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system; we have attempted an effort to establish an exponential demand with the disrupted

Il(tw;:(};szzon producFion system and SOlV?d analytically the problem to determine prod}lction time before and
Inventory after disruptions. Exponentially demand pattern studied, and also we simulate the results for
Disrupted Production System, sensitivity analysis in order to find which parameter is getting significant change for the proposed
Deterioration model.
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1. Introduction

Control and maintenance of the production system have attracted much attention of inventory
managers. There are many reasons for disruptions of the production system like machine breakdown,
unexpected events or some crises. An oil drilling company may be disrupted due to electricity supply,
failure of drilling machines whereas oil refining company faces some problem of crude oil supply and
availability of other raw materials or due to earthquake and strike. Lin and Kroll (2006) solved the
production problem under an imperfect production system subject to random breakdowns.

Teng and Chang (2005) presented an economic production quantity model for deteriorating items when
the demand rate depends on not only on-display stock, but also on the selling price per unit of an item
which may influence by economic policy, political scenario or agriculture productivity or both get
affected. A similar approach has been followed by Hou and Lin (2006) on the deterministic economic
order quantity model by taking into account the inflation and the time value of money for the
deteriorating items with price and stock-dependent selling rate. Liao (2007) established an EPQ model
by giving permission to delay in payment for the buyer to manufacturers. A single vendor and multi-
buyer inventory policy for a deteriorating item was made by Yang and Wee (2002). By dividing the

demand rate into multiple segments, Shukla and Khedlekar (2010) introduced three-component demand
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rate for the newly launched deteriorating item. Joglekar (2003) used a linear demand function with
price sensitiveness and allowed retailers to use a continuous increasing price strategy in an inventory
cycle. He derived the retailer’s optimal profit by ignoring all the inventory costs. His findings are
restricted to growing market only, which is neither for stable market nor for a declining market.

Joglekar (2003) used a linear demand function with price sensitiveness and allowed retailers to use a
continuous increasing price strategy in an inventory cycle. He derived the retailer’s optimal profit by
ignoring all the inventory costs. His findings are not restricted to growing market only, which is neither
for stable market nor for a declining market. By dividing the demand rate into multiple segments,
Shukla and Khedlekar (2010) introduced three-component demand rate for the newly launched
deteriorating item. Qi, Bard and Yu (2004) analyzed the supply chain-coordination with demand
disruption in a deterministic scenario. Expenditure sources like ordering cost, safety features, lead time
and numbers of lots are the integral parts of decision making. An integrated inventory model focusing
on these issues and aspects has been discussed by Lo (2007).

Giri et al. (1996) who computed the optimal policy of an EOQ model with dynamic costs. The model
they proposed is very basic though, since they have considered the very special case where the holding
and ordering costs are linear functions of time. The other shortcoming of that paper is that the
deterioration rate is also a linear function of time, and the algorithm they proposed in order to solve the
problem is only valid as long as the demand rate is a linear function of time.

Samanta and Roy (2004) studied a number of structural properties of the inventory system analytically
by determination of production cycle time and backlog for deteriorating item, which follows an
exponential distribution. They (2010) obtained optimal production time to facilitate the manufacturer
sell the item in multiple markets by considering constant demand rate, but they do not readjust the
production system. Due to above contribution time dependent demand is influenced to consider for
deteriorating item and adjust the disrupted production system with shortages and when it occurs an
optimal time of placing an order is obtained along with order quantity from the spot market. A central
policy presented by Benjaafar EIHafsi (2006) specify a single product assemble-to-order system for my
components, an end—product to serve and customer classes and problem solved as a Markov decision
process and characterize the structure of an optimal policy. We refer some useful contribution to reader
Balkhi and Bakry (2009), Al —Majed (2002), Khedlekar and Agarwal (2009), Mishra and Mishra
(2010) and Shukla et al. (2012).

2. Assumptions and notations

Suppose that a deteriorating item manufactured by a single manufacturer and then sold to customers,
the demand arising from the market is exponentially at a rate ue”, the production rate is constant at a
rate p > u in each cycle; due to this inventory accumulate at a rate p -ue. If the production stopped at
the time (7)) and thus there after inventory depicted due to the demand and deterioration. During
production disruption, if shortages occur, then it ordered from the spot market once in a cycle.

H Time horizon,

P Production rate,

0 Rate of deterioration,

U Initial demand of item,
ue demand function of item,

T, Production time without disruption,
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T, Production disruption time when system get disruptions,

T, pd New production time after system get disruptions,

T, Time of placing the order when shortages occur,

0, Order quantity (shortages) for placing the order when shortage occurs.

3. The production model without disruption

To compare the model output first, management optimizes the production system run without
disruption with production rate p (per unit time) stopped at production time 7}, and there after till time
H, inventory depicted due to demand rate pect and deterioration rate 8 of items (see fig. 1). The
presentations in differential equations for two periods [0, T,] and [7,, H] satisfy throughout its domain.

Inventory
A

> Time
Fig. 1. (Normal Production System without disruption)
dr, (¢ 1
215 ) +01,(t)=p-pe”, 0<z< Tp boundary condition £, (0) =0 o
dr, (t . ()
jit( ) +01, (1) = -pe” ,Tp <t < H boundary condition /,(H)=0
On solving equation (1) and (2) with boundary conditions we get
p -0t H ct -0t (3)
I (t)==—(1-¢"")- e’ -e
1 ( ) 0 ( ) c+6 ( )
4)
_ U (c + 6)H-01 ct) (
I,(t)= (e -e
2 ( ) c+o
As per fig. 1 inventory level /(t) and /5(t) are equal at time Tp
ie. 1\(T,) = I(Tp) yields
- 1 | Pc + 0P - Ou + Que"*°" ()
P Pc+ PO

If 8 <<1, then
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B ,ueCH(1+t9H)—,u
? Pe+ PO - u0+ pe”

4. The production model with disruption

(6)

In section 3 production rate unchanged but in practice production system is always disruption due to
unplanned and thus we consider the production system little changed by AP and disruption time is 7 .

If 4P <0, then production rate decreases and, if 4P > Othen production rate increases.

Invehtony
-~

» e

Tu To T H
Fig. 2. Disrupted Production System

Lemma 1. If 4P = (P(c +80)e "-P(c+0)+ ub (e“H e’ ))/(c + H)(l-e 0Ta -H 6 )then
manufacturing system still satisfies the exponential demand even production system has been disrupted,
otherwise If -P <AP = (P(c+0)e "-P(c+0)+ 10 (e ")) /(c+ 0)i-e” " )then
production system unable to satisfy exponential demand that is there will be shortages due to

production disruption.

Proof: Suppose the production system disrupted at time 7, as (see Fig. 2) and there after the
production rate will be P+ AP thus presentations of two differential equations for intervals [0, 7] and

[T4, H] are
dil (¢ ,
6115 )+911(t)=p'“eL ,0 <t < T, boundary condition 7,(0)=0 ,0<6 <1
d];—l@+912(t)=P+AP—ue",Td <t < H,
p “Yid ‘u cly -Vl
with boundary condition [1(Td)zlz (Td)zg(l'e o )- C+9(e T _ g )

On solving Eq. (8) with boundary condition we get

_P -0t AP 0T, -1 i 0t ct
12(1‘)—5(1-86)+7(1-€T )+C+—0(€H -e )
If 1, (1) = o this means production system satisfy the exponential demand of items
Plc+0)e "P(c +0)+ ,ut9(e”H —e‘”)

(c+ 9)(1-€0Td 'Hg)

If 7, (H ) < 0 this means production system does not satisfy the exponential demand of items

Thatis 4P = then still satisfy the demand

(7

®)

)
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Plc+8)e " _p(c+0)+ ,u@(e‘H—e‘OH)

Thatis -Pp <AP <
(C+6)(1_66Td-H9)

then there will be shortages in the system.

This proved the lemma*
Again, if 7,(H)> 0then we find optimal production time (with disruption) 7¢ such that at time / entire

stock will be sold-out and inventory level will be zero.

If 7,(H) <0 there will be shortages in the system and in this situation we will find the optimum time 7’
of placing the order and respective order quantity Q,.

Lemma 2. If 7,(#)> o then production time with disruption 7¢is obtained by

ors _ PctPO-p0 + AP(chG)eer +pfect 1 (10)
7 (P+AP)(c+0)
Proof: If 1,(#)>0
Ple+0)e " Pc+0)+ud(e” - ")
(C N 9)(1_6 0Ty -H O )
Therefore we will find out the optimal time7 pd (see fig. 3) when we stopped the production after

or 4P =

that is on hand inventory is 7,(#)

disruption in such a manner that stock remains zero at time H. the presentations of two differential
equations for intervals [T, T, pd] and [T, pd, H] are

Inventorv
A

Fig. 3. Production System after Disruption, 0<T4<T, STpdSH

dl, (¢ ot "
czlt()+elz(t)=P+AP'”e T, <t <T/

Boundary condition II(Td):Iz(Td):g(l_e-ard)_ Ci‘g(gcm _e»om)

dl, (1) "

+913(Z)Z'H€”,Td <t < H boundary condition I, (H)=0

On solving (12) with boundary condition we get

Iz(t):_g(eﬂn, _l)e-et+ﬁ(6cz,+erd _1)e-m+P‘*‘HAP(l_eﬁrd-ﬂr)_ﬁ(e_w_e(m))z,-o;) (13)
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13 (t)_L(ecH%)H-é)t_ect)

o+
Using condition £, (Tpd) =1 (Tpd)

or¢ PctPO-pb + AP (c+6)e”™ +poe’
e’ =
(P+AP)(c+0)

Therefore increases in 7, leads the production time with disruption 77 increases that is reduced incurred

cost.

Lemma 3. If 7,(#) <othen replenishment time 7, and order quantity O, are

e-ﬁT,. (PC+P6_ﬂ9+AP(C+0)eﬁTd)_'_/uoec’T,- -|—(P+AP)(C+6):O

P+ AP H -0, H eT, . cH+OH-0T,
0, = 1,(1,) = =1 ) (e et (14)
Proof: If 7,(#)<o then production system does not fulfill the exponential demand
P(c+¢9)ewﬁ —P(c+8)+,u9(e”” —e'(’H)
(c+€)(l-e””'“)

Suppose Tr and Qr (see Fig. 4) are time of placing an order and order quantity respectively.

Or -P<4P<

that is there will be shortages in the system.

Inventorv
A

-

- o

R
’

T, T, T, T =H

Fig. 4. (Production System after Disruption, T,Dd =H)

Then I(T,)=0 (by Eq. (14)

: (15)
APP or B T |4 P AP
0 c+0 ct0 0 0

or &”" (Pe+ PO-4u0 + AP(c+0)e"™ )+ pube™ +(P+AP)(c+0) =0

Then presentation of differential equation in this situation is

dl(t :
%+913(1)=P+AP-H€”,TV <t < H boundary condition 1;(H)=0

(16)

Above equation gives
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L(1)= P+0AP (1_69H-9r)_$(6ﬂ, _ecH+9H-9z)

Hence the order quantity is Q,= I5(T,)

0, =1,(T)= P+ AP (1_@911-91 )_ﬁ(ecT,_ecH+9H—€Tr ) (17)

5. Application and sensitive Analysis

For application we assumed a particular case when P=350, u= 200, 4P=-200, 8=.03, c=0, H=20 and T,
=8 on applying then we get I>(H)>0 and thus by equation (6) and (11) 7,=12.83 T =18.3578.

Following figures shows sensitiveness with respective the 6 and 7.

Case l: When .p < 4p < (P(c+0)e 7"-Plc+0)+ ud (e -e"))/(c+ 0)i-e"")

19 —— e
/ ‘xx“
5rzanin o <
187 // ! N
’ \
4182 / IRl \
/ r \
17.7 /f 195 \
| \
17.2 \v ]g \
0 003 006 009 012 015 018
5 (R 8 112 0
~ ~ \ t :
Fig. 5. (T, with repective to 0) Fig. 6. (T, with repective to Tq)
24 9035 -
21 8035 -
18 7035 -
15 6035 -
~ 5035 -
~ 1 .
G 4035 -
? 3035 -
6 2035 -
3 1035 -
0 35 T T
0 4 8 12 16 20 0 4 8 Td 12 16 20
< Td > N —_—
Fig. 7. (T, with repective to Tq) Fig. 8. (Q, with repective to Tq)

From Fig. 5, T, is increasing in € production time is direct proportional to deterioration means it needed to
more manufacturer items. So it is the effective way to reduce the cost as keeping lower deterioration and
same followed by Fig. 6.
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If I,(H) < 0 then there are shortages occurs in system and there is the need to order quantity O, from the spot
market at time 7, (Fig. 7) Which decreases as 7, increases for 0 < 7d < 17 and there after constant. Delay in
disruption time produces fewer shortage shortages which reduce the incurred cost and same result followed
by Fig. 8.

Case I1: When 4P>(P(c+0)e*" -P(c+0)+u(¢” -¢”"))/(c+0)(1-™ ")

5 18

M 10 1
Fiy 8 s
b L Y

H 1

1 i

1 LY

. L

1 B I LY

1 | R ] 8 3

|42 Y

= ‘\

1 *

] hY

1 LY

1 LY

1C LY
- i1 -

__ o - *
e N,
1 ] -
X _ LY

2 Ty

- -

o = = M
T30 L

PR | -

| <

1 .

12 \‘-

] T

] .

] T

] Te—

! L -h'—_—n-_
e 1WLD B~

A J B,

__--—"l—__
--'___
! ——
9
0 A IR 17 16 7 7 A
w T W _ i . B FaL T “= =T
- Uaramotar '’ b
- FardarinnsLel L -

Fig. 9. ( with respective to parameter ‘c’)

From Fig. 9 time 7/ decreases as ¢ increases, which lead in increasing demand that result to start

reproduction earlier.

Table 1

Comparison with constant / increasing / decreasing trend of demand

Parameter ‘c’ Demand LL(H) T, T: Q: Tpd I,(H)
Trend

0 Constant L(H)<0 19.24 10.92 1286 - -

0.02 Increasing L(H)<0 20.77 21.28 7255 - -

-0.02 Decreasing L(H)>0 17.76 - - 8.63 176

0.05 Increasing IL(H)<0 23.12 7.12 25955 - -

-0.05 Decreasing L(H)>0 15.63 - - 2223 564

0.10 Increasing L(H)<0 27.21 5.82 104115 - -

-0.10 Decreasing L(H)>0 12.40 - - 24.16 912

0.15 Increasing IL,(H)<0 31.43 5.05 317239 - -

-0.15 Decreasing IL,(H)>0 9.65 - - 27.58 1074

As per Table 1, one can observe that exponential increasing/decreasing demand rate are quite different
than constant, whenever ¢ = 0 gives I,(H) < 0 and order quantity O,=1286. For positive and negative
value of ¢, I,(H) is negative and positive respectively. Order quantity is highly sensitive to demand
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parameter ¢ but adverse to replenishment time, 7/ and />(/) both are highly sensitive to negative trend

of demand. This means if demand rate is in increasing management need to order more from the spot
market beside this if demand rate is decreases it need to stop the production earlier.

6. Conclusion and recommendations

The effect of exponential demand is quite different in terms of disruption time, reproduction time and
deteriorations with the disrupted production system. It is found that demand parameter highly affects
the optimal policy when system gets disrupted. The combination of two strategies one is increasing and
other decreasing is shown to be effective using the different examples. If a demand rate is in increasing
trend management needs to order more from the spot market beside this if the demand rate decreases it
need to stop the production before the planned time. One can further extend the model by considering
the more realistic assumption like time dependent production along with time dependent demand even
production system get disrupted. One can also extend the model by computing rates of change of
production time before and after disruptions with respect to deterioration and other parameters.
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