1 M1(9) M2(11) M4(7)   
Job 2 M1(19) M2(20) M4(13)   
Job 3 M2(14) M3(20) M4(9)   
Job 4 M2(14) M3(20) M4(9)   
Job 5 M1(11) M3(16) M4(8)   

 
Table 5  
Data for Job sets 7 to 9 

Job Set 7 
Job 1 M1(6) M4(6)       
Job 2 M2(11) M4(9)       
Job 3 M2(9) M4(7)       
Job 4 M3(16) M4(7)       
Job 5 M1(9) M3(18)       
Job 6 M2(13) M3(19) M4(6)     
Job 7 M1(10) M2(9) M3(13)     
Job 8 M1(11) M2(9) M4(8)     

Job Set 8 
Job 1 M2(12) M3(21) M4(11)     
Job 2 M2(12) M3(21) M4(11)     
Job 3 M2(12) M3(21) M4(11)     
Job 4 M2(12) M3(21) M4(11)     
Job 5 M1(10) M2(14) M3(18) M4(9) 
Job 6 M1(10) M2(14) M3(18) M4(9)   

Job Set 9 
Job 1 M3(9) M1(12) M2(9) M4(6)   
Job 2 M3(16) M2(11) M4(9)     
Job 3 M1(21) M2(18) M4(7)   
Job 4 M2(20) M3(22) M4(11)     
Job 5 M3(14) M1(16) M2(13) M4(9)   
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Table 6  
Data for Job set 10 

Job Set 10 
Job 1 M1(11) M3(19) M2(16) M4(13) 
Job 2 M2(21) M3(16) M4(14)
Job 3 M3(8) M2(10) M1(14) M4(9) 
Job 4 M2(13) M3(20) M4(10) 
Job 5 M1(9) M3(16) M4(18)
Job 6 M2(19) M1(21) M3(11) M4(15) 

 

3.4 Objectives of Scheduling 

For the scheduling of machines, AGV and robots, the following objectives are considered namely 
makespan, mean flow time and mean tardiness. These are important parameters which characterize the 
performance of a manufacturing system. Makespan indicates the total time taken by the set of jobs for 
the completion of all the operations. Mean flow time is a measure of the total productive time spent by 
the jobs in the system, i.e. the time taken for processing. Tardiness is a quantity for measuring the 
lateness of the jobs, against pre-determined due times for completion of each job. The equations used 
for computing the job completion time, makespan, mean flow time and mean tardiness are given in 
Eqs. (1) - (6). 

Oij= Tij+ Pij (1)

Job completion time = Ci=
1

n

ij

j

O
=
∑  (2)

Makespan = Max (C1, C2, C3,….) (3)

Mean flow time =
1

1 n

i
i

C
n =
∑  (4)

Tardiness = Tdi = Max ((Ci - Di), 0) (5)

Mean tardiness = 
1

1 n

i
i

Td
n =
∑  (6)

where 
i : job number 
j : operation number 
n : number of jobs 
Oij : Time taken for jth operation of ith job 
Tij : Total travelling time for ith job before jth operation 
Pij : Total processing time for ith job and jth operation 
Di : Due time of ith job 
 
3.5 Scheduling of AGVand Robots 

Machines are scheduled based on the operation sequence derived by the Sheep Flock Heredity 
Algorithm and Artificial Immune System algorithm. Initially AGV carries jobs from the L/U station to 
the respective workstations where the first operations are scheduled. Transfer of the job for the next 
operation takes place through either AGV or robot. If the machine where the next operation is 
scheduled is adjacent to the machine where the previous operation took place (as shown in the layouts 
Fig. 1, Fig. 2 and Fig. 3) the job is transferred by the robot alone. In all other cases, the AGV reaches 
the machine where the previous operation has been completed, picks up the job and carries it to the 
machine scheduled for the next operation, and the robot transfers the job from AGV to the machine. 
The robots are used for both loading/unloading of jobs and the transfer of jobs between machines, thus 
making it a fully automated manufacturing system.  Also, while scheduling, it is checked whether the 
machine for the next operation and the AGV or robot required for transferring the job are available. For 
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example, Job set1 and Layout 1 are considered for scheduling.For scheduling the FMS and calculating 
the makespan, mean flow time and mean tardiness, initially continuous numbers are given for each of 
the operations as shown in Table 7. These numbers are used to generate the initial random sequences, 
while obeying the precedence relation as shown in Table 3.4, i.e., the operations of a particular job 
must be in increasing order. 

Table 7  
Numbering of operations in Job Set 1 

Job No. Job 1 Job 2 Job 3 Job 4 Job 5 
Machine M1 M2 M4 M1 M3 M2 M3 M4 M1 M4 M2 M3 M1 

Operation No. 1 2 3 4 5 6 7 8 9 10 11 12 13 
 

3.5.1. Calculation of makespan, mean flow time and mean tardiness for a particular operation 
sequence 

The following initial sequence is generated randomly, using the numbers assigned to the operations in 
Table 3.4. 

7 4 1 12 8 9 5 2 13 10 3 11 6 

The transfer times and machining times for the operations are taken from Tables 1-3 and 4-6 
respectively. The makespan of the Job set when scheduled according to the above sequence is 
calculated as follows: 

7th Job 

Time to transfer job from L/U to m/c 3 + Processing time = 8+12 = 20 

4th Job 

Time travelled by AGV prior to job pick up + Time to transfer job from L/U to m/c 1 + Processing time 
= 11+6+20 = 37 

1st Job 

Time travelled by AGV prior to job pick up +Time to transfer job from L/U to m/c 1 + Processing time 
= 22+6+8 = 36 

12th Job 

Time travelled by AGV prior to job pick up + Time to transfer job from L/U to m/c 3 + Processing time 
= 33+8+10 = 51 

8th Job 

Time of completion of previous operation for robot 2 + Transfer time from m/c 3 to m/c 4 + Processing 
time = 41+2+8 = 51 

9th Job 

Time travelled by AGV prior to job pick up + Time to transfer job from m/c 4 to m/c 1  + Processing 
time = 51+10+5 = 66 

5th Job 

Time travelled by AGV prior to job pick up + Time to transfer job from m/c 1 to m/c 3  + Processing 
time = 61+5+10 = 76 

2nd Job 

Time of completion of previous operation for robot 1+ Time to transfer job from m/c 1 to m/c 2 + 
Processing time = 64+2+16 = 82 
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13th Job 

Time travelled by AGV prior to job pick up + Time to transfer job from m/c 3 to m/c 1  + Processing 
time = 67.5+10+15 = 92.5 

10th Job 

Time travelled by AGV prior to job pick up + Time to transfer job from L/U to m/c 3  + Processing 
time = 81+8+14 = 103 

3rd Job 

Time travelled by AGV prior to job pick up + Time to transfer job from m/c 2 to m/c 4  + Processing 
time = 93+5+12 = 110 

11th Job 

Time travelled by AGV prior to job pick up + Time to transfer job from m/c 4 to m/c 2  + Processing 
time = 103+10+18 = 131 

6th Job 

Time travelled by AGV prior to job pick up + Time to transfer job from m/c 3 to m/c 2 + Processing 
time = 112+10+18 = 140. 

Makespan = 140 

Mean flow time = (20+37+36+51+51+66+76+82+92.5+103+110+131+140)/13 = 76.57 

Mean Tardiness = Tardiness/No. of Jobs 

Calculation of Tardiness for the Job Set 1 is shown in Table 8. 

Table 8  
Calculation of Tardiness of jobs 
Job 1 2 3 4 5
Due time 42 84 126 168 210
Completion time 110 140 66 131 92.5 
Tardiness = Max((Completion time - Due time), 0) 68 56 0 0 0 

 

Total tardiness = 68+56+0+0+0 = 124 

Mean tardiness = 124 / 13 = 24.8 

4. Proposed Algorithms 

The non-traditional approaches used for optimization are Sheep Flock Heredity Algorithm (SFHA) 
(Nara & Kim, 1996; Nara et al., 1999) and Artificial Immune System (AIS) algorithm (De Castro & 
Von Zuhen, 1999; Huang, 1999; Costa et al., 2002; Attux, 2003; Zheng et al., 2004). A non-dominated 
sorting technique is included in both the optimization algorithms to compare the solutions with respect 
to multiple objectives. Every solution in the population is compared with the other solutions in the 
population for all the objectives and a solution is declared as a non-dominated solution if it is superior 
in at least one objective over the other solutions. The fitness of a solution is assigned based on the 
number of solutions it dominates. 

4.1 Sheep Flock Heredity Algorithm 

Normally, sheep in each flock are living within their own flock under the control of shepherds. So, the 
genetic inheritance only occurs within the flock. Some special characteristics in one flock develop only 
within the flock by heredity, and the sheep with high fitness characteristics to their environment breed 
in the flock.  Assume there are two flocks occasionally mixed with the other flocks. The characteristics 
of the sheep in neighbouring flocks can be inherent to the sheep in this flock. In the field, the flock of 
the sheep, which has better characteristics to the field environment, breeds most. The natural evolution 
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phenomenon of flocks can be corresponded to the genetic operations of this type of string. For this kind 
of string, we can define two kinds of operations. (i) Normal genetic operations between strings. (ii) 
Genetic operations between sub-strings within one string.  In SFHA, special string structure and 
hierarchical genetic operations (crossover and mutation) are introduced. They are (i) sub-chromosome 
level genetic operation and (ii) chromosome (global) level genetic operation. This hierarchical 
operation is referred to as “multi-stage-genetic operation”. 

4.2 Flow Chart of Sheep Flock Heredity Algorithm 

Fig.4 shows the flow chart of the steps involved in the implementation of Sheep Flock Heredity 
Algorithm. 

4.3 Steps in Sheep Flock Heredity Algorithm  

Begin 

         Initialize the population. 

Stage 1: 

Select the parent 

Sub chromosome level crossover 

Set sub chromosome level crossover probability 

    If population is less than or equal to sub chromosome level probability 

       Perform sub chromosome level crossover 

    Else retain the old sequences 

Sub chromosome level mutation 

Set sub chromosome mutation probability 

    If population probability is less than or equal to sub chromosome mutation probability 

       Perform sub chromosome level mutation 

   Else retain the same sequences 

Stage 2: 

  Select the best sequence from population 

     Chromosome level crossover 

     Set crossover probability 

         If population probability is less than or equal to crossover probability 

              Perform chromosome level crossover 

Else retain the same sequences 

     Chromosome level mutation 

         If population probability is less than or equal to mutation probability 

               Perform chromosome level mutation 

         Else retain the same sequences 

End if terminal condition satisfied 
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a) Clonal selection principle 

b) Affinity maturation principle 

a) Clonal Selection Principle 

The clonal selection principle is the algorithm used by the immune system to describe the basis 
feature of an immune response to an antigenic stimulus. Each schedule is assigned a fitness value, 
which is taken as its affinity. The cloning of antibodies is done directly proportional to their fitness 
function values. Therefore, there will be more clones of antibodies that have higher fitness values than 
those of with lower fitness values in the new generated clone population.  

b) Affinity Maturation Principle 

It consists of two methods namely Mutation and Receptor editing. 

1. Mutation:  

A two phased mutation procedure were used for the generated clones. 

i) Inverse Mutation: 

For a sequence s, let i and j be randomly selected two positions in the sequences. A neighbor 
of s is obtained by inversing the sequence of jobs between i and j positions. If the fitness value of the 
mutated sequence is higher than that of the original sequence, then the mutated one is stored in the 
place of the original one. Otherwise, the sequence will be mutated again with random pair wise 
interchange mutation. 

ii) Pairwise interchange mutation: 

Given a sequence s, let i and j be randomly selected two positions in the sequence s. A 
neighbor of s is obtained by interchanging the jobs in positions i and j. If the fitness value of the 
mutated sequence is higher than that of the original sequence, then replace the original one with the 
mutated one. In the case where the algorithm could not find a better sequence after the two-mutation 
procedure, then it stores the original sequence. 

2. Receptor Editing 

After cloning and mutation processes, a percentage of the antibodies, in the antibody 
population are eliminated and randomly created antibodies are replaced with them. This mechanism 
allows finding new schedules that correspond to new search regions in the total search space. 

4.5 Flow Chart of Artificial Immune System Algorithm 

Fig.5 shows the flow chart of the steps involved in the implementation of AIS algorithm. 

4.6 Steps in Artificial Immune System Algorithm 

(i) Randomly choose the antibodies within some ranges and present it to antigen. 

(ii) Population loop for each antigen, do: 

a. Determine the affinity values of all antibodies. 

b. Select the ‘n’ highest affinity antibodies from the list whose affinity is greater than the 
average affinity of all antibodies. 

c. The ‘n’ selected antibodies will be cloned independently and proportionally to their 
antigenic affinities, to generate a new antibody population of the same size. 

d. Clone the generated antibodies. 

e. Evaluate the affinity of matured clones. 

f. Replace the low affinity antibodies with newly created antibodies. 
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5.1.1 Sub Chromosomal Crossover 

The initial chromosomes are modified by sub chromosomal crossover. The entire string length is split 
into sub chromosomes of equal length and these sub chromosomes are moved randomly to form a new 
chromosome. If the fitness value corresponding to this new chromosome is higher than the fitness value 
for the parent chromosome, the parent chromosome is replaced by the new chromosome. Otherwise, 
the parent chromosome is retained. 

Parent Chromosome 

7       4       1 12       8       9 5       2       13 10       3       11 6 

1 2 3 4 5 

Sub chromosome length = 3 

 

After Sub Chromosomal Crossover 

6 5       2       13 10       3       11 12       8       9 7       4       1 

5 3 4 2 1 

After repair 

4 5 1 12 10 2 11 13 7 8 9 6 3 

 

5.1.2 First Stage Mutation 

a) Inverse mutation 

In a sequence, two positions i and j are randomly selected. The portion of the sequence between these 
two positions is inverted to get a new mutated sequence. The new sequence represents the sequence of 
operations after mutation. If the fitness value of the mutated sequence is higher than the fitness of the 
original sequence, the old sequence is replaced by the new sequence. 

Mutated sequence 

4 6 9 8 7 13 11 2 10 12 1 5 3 

Mutation between positions 2 and 12 

After repair 

4 5 7 8 9 12 10 1 11 13 2 6 3 

b) Pair wise interchange mutation 

Two positions are i and j randomly selected in the sequence. The operations in these positions are 
simply interchanged to obtain the mutated sequence. The fitness of the new sequence is compared with 
the fitness of the parent sequence. The sequence having the higher fitness value is stored and used for 
next stage operation. 

Mutated sequence 

4 5 7 8 9 12 10 1 11 13 2 6 3 

Mutation at positions 2 and 9 

After repair 
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4 10 7 8 9 12 11 1 5 13 2 6 3 

5.1.3 Chromosomal crossover  

The chromosome obtained from the previous mutation process is crossed over again by chromosomal 
crossover. In this, the chromosome having the best fitness is crossed randomly to generate a new 
chromosome. 

4      10      7      8      9 12      11      1      5      13 2      6      3 

1 2 3 

After crossover 

2      6      3 12      11      1      5      13 4      10      7      8      9 

3 2 1 

After repair 

1 4 2 12 10 3 5 13 6 11 7 8 9 

5.1.4 Second stage mutation  

The chromosome is mutated again using inverse and pair wise interchange mutations. 

Inverse mutation 

1 4 2 12 10 3 9 8 7 11 6 13 5 

After mutations between positions 7 and 13 and repair 

1 4 2 12 10 3 7 8 9 11 5 13 6 

Pair wise interchange mutation 

1 5 2 12 10 3 7 8 9 11 4 13 6 

After mutation at positions 2 and 11 and repair 

1 4 2 12 10 3 7 8 9 11 5 13 6 

The chromosome obtained after the above operations is taken and the corresponding objective 
values are taken as the objectives for that generation. The chromosome is again subjected to the 
operations till the required number of generations after which the convergence criterion is met. 

5.2 Implementation of Artificial Immune System Algorithm for Scheduling in FMS 

For an instance of implementation of AIS, Job set 1 and Layout 1 is considered. Ten initial sequences 
are randomly generated, given in Table 9. 

Table 9  
Initial sequences 

Sequence Fitness value (Affinity) 
1 2 7 4 12 3 8 5 10 6 11 9 13 1 
7 1 10 12 8 4 2 13 3 11 5 9 6 5 
7 1 10 2 11 12 4 8 3 13 5 9 6 0 
4 5 10 11 12 1 2 7 8 9 13 6 3 1 
7 4 1 12 8 9 2 10 5 13 6 11 3 4 
4 7 8 5 10 6 11 1 2 9 12 3 13 1 
10 7 12 1 2 4 13 8 5 3 11 9 6 0 
4 5 7 6 8 1 10 2 9 3 11 12 13 9 
7 1 4 12 2 8 10 9 5 13 6 11 3 1 
4 5 1 6 12 13 7 10 11 2 3 8 9 0 
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The affinity values for the sequences are calculated using non dominated sorting. 

5.2.1 Clonal Selection 

The average value of affinity for the set of ten sequences is calculated. The sequences having affinity 
values above the average are selected for cloning, as shown in Table 10. 

Average affinity = 2.2 

Table 10  
Sequences selected for Cloning 

Sequence Fitness value 
1 2 7 4 12 3 8 5 10 6 11 9 13 1 
7 1 10 12 8 4 2 13 3 11 5 9 6 5
4 5 10 11 12 1 2 7 8 9 13 6 3 1 
7 4 1 12 8 9 2 10 5 13 6 11 3 4 
4 7 8 5 10 6 11 1 2 9 12 3 13 1 
4 5 7 6 8 1 10 2 9 3 11 12 13 9 
7 1 4 12 2 8 10 9 5 13 6 11 3 1 

 

The cloning process is nothing but generating a copy of the sequence. The number of clones generated 
for a particular sequence is proportional to its affinity. The sequences with higher affinity will have 
more clones than the sequences with lower affinity. The cloned sequences are shown in Table 11. 

Table 11  
Cloned sequences 

Sequence Fitness value 
1 2 7 4 12 3 8 5 10 6 11 9 13 1 
7 1 10 12 8 4 2 13 3 11 5 9 6 5 
4 5 10 11 12 1 2 7 8 9 13 6 3 1 
7 4 1 12 8 9 2 10 5 13 6 11 3 4 
4 7 8 5 10 6 11 1 2 9 12 3 13 1 
4 5 7 6 8 1 10 2 9 3 11 12 13 9 
7 1 4 12 2 8 10 9 5 13 6 11 3 1 
4 5 7 6 8 1 10 2 9 3 11 12 13 9 
7 1 10 12 8 4 2 13 3 11 5 9 6 5 
7 4 1 12 8 9 2 10 5 13 6 11 3 4 

 

5.2.2 Mutation 

The following mutation operations are carried out on each sequence. At the end of each operation, if 
the fitness of the new sequence is higher than the fitness of the original one, the original is replaced 
with the mutated sequence. Otherwise, the original sequence is retained. 

1. Inverse mutation 
2. Pair wise interchange mutation 
 

5.2.3 Receptor editing 

After the cloning and mutations, a proportion of the sequences are eliminated and are replaced by new 
sequences generated randomly. This procedure allows for finding new schedules that are in new search 
regions in the total search space. 

6. Results and Discussion 

Schedules for each problem are generated using SFHA and AIS algorithm. The coding for the 
optimization of scheduling has been developed using MATLAB. The generation of example problems 
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is based to a large extent on Bilge and Ulusoy (1995). Ten different job sets with different processing 
sequences and process times are generated and presented in Tables 4-6. Different combinations of these 
job sets and three layouts are used to generate 90 example problems. A series of trial experiments are 
used to estimate the optimal parameters for the optimization algorithms. For SFHA, the probabilities of 
sub chromosomal level crossover, mutation and chromosomal level cross over to take place are found 
to be 0.01, 0.05 and 0.001 respectively. The optimal population size is found to be 5. For AIS, the 
optimal probability of mutation and the population size is found to be 0.01 and 10 respectively. The 
number of low affinity antibodies to be replaced is fixed as 4. Every instance of a problem is executed 
for 10 runs using both the algorithms. Any alteration of the above parameters led to convergence at 
higher objective values than while using the optimal parameters. Table 12 shows some of the Pareto 
front solutions obtained. Solutions are seen to converge within 70-75 generations while using SFHA 
and within 170-180 generations in the case of AIS. 

Table 12  
Pareto Optimal Solutions 

Problem Number Makespan Mean Flow time Mean tardiness 

EX11 
146.5 103.92 11.01 
148 102.76 9.34 
140 76.57 10.04 

EX81 
198 97.93 10.9 
196 98.41 4.25 
194 96.27 8.14 
195 97.36 3.77 

EX12 
181.5 102.28 13.92 
185 103.01 15.10 
190 101.31 12.19 
183 103.27 17.09 

EX82 

218 92.71 8.35 
215 99.55 9.01 
220 100.12 10.09 
219 91.40 7.42 
216 96.87 7.88 

EX13 
211.5 114.06 16.33 
214 115.53 17.31 
218 118.71 18.92 
219 115.15 14.56 

EX83 
239 97.52 5.44 
241 93.90 5.69 
243 98.04 4.91 

 

The best makespan values taken from the Pareto optimal sets and the computational times taken by the 
two algorithms for each problem are given in Tables 13-15. A code is used to designate the problems 
which are given in the first column of Tables 13-15. The digits that follow EX indicate the job set and 
layout. The results obtained by doubling and tripling the processing times are given in Table 14 and 
Table 15 respectively, where in both cases the travel times have been halved. The above results have 
been graphically compared in Fig. 6a, Fig. 6b and Fig. 6c. From Table 13 it is observed that for 26 
problems out of 30, SFHA gives a better makespan when compared with AIS. AISgives a better 
makespan when compared to SFHA for 4 problems. From Table 14 it is observed that for all 30 
problems, SFHA gives a better makespan when compared with AIS. From Table 15 it is observed that 
for 28 problems out of 30, SFHA gives a better makespan when compared with AIS. AIS gives a better 
makespan when compared to SFHA for 2 problems. 
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Table 13  
Makespan values for SFHA and AIS for t/p > 0.25 

Problem No. SFHA Computational Time (s) AIS Computational Time (s) 
EX11 140.0 23.86 181.5 31.49 
EX21 164.0 17.82 174.0 20.63 
EX31 157.0 17.60 165.0 23.53 
EX41 197.5 8.72 212.5 28.41 
EX51 160.5 8.60 171.5 21.00 
EX61 154.5 21.47 152.5 30.40 
EX71 202.0 22.44 205.0 26.53 
EX81 194.0 15.27 209.0 14.19 
EX91 188.0 16.10 201.0 18.87 
EX101 232.0 21.02 240.0 20.40 
EX12 181.5 5.77 184.5 15.05 
EX22 174.0 12.53 179.0 28.75 
EX32 182.0 11.38 178.0 20.92 
EX42 233.0 9.85 243.0 17.00 
EX52 175.5 13.87 179.5 26.33 
EX62 161.5 22.87 169.5 34.26 
EX72 237.0 22.29 231.0 22.76 
EX82 215.0 13.33 225.0 26.61 
EX92 204.0 17.19 218.0 18.36 
EX102 255.0 14.39 264.0 22.89 
EX13 211.5 13.43 220.5 17.77 
EX23 198.0 18.85 208.0 16.15 
EX33 193.0 8.69 205.0 22.24 
EX43 264.5 6.49 259.5 20.87 
EX53 205.5 22.08 210.5 24.28 
EX63 177.5 6.72 182.0 20.77 
EX73 250.0 5.01 253.0 26.71 
EX83 239.0 15.93 244.5 17.71 
EX93 234.0 17.66 240.5 33.37 
EX103 284.0 16.86 298.5 15.28 

 

Table 14  
Makespan values for SFHA and AIS for t/p < 0.25 

Problem No. SFHA Computational Time (s) AIS Computational Time (s) 
EX110 127.5 13.38 136.5 22.19 
EX210 127.0 24.71 133.0 31.41 
EX310 133.5 14.55 147.5 33.89 
EX410 143.5 11.74 146.0 17.09 
EX510 109.0 15.03 120.0 29.56 
EX610 128.0 11.78 136.5 28.70 
EX710 141.5 22.98 149.5 25.48 
EX810 164.5 11.52 165.8 14.46 
EX910 146.0 10.86 159.5 16.27 

EX1010 189.5 5.24 202.0 18.13 
EX120 130.5 10.87 144.0 26.47 
EX220 134.0 19.36 149.5 18.64 
EX320 133.5 6.67 142.5 14.55 
EX420 153.0 8.64 166.5 14.02 
EX520 117.5 15.02 125.0 24.30 
EX620 134.0 9.80 139.0 27.33 
EX720 151.5 16.00 161.2 18.53 
EX820 176.5 25.10 179.0 23.87 
EX920 164.5 20.90 177.5 26.89 

EX1020 190.5 24.82 194.0 30.83 
EX130 142.5 8.92 153.0 31.80 
EX230 147.0 14.28 154.0 21.84 
EX330 143.0 23.06 151.0 26.74 
EX430 170.0 15.69 171.5 16.92 
EX530 135.0 24.61 149.5 31.72 
EX630 140.5 11.53 154.5 14.36 
EX730 167.5 5.28 171.5 30.10 
EX830 188.0 5.93 198.0 21.88 
EX930 160.0 13.96 165.5 15.18 

EX1030 209.0 22.16 220.5 29.43 
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Table 15  
Makespan values for SFHA and AIS for t/p < 0.25 

Problem No SFHA Computational Time (s) AIS Computational Time (s) 
EX111 170.0 18.63 173.5 22.66 
EX211 173.0 13.08 176.0 23.68 
EX311 194.5 7.93 192.0 13.60 
EX411 193.5 11.22 197.0 17.62 
EX511 146.5 24.64 152.5 33.90 
EX611 195.0 10.46 200.0 18.12 
EX711 184.5 14.56 190.0 22.33 
EX811 230.5 13.91 240.0 19.51 
EX911 217.0 17.85 221.5 19.94 
EX1011 261.5 9.52 275.5 17.01 
EX121 164.0 19.73 172.0 30.73 
EX221 161.0 17.93 164.5 27.47 
EX321 183.0 5.05 194.5 8.21 
EX421 182.0 9.34 197.5 10.94 
EX521 137.0 11.69 151.0 21.86 
EX621 184.0 6.09 190.5 11.15 
EX721 165.0 9.10 175.5 17.25 
EX821 211.5 22.87 225.0 28.14 
EX921 210.5 10.81 224.5 17.55 
EX1021 258.0 10.13 260.5 17.00 
EX131 168.5 14.94 182.0 17.84 
EX231 176.0 24.54 184.0 28.37 
EX331 194.5 12.40 206.0 22.33 
EX431 193.5 20.89 202.7 23.14 
EX531 146.5 18.63 152.8 22.66 
EX631 195.0 13.08 208.7 23.68 
EX731 185.5 7.93 179.4 13.60 
EX831 225.5 11.22 230.3 17.62 
EX931 216.5 24.64 224.1 33.90 
EX1031 264 10.46 268.5 18.12 

 

  
Fig. 6a. Results comparison Fig. 6b. Results comparison 

  
Fig. 6c. Results comparison 
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Fig.7 and Fig.8 present graphs showing the minimum makespan and mean makespan of the population 
after each iteration obtained using SFHA and AIS for a sample problem. The solution converges at a 
faster rate and to a lower value for SFHA than AIS. This can be explained by the nature of the 
operations in both the algorithms. The mutation operations in SFHA are useful in local search, while 
the crossover operations help discover new solution spaces.  In AIS, the mutation operations perform a 
similar role as in SFHA. But due to the cloning operation, some of the fit solutions are lost. Even 
though new solutions are discovered using receptor editing, these do not make up for the lost solutions. 
Hence SFHA is able to maintain a wide range of candidate solutions and find optimal solutions at a 
faster rate than AIS. In Fig.7 and Fig.8 the mean makespan for both SFHA and AIS reach about the 
same value at the end of 1000 generations, even as the minimum makespan values differ considerably. 
This indicates that SFHA provides more diverse solutions compared to AIS. This is found to hold true 
when the ratio of average travelling time to average processing time is changed. 

 

 
Fig. 7. Convergence of SFHA 

 

 
Fig. 8. Convergence of AIS 
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7. Conclusion and future research 

The purpose of this study is to make AGV and robots scheduling an integral part of the scheduling 
activity. The scheduling of machines, AGV and robots in FMS are addressed using Sheep Flock 
Heredity Algorithm and Artificial Immune System for the minimization of makespan, mean flow time 
and mean tardiness. The observed results reveal that SFHA gives better results when compared to AIS 
algorithm for this particular problem. The algorithms present a good number of diversified solutions for 
the set of problems considered.  

The future research includes modelling ofthe problem as a real time scheduling problem and with 
necessary additions. Trafficcontrol and safety can be incorporated for the automated guided vehicles. 
The number of AGVs and robots can be increased. An automated storage retrieval system (AS/RS)can 
be incorporated to this problem. The problem can also be extended to more number of machines. 
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