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 Mutual fund is one of the most popular techniques for many people to invest their funds where a 
professional fund manager invests people's funds based on some special predefined objectives; 
therefore, performance evaluation of mutual funds is an important problem. This paper proposes a 
multi-objective portfolio optimization to offer asset allocation. The proposed model clusters 
mutual funds with two methods based on six characteristics including rate of return, variance, 
semivariance, turnover rate, Treynor index and Sharpe index. Semivariance is used as a downside 
risk measure. The proposed model of this paper uses fuzzy variables for return rate and 
semivariance. A multi-objective fuzzy mean-semivariance portfolio optimization model is 
implemented and fuzzy programming technique is adopted to solve the resulted problem. The 
proposed model of this paper has gathered the information of mutual fund traded on NASDAQ 
from 2007 to 2009 and Pareto optimal solutions are obtained considering different weights for 
objective functions. The results of asset allocation, rate of return and risk of each cluster are also 
determined and they are compared with the results of two clustering methods.      
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1. Introduction 

Mutual fund is one of the most popular methods for many people to invest their funds where a 
professional fund manager invests people's funds based on some special predefined objectives. There 
are literally various types of mutual funds in the world, which makes it difficult to choose the 
appropriate one. Therefore, we need to use an appropriate technique to make an assessment on different 
mutual funds and choose the most efficient ones. Murthi et al. (1997) and Basso & Funari (2001) 
proposed a data envelopment analysis model to measure the mutual fund performance and Deb & 
Banerjee (2009) proposed a downside risk analysis for equity mutual funds. Chang et al. (2010) 
suggested an extended TOPSIS method with different distance approaches.   
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Portfolio optimization is one of the main problems in modern investment theories. Markowitz (1952, 
1959) argued that in portfolio optimization problem there are two criteria: 1) return of portfolio that 
should be maximized 2) risk of portfolio that should be minimized. In Markowitz mean-variance model 
there is a set of solutions called efficient frontier where an investor should choose one of them 
depending his/her risk/reward criteria. The mean-variance model is valid if the return has normal 
distribution and in case the return is not normally distributed downside risk measures is used instead of 
variance measure (Vercher et al., 2007).   

In recent studies, researchers have used multi-objective portfolio optimization models. Chang et al. 
(2009) introduced a portfolio optimization model in different risk measures and solved it using genetic 
algorithm. Anagnostopoulos & Mamanis (2010) proposed a multi-objective model with discrete 
variables. In fuzzy environment, Ammar & Khalifa (2003) implemented fuzzy variables for portfolio 
optimization problem and Terol et al. (2006) used fuzzy compromise programming for portfolio 
selection. They used Sharpe’s single index model and defined future beta as a fuzzy number. Jana et al. 
(2009) defined mean value and variance as trapezoidal fuzzy numbers and transformed them to 
possibilistic form. They proposed a three-objective-model and solved it using fuzzy programming 
technique. Clustering analysis is one of data mining approaches, which helps control the scale of many 
problems and it can be used for optimization problem. Tola et al. (2008) used cluster analysis for 
portfolio optimization. Chen & Huang (2009) used a two-stage method and clustered observations 
based on four characteristics: rate of return, standard deviation, turnover rate and Treynor index. They 
implemented fuzzy variables for return and risk variables. For portfolio optimization problem, they 
used α-cut method and optimized return and risk separately and in two models. 

In this paper, we use a method originally developed by Chen & Huang (2009) with two more 
characteristics: Sharpe index and semivariance, and cluster mutual funds using Ward method and k-
means method separately and compare their results. 

2. Definition indices 

(1) Rate of return 

The net asset value (NAV) is defined as current market value of a fund minus its liabilities divided by 
outstanding number of shares (Mobius, 2007). Rate of return based on net asset value defined as: 

ܴ௜,௧ ൌ
ே஺௏೔,೟ିே஺௏೔,೟షభ

ே஺௏೔,೟షభ
*100% ,                                           (1)

where i is the number of mutual funds, i,tR is the rate of return at time t and ܰܣ ௜ܸ,௧ is the net asset 

value at time t. 

(2) Variance 

௜ߪ
ଶ ൌ

∑ ሺܴ௜,௧ െ തܴ௜ሻ்
௧ୀଵ

ܶ െ 1
 

(2)

 തܴ௜ is the average rate of return of T months. 

(3) Downside risk measure (semivariance) 

ܵ ௜ܸ ൌ ෍ ሺܴ௜,௧ െ തܴ௜ሻ

்

௧ୀଵ ; ோ೔,೟ழோത೔

ܶ െ 1൘  
(3)

(4) Turnover rate 
Turnover is a measure of fund’s transactions, high turnover rate shows that the fund is an active fund 
and pays more transaction cost.  
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݁ݐܽݎ ݎ݁ݒ݋݊ݎݑܶ ൌ
ݏ݁ݑ݈ܽݒ ݂݋ ݐ݊ݑ݋݉ܽ ݄݁ܶ ݅݊ ݏ݊݋݅ݐܿܽݏ݊ܽݎݐ

݈ܽݐ݋ݐ ݂݋ ݁ݑ݈ܽݒ ݏݐ݁ݏݏܽ
כ 100% 

(4)

 (5) Treynor index 

Treynor (1965) introduced a ratio for performance evaluation of portfolios. 

࢏ܴܶ ൌ
തܴ௜ െ ௙ܴ

࢏ߚ
, 

(5)

where ܴܶ௜ is the Treynor index, തܴ௜ is the average return, ௙ܴ is the return of risk-free asset and ߚ௜ is the 
measurement of systematic risk and calculated as: 

௜ߚ ൌ
,ሺܴ௜ܸܱܥ ܴ௠ሻ

௠ߪ
ଶ , 

(6)

where ܸܱܥሺܴ௜, ܴ௠ሻ is the covariance between the return of mutual fund i and the return of the market 
index and ߪ௠

ଶ  is the variance of ܴ௠.  

(6) Sharpe index 

Sharpe (1966) proposed a measurement for performance evaluation of mutual funds. We use this index 
because his study was particularly based on mutual funds.  

Where ܴܵ௜ is the Sharpe index and ߪ௜ is the standard deviation and called total risk. 

࢏ܴܵ ൌ
തܴ௜ െ ௙ܴ

࢏ߪ
 

(7)

3. Clustering 

Clustering is a grouping observations or records into classes of similar objects have named and it is 
widely used in data mining. A cluster is a group of observations, which are similar to one another and 
are not similar to observations in other clusters. There are two kinds of algorithms in clustering: 1- 
hierarchical 2- non-hierarchical. Hierarchical clustering has a tree-like cluster structure and creates a 
dendrogram, where the tree diagram is implemented to display arrangement of clusters. There are 
various methods to determine distance among clusters, which lead to create different methods in 
hierarchical clustering (Larose, 2005). In this study, we choose Ward method in hierarchical clustering 
methods, where dissimilarity among clusters is the Euclidean distance among their centroids. This 
method minimizes within-clusters sum of squares based on pair wise distances (Decker, & Lenz, 2007). 

There are various non-hierarchical clustering methods and k-means is one of the most commonly 
methods, where it minimizes the sum of distances between each observation and its cluster center (Zio 
& Bazzo, 2010). In k-means method, ݇ refers to the number of clusters, which must be determined 
before clustering process. K-means method follows this algorithm: 

Step 1) Determine ݇ (number of clusters), 

Step 2) Assign ݇ observations randomly to be the initial cluster center locations, 

Step 3) For each observation determine the nearest cluster center, which the nearest criterion is usually 
Euclidean distance, hence, each cluster center includes a subset of observations and our dataset 
segments to k clusters, 
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Step 4) For each cluster, find the new cluster center and substitute them with random center points, new 
centers are found using weighted average of observations in each cluster. For example the center of 
points (1,2) and (2,4) is (1.5,3). 

Step 5) Repeat Steps 3 to 5 until termination. 

Before we precede clustering process, we need to normalize our observations and the proposed model 
of this paper uses min-max normalization as follows, 

כݔ ൌ
ݔ െ min ሺݔሻ
ܴܽ݊݃݁ሺݔሻ

ൌ
ݔ െ min ሺݔሻ

maxሺݔሻ െ min ሺݔሻ
 

(8)

In Eq. (8), כݔ is a normalized observation, ݔ is the observation that will be normalized, min ሺݔሻ is the 
minimum amount of all observations in that index and max ሺݔሻ is the maximum amount of all 
observations in that index. The advantage of this method is that, after normalization process minimum 
unit equals to 0, maximum unit equals to 1 and all observations will range zero to one (Larose, 2005).  

4. Making fuzzy variables 

Note that a crisp number for risk and rate of return obtained from historical data is not usually 
appropriate for future because there are many uncertainties associated with future and many things may 
influence on it. Hence, we define risk and rate of return as triangular fuzzy numbers. A triangular fuzzy 
number could be written as ሾܽଵ, ܽଶ, ܽଷሿ. We define fuzzy rate of return membership function as Eq. (9). 
Fig. 1 shows this function. 

ሺܵሻߤ ൌ ൞

ሺܵ െ ܽଵሻ ሺܽଶ െ ܽଵሻ                ܽଵ ൏ ܵ ൏ ܽଶ⁄
1                                                    ܵ ൌ ܽଶ

ሺܽଷ െ ܵሻ ሺܽଷ െ ܽଶሻ                  ܽଶ ൏ ܵ ൏ ܽଷ⁄
.݄ݐܱ                                               0 ݁ݏ݅ݓ

 

(9)

   

 

 

 

 

 

 

 
 

Fig. 1. Membership function of variables   
෨ܴఈ ൌ ሾܴఈ

ି, ܴఈ
ାሿ ൌ ሾܽଵ ൅ ሺܽଶߙ െ ܽଵሻ, ܽଷ െ ሺܽଷߙ െ ܽଶሻሿ (10)

We can make fuzzy risk variable similar to making fuzzy rate of return variable. 

5. Fuzzy mean-Semivariance model 

Markowitz (1952, 1959) proposed the mean-variance model for portfolio optimization problem. Instead 
of crisp numbers in the main model we substitute the variables of his model with fuzzy variables as Eq. 
(11). 

 

1

α

ܽଵ  ܽଶ ܽଷܴఈ
ି  ܴఈ

ା
S 

µ(S) 
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Maximize     ܧሺܴ௉ሻ ൌ ෍ ܴప෩ ௜ݔ

ே

௜ୀଵ

  

Minimize      ߪ௣
ଶ ൌ ෍ ௜ݔ

ଶ

ே

௜ୀଵ

෤௜ߪ
ଶ ൅ 2 ෍ ෍ ෤௜௝ߪ௝ݔ௜ݔ

ே

௝ୀଵ
௜ஷ௝

ே

௜ୀଵ

 

Subject to    ෍ ௜ݔ

ே

௜ୀଵ

ൌ 1                              

        
௜ݔ                       ൐ 0    ݅ ൌ 1, … , ܰ 
 

(11)

N       Number of assets 

 ௜       Proportion invested in asset i, i=1, 2, …, Nݔ

෨ܴ௜       Fuzzy expected return of asset i 

 ෤௜௝      Fuzzy covariance between asset i and asset jߪ

We assumed short sales are not allowed and there is not any dividend, taxes and transaction costs 
during the evaluation period. The Markowitz's model is formulated as a convex quadratic 
programming, where the mean-variance model has an assumption that the rate of return is normally 
distributed but this assumption does not hold in many cases. Therefore, we propose other risk measures 
such as semivariance to improve the main model (Chang et al., 2009) and substitute it for the proposed 
model of this paper. As Chen & huang (2009) discussed we can also eliminate the correlation part in 
the model because at clustering process the variance among clusters maximized and the correlation 
between clusters (variables) decreases. Eq. (12) illustrates our new model: 

maximize     ܧሺܴ௉ሻ ൌ ෍ ܴప෩ ௜ݔ

ே

௜ୀଵ

  

minimize      ܵ ௣ܸ ൌ ෍ ௜ݔ
ଶ

ே

௜ୀଵ

ܵ෪ܸ௜                    

subject to    ෍ ௜ݔ

ே

௜ୀଵ

ൌ 1 

        
௜ݔ                       ൐ 0    ݅ ൌ 1, … , ܰ 
 

(12)

Eq. (12) is one of the most difficult kinds of optimization models to solve. This model is a multi-
objective fuzzy non-linear programming. As illustrated in Eq. (10), the risk and return variables are 
fuzzy and have lower bound and upper bound. Eq. (13) is written using these bounds. 

maximize   ෨ܼ
ோ෨
ఈሺݔሻ ൌ ෍ሾሺ ෨ܴ

௜
ିሻఈ , ሺ ෨ܴ

௜
ାሻఈሿ

ே

௜ୀଵ

 ௜ݔ

minimize   ෨ܼ
ௌ௏෪
ఈ ሺݔሻ ൌ ෍ൣሺܵ෪ܸ௜

ିሻఈ , ሺܵ෪ܸ௜
ାሻఈ൧

ே

௜ୀଵ

௜ݔ
ଶ 

(13)
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subject to    ෍ ௜ݔ

ே

௜ୀଵ

ൌ 1                      

        
௜ݔ                       ൐ 0    ݅ ൌ 1, … , ܰ 
 
The above model could be solved using Kuhn-Tucker conditions considering lower and upper bounds, 
separately. Hence, we split Eq. (13) into two models that both are multi-objective. 

maximize   ෨ܼ
ோ෨
ఈሺݔሻ ൌ ෍ሾሺ ෨ܴ

௜
ିሻఈሿ

ே

௜ୀଵ

 ௜ݔ

minimize   ෨ܼ
ௌ௏෪
ఈ ሺݔሻ ൌ ෍ൣሺܵ෪ܸ௜

ାሻఈ൧

ே

௜ୀଵ

௜ݔ
ଶ 

subject to    ෍ ௜ݔ

ே

௜ୀଵ

ൌ 1                                   

        
௜ݔ                       ൐ 0    ݅ ൌ 1, … , ܰ 
 

(14)

maximize   ෨ܼ
ோ෨
ఈሺݔሻ ൌ ෍ሾሺ ෨ܴ

௜
ାሻఈሿ

ே

௜ୀଵ

 ௜ݔ

minimize   ෨ܼ
ௌ௏෪
ఈ ሺݔሻ ൌ ෍ൣሺܵ෪ܸ௜

ିሻఈ൧

ே

௜ୀଵ

௜ݔ
ଶ 

subject to    ∑ ௜ݔ
ே
௜ୀଵ ൌ 1              

        
௜ݔ                       ൐ 0    ݅ ൌ 1, … , ܰ 
 

(15)

Definition1 (Complete optimal solution). כݔ is said to be a complete optimal solution of a r-objective 
problem if and only if, there exists כݔ א ܺ such that ܼ௜ሺכݔሻ ൑ ܼ௜ሺܺሻ for i=1,…,r and for all ݔ א ܺ.  

When we solve this problem a complete optimal solution does not always exist, hence Pareto optimal 
solution is defined as follows 

Definition2 (Pareto optimal solution). כݔ is said to be a Pareto optimal solution of a r-objective 
problem if and only if, there does not exist another ݔ א ܺ, such that ܼ௜ሺכݔሻ ൑ ܼ௜ሺܺሻ for i=1,…,r and 
ܼ௞ሺݔሻ ് ܼ௞ሺכݔሻ for at least one k, ݇ א ሼ1, 2, …  ሽݎ

 Eq. (14) considers lower bound of return and upper bound of risk and gives us the worst solution and 
Eq. (15) considers upper bound of return and lower bound of risk and gives us the best solution. In next 
section we discuss solution procedure for these two MONLP models using fuzzy theory and obtain 
Pareto optimal solution. 

6. Fuzzy programming technique 

There are different methods to solve MONLP problems and we use the method developed by 
Zimmermann (1978), which is fuzzy programming technique. In the first stage of fuzzy programming 
technique, each objective function is optimized with constraints, separately. The objective functions 
minimizes to obtain lower bound (l୧) and maximizes to obtain upper bound (u୧). For our problem, we 
first minimize and maximize the return objective function and then the method minimizes and 
maximizes the risk objective function considering the constraint. Then we define objective functions as 
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two fuzzy functions. Fig. 2 and Fig. 3 illustrate the membership function of these fuzzy functions and 
Eqs. (16-17) define these functions. 
 

 

 

 

 

 

 

 

 

Fig. 2. Membership function of return objective function 
 

௜ሻݖሺߤ ൌ

ە
ۖ
۔

ۖ
ۓ 0                                              ݂݅ ௜ݖ ൑ ݈௜

௜ݖ െ ݈௜

௜ݑ െ ݈௜
                               ݂݅ ݈௜ ൏ ௜ݖ ൏ ௜ݑ

  
௜ݖ ݂݅                                             1 ൒ ௜ݑ

 

(16)

 

 

 

Fig. 3. Membership function of risk objective function 
                   

௜ሻݖሺߤ ൌ

ە
ۖ
۔

ۖ
݂݅                                              0   ۓ ௜ݖ ൒ ௜ݑ

௜ݑ െ ௜ݖ

௜ݑ െ ݈௜
                             ݂݅ ݈௜ ൏ ௜ݖ ൏ ௜ݑ

  
௜ݖ ݂݅                                            1 ൑ ݈௜

 

(17)

 

ܼ௜

1

݈௜ ௜ݑ

 ௜ሻݖሺߤ

z࢏

1

࢏࢒ ࢏࢛

 ሺܼ௜ሻߤ
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We define ߚ௜ as the percentage rate that ith objective function nears to its optimized solution or 
minimum amount of membership function. Eq. (18) shows this definition. 

௜ߚ ൌ min ሺµሺz୧ሻሻ→ߚ௜ ൑ ௜) (18)ݖሺߤ

 In return objective function we have Eq. (19) as follows, 

ଵߚ ൑ ௭೔ି௟೔

௨೔ି௟೔
௜ݖ→   ൒ ݈௜ ൅ ௜ݑଵሺߚ െ ݈௜ሻ, (19)

and in risk objective function we have Eq. (20) as follows, 

ଶߚ ൑  ௨೔ି௭೔

௨೔ି௟೔
௜ݖ→ ൑ ௜ݑ െ ௜ݑଶሺߚ െ ݈௜ሻ (20)

Now we can rewrite our model as follows,  

maximize  ܲ ൌ ଵߚଵݓ ൅    ଶߚଶݓ
  
subject to    ∑ ሾሺ ෨ܴ

௜
ିሻఈሿே

௜ୀଵ ௜ݔ ൒ ݈௜ ൅ ௜ݑଵሺߚ െ ݈௜ሻ 
                    
                    ∑ ൣሺܵ෪ܸ௜

ାሻఈ൧ே
௜ୀଵ ௜ݔ

ଶ ൑ ௜ݑ െ ௜ݑଶሺߚ െ ݈௜ሻ                              
                    ∑ ௜ݔ

ே
௜ୀଵ ൌ 1 

௜ݔ                     ൐ 0    ݅ ൌ 1, … , ܰ 
                    0 ൑ ,ଵߚ ଶߚ ൑ 1 
,ଵݓ                     ଶݓ ൒ 0 
 

(21)

P        percentage that objective functions additionally near to their optimized condition,  
 ,ଵ      Weight of return objective functionݓ
 ,ଶ      Weight of risk objective functionݓ
 

We can assume different α-levels and LINGO11.0 software can be used to solve this model. The 
second constraint of model is non-linear and software gives local optimum but because our solution 
space is convex, the local optimum is also global optimum. 

7. Numerical example 

In order to study the performance of the proposed model of this paper, we have selected 92 equity 
mutual funds from NASDAQ from 2007 to 2009 (available online at http//:finance.yahoo.com).  

 

Fig. 4. Dendrogram of Ward method 
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For these cases NAV and market information are extracted and the characteristics were calculated for 
each fund based on return rate, variance, semivariance, turnover rate, Treynor index and Sharpe index. 
Finally, all data were normalized leaving us to have 92 rows and 6 columns where all of numbers 
ranged [0,1]. For clustering analysis Minitab 14 software helped us. Observations clustered using Ward 
method and k-means method considering Euclidean distance. Fig. 4. illustrates the dendrogram 
obtained from Ward method. 

In clustering analysis, the number of clusters should be determined and there is not a common method 
to accomplish this task. In Ward method we can fix distance or similarity level and obtain number of 
clusters. In our example distance level is fixed to 2.5. But in k-means method the number of clusters (k) 
should be specified before clustering process. Trial and error procedure can be useful. We can first fix 
k=2 and then increase it and find the appropriate number. We observed 4 clusters are more appropriate. 
Number of clusters more or less than 4 separated a few observations with abnormal characteristics. The 
results obtained from Ward and k-means method are shown in Tables 1 and Table  2. 

Table 1 
Results of ward clustering method 

Sharpe 
index  

Treynor 
index  

Turnover 
rate  

Semi 
variance  

variance  Return 
rate  

Number of 
observations  

  

0.151  0.236  0.096  0.127  0.11  0.574  20 Cluster 1  
0.363  0.386  0.089  0.204  0.185  0.749  38  Cluster 2  
0.495  0.505  0.307  0.222  0.231  0.777  16  Cluster 3  
0.366  0.332  0.071  0.522  0.398  0.81  18  Cluster 4  

 

Table 2 
Results of k-means clustering method 

Sharpe 
index  

Treynor 
index  

Turnover 
rate  

Semi 
variance  

variance  Return 
rate  

Number of 
observations  

 

0.177  0.254  0.089  0.132  0.112  0.574  23  Cluster 1  
0.34  0.351  0.132  0.269  0.233  0.763  41  Cluster 2  
0.403  0.341  0.165  0.644  0.518  0.829  11  Cluster 3  
0.523  0.557  0.131  0.123  0.133  0.785 17  Cluster 4  

 

In next stage two characteristics remained (return rate and semivariance) for modeling. Four eliminated 
characteristics (variance, turnover rate, Treynor index and Sharpe index) helped us for more accurate 
clustering. After clustering process the mean (µ) and standard deviation (σ) of each cluster are 
specified. For making fuzzy variables we used original data and assumed  ܽଵ, ܽଶ, ܽଷ as Eq  . (22). 

 ൝
ܽଵ ൌ ߤ െ ߪ2
ܽଶ ൌ           ߤ
ܽଷ ൌ ߤ ൅ ߪ2

 
(22)

Tables 3 and Table 4 show the results of fuzzy variables in Ward and k-means clustering methods.  

Table 3 
Results of making fuzzy variables in Ward method 

Semi variance Return rate   
[3.138, 89.168, 175.199] 0.896] 0.021, 0.845,-[Cluster 1 
[39.241, 135.874, 232.506] [0.14, 0.443, 0.746] Cluster 2 
[45.597, 146.99, 228.241] [0.223, 0.511, 0.799] Cluster 3 
[102.201, 328.971, 555.741] [0.103, 0.589, 1.075] Cluster 4 
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Table 4 
Results of making fuzzy variables in k-means method 

Semi variance Return rate   
[7.81, 92.55, 177.294] [-0.716, 0.027, 0.77]Cluster 1 
-------------------------------------------------------------- Cluster 2 
[187.3, 402.955, 618.681] [-0.03, 0.634, 1.298] Cluster 3 
[10.848, 86.962, 163.076][0.14, 0.53, 0.92] Cluster 4 

 
As shown in Table 4, Cluster 2 is ignored because its return rate was less than Cluster 4 and its 
semivariance was more. Each fuzzy number has a membership function. For example the membership 
function of return rate in Cluster 1 and Ward method is as follows,  

μሺܴሻ ൌ ൞

ሺܴ ൅ 0.716ሻ ሺ0.027 ൅ 0.716ሻ   െ 0.716 ൏ ܴ ൏ 0.027⁄
1                                              ܴ ൌ 0.027

ሺ0.77 െ ܴሻ ሺ0.77 െ 0.027ሻ      0.027 ൏ ܴ ൏ 0.77⁄
       0                                              otherwise

 

(23)

The membership function of other variables can be written as Eq. (23). Fuzzy return rate and 
semivariance are our inputs for portfolio optimization model. In our example, there were two multi-
objective problems. One of them is as follows, 

maximize   ෨ܼ
ோ෨
ఈሺݔሻ ൌ ሾ0.871ߙ െ 0.845, െ0.871ߙ ൅ 0.896ሿݔଵ ൅  

                                        ሾ0.303ߙ ൅ 0.14, െ0.303ߙ ൅ 0.746ሿݔଶ ൅ 

                                        ሾ0.288ߙ ൅ 0.223, െ0.288ߙ ൅ 0.799ሿݔଷ ൅ ሾ0.486ߙ ൅ 0.103, െ0.486ߙ ൅ 1.075ሿݔସ 

 minimize   ෨ܼ
ௌ௏෪
ఈ ሺݔሻ ൌ ሾ86.031ߙ ൅ 3.138, െ86.031ߙ ൅ 175.199ሿݔଵ

ଶ ൅ 

                                         ሾ96.632ߙ ൅ 39.241, െ96.632ߙ ൅ 232.506ሿݔଶ
ଶ ൅ 

                                         ሾ101.322ߙ ൅ 45.597, െ101.322ߙ ൅ 248.241ሿݔଷ
ଶ ൅ 

                                         ሾ226.77ߙ ൅ 102.201, െ226.77ߙ ൅ 555.741ሿݔସ
ଶ 

subject to    ෍ ௜ݔ

ସ

௜ୀଵ

ൌ 1                                  

௜ݔ                             ൐ 0    ݅ ൌ 1, … , 4 

(24) 

The above problem is a multi-objective fuzzy non-linear problem. To solve this problem we assumed 5 
levels for α: [0, 0.25, 0.5, 0.75, 1]. 

For example if we assume α=0.5 and as explained before split the model into two models we have Eqs. 
(25-26). 

maximize   ෨ܼ
ோ෨
ఈሺݔሻ ൌ െ0.409ݔଵ ൅ ଶݔ0.291  ൅ ଷݔ0.367 ൅  ସݔ0.346

minimize   ෨ܼ
ௌ௏෪
ఈ ሺݔሻ ൌ ଵݔ132.183

ଶ ൅ ଶݔ184.19
ଶ ൅ ଷݔ197.58

ଶ ൅ ସݔ442.356
ଶ 

subject to    ෍ ௜ݔ

ସ

௜ୀଵ

ൌ 1                                               

        
௜ݔ                       ൐ 0    ݅ ൌ 1, … , 4 
 

(25)

For the first objective function lower bound and upper bound are [-0.409, 0.367] and for the second are 
[49.221, 442.356]. 
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maximize   ෨ܼ
ோ෨
ఈሺݔሻ ൌ ଵݔ0.46 ൅ ଶݔ0.594 ൅ ଷݔ0.655 ൅ ସݔ0.832  

minimize   ෨ܼ
ௌ௏෪
ఈ ሺݔሻ ൌ ଵݔ46.153

ଶ ൅ ଶݔ87.557
ଶ ൅ ଷݔ96.258

ଶ ൅215.586ݔସ
ଶ 

subject to    ∑ ௜ݔ
ସ
௜ୀଵ ൌ 1                                                                                        

        
௜ݔ                       ൐ 0    ݅ ൌ 1, … , 4 
 

(26)

For the first objective function lower bound and upper bound are [0.46, 0.832] and for the second are 
[20.783, 215.586]. Now we can write the last model that can be solved with optimization software 
package as follows, 

maximize  ܲ ൌ ଵߚଵݓ ൅    ଶߚଶݓ
  
subject to   െ0.409ݔଵ ൅ ଶݔ0.291  ൅ ଷݔ0.367 ൅ ସ ൒ݔ0.346 െ0.409 ൅  ଵߚ0.776
ଵݔ132.183                   

ଶ ൅ ଶݔ184.19
ଶ ൅ ଷݔ197.58

ଶ ൅ ସݔ442.356
ଶ ൑ 442.36 െ  ଶߚ393.139

                   ∑ ௜ݔ
ସ
௜ୀଵ ൌ 1                                                              

௜ݔ                     ൐ 0    ݅ ൌ 1, … , 4 
                    0 ൑ ,ଵߚ ଶߚ ൑ 1 
,ଵݓ                     ଶݓ ൒ 0 
 

(27)

Eq. 26 can be written the same as Eq. 27. In this example, we assumed 3 weights:  

ଵݓ] ൌ 0.25, ଶݓ ൌ 0.75ሿ, ሾݓଵ ൌ ଶݓ ൌ 0.5ሿ, ሾݓଵ ൌ 0.75, ଶݓ ൌ 0.25ሿ . Tables 5-14 illustrate results for 
our numerical example completely. Except α=1, in other levels of α, investment proportion variables 
and return rate and risk variables have interval form.  

Table 5 
Pareto optimal solution of Ward method with α =0  
 

1x  2x  3x  4x  Return rate Risk 

1 20.25, 0.75w w   [0.77, 0.885]  [0, 0.383]  [0, 0.385]  [0.115, 0.155]  [0.09, 0.916]  [3.809, 85.292]  

1 20.5, 0.5w w  [0, 0.713]  [0, 0.399]  [0, 0.45]  [0.151, 0.287]  [0.172, 0.947]  [10.13, 99.955]  

1 20.75, 0.25w w   [0, 0.199]  [0, 0.346]  [0, 0.555]  [0.099, 0.801]  [0.182, 1.039]  [65.696, 109.746]  

 
 
Table 6 
 Pareto optimal solution of Ward method with α =0.25 
 

1x  2x  3x  4x  Return rate Risk 

1 20.25, 0.75w w   [0.076, 0.426]  [0.154, 0.38]  [0.206, 0.384]  [0.16, 0.214]  [0.183, 0.746]  [16.262, 76.618]  

1 20.5, 0.5w w  [0, 0.221] [0.049, 0.387]  [0.251, 0.447]  [0.166, 0.479]  [0.253, 0.822]  [42.281, 89.495]  

1 20.75, 0.25w w   [0, 0]  [0, 0.312]  [0, 0.546]  [0.142, 1]  [0.26, 0.953]  [96.797, 158.893]  

 
Table 7 
Pareto optimal solution of Ward method with α =0.5 
 

1x  2x  3x  4x  Return rate Risk 

1 20.25, 0.75w w   [0.076, 0.243] [0.261, 0.375]  [0.293, 0.382]  [0.167, 0.203]  [0.276, 0.628]  [25.837, 67.833]  

1 20.5, 0.5w w  [0, 0]  [0.235, 0.371]  [0.38, 0.443]  [0.186, 0.385]  [0.335, 0.709]  [50.69, 79.431]  

1 20.75, 0.25w w   [0, 0]  [0, 0.261]  [0.244, 0.536]  [0.203, 0.756]  [0.343, 0.789]  [87.54, 128.946]  
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Table 8 
Pareto optimal solution of Ward method with α =0.75 
 

1x  2x  3x  4x  Return rate Risk 

1 20.25, 0.75w w   [0.088, 0.122]   [0.314, 0.364]  [0.334, 0.374]  [0.174, 0.19]  [0.362, 0.532]  [36.183, 57.83]  

1 20.5, 0.5w w  [0, 0]  [0.173, 0.351]  [0.34, 0.435]  [0.214, 0.241]  [0.42, 0.645]  [52.543, 69.972]  

1 20.75, 0.25w w   [0, 0]  [0.201, 0.292]  [0.405, 0.513]  [0.286, 0.303]  [0.432, 0.603]  [54.466, 83.342]  

 
Table 9 
Pareto optimal solution of Ward method with α =1 
 

1x  2x  3x  4x  Return rate Risk 

1 20.25, 0.75w w   0.117  0.344  0.358  0.181  0.445  46.906  

1 20.5, 0.5w w  0  0.327  0.423  0.25  0.508  61.377  

1 20.75, 0.25w w   0  0.125  0.477  0.398  0.532  87.662  

 
Table 10 
Pareto optimal solution of k-means method with α =0 
 

1x  2x  3x  4x  Return rate Risk 

1 20.25, 0.75w w   [0.022, 0.138] -------- [0.157, 0.164]  [0.705, 0.814]  [-.005, 0.979]  [12.229, 99.679]  

1 20.5, 0.5w w  [0, 0]  --------  [0.14, 0.385]  [0.615, 0.86]  [0.115, 1.065]  [31.867, 132.737]  

1 20.75, 0.25w w   [0, 0]  --------  [0.002, 1]  [0, 0.998]  [0.139, 1.298]  [162.427, 187.308]  

 
 
Table 11 
Pareto optimal solution of k-means method with α =0.25 
 

1x  2x  3x  4x  Return rate Risk 

1 20.25, 0.75w w   ]0.14 , 0.125[  -------  ]0.174 , 0.163[  ]0.712 , 0.686[  ]0.843 ,0.124 [  ]90.468 , 21.931[  

1 20.5, 0.5w w  ]0 , 0[  ---------  ]0.347 , 0.157[  ]0.843 , 0.653[  ]0.929 , 0.22[  ]116.288 , 41.785[  

1 20.75, 0.25w w   ]0 , 0[  ---------  ]0.822 , 0.065[  ]0.935 , 0.178[  ]1.077 , 0.229[  ]163.941 , 128.316[  

 
Table 12 
Pareto optimal solution of k-means method with α =0.5 
 

1x  2x  3x  4x  Return rate Risk 

1 20.25, 0.75w w   ]0.144 , 0.109[  -  ]0.177 , 0.17[  ]0.721 , 0.679[  ]0.72 ,0.255 [  ]81.356 , 32.834[  

1 20.5, 0.5w w  ]0 , 0[  -  ]0.18 , 0.146[  ]0.854 , 0.82[  ]0.76 , 0.328[  ]100.614 , 41.959[  

1 20.75, 0.25w w   ]0 , 0[  -  ]0.646 , 0.146[  ]0.854 , 0.354[  ]0.881 , 0.329[  ]129.3 , 102.067[  

 
Table 13 
Pareto optimal solution of k-means method with α =0.75 
 

1x  2x  3x  4x  Return rate Risk 

1 20.25, 0.75w w   ]0.133 , 0.107[  -  ]0.179 , 0.175[  ]0.718 , 0.688[  ]0.603 ,0.374 [  ]69.936 , 44.5968[  

1 20.5, 0.5w w  ]0 , 0[  -  ]0.275 , 0.21[  ]0.79 , 0.725[  ]0.674 , 0.439[  ]86.298 , 62.106[  

1 20.75, 0.25w w   ]0 , 0[  -  ]0.499 , 0.252[  ]0.748 , 0.501[  ]0.713 , 0.44[  ]103.97 , 88.318[  
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Table 14 
Pareto optimal solution of k-means method with α =1 
 

1x  2x  3x  4x  Return rate Risk 

1 20.25, 0.75w w   0.12   -  0.178  0.702  0.487  56.956  

1 20.5, 0.5w w  0   -  0.242  0.758  0.554  73.566  

1 20.75, 0.25w w   0   -  0.37  0.63  0.568  89.685  

 
Results show that return rate is still triangular fuzzy number. For example in k-means method with 
weights [ݓଵ ൌ 075, ଶݓ ൌ 0.25ሿ we can say that return rate is (0.139, 0.568, 1.298). However, 
membership function of risk variable is not known because its objective function is a quadratic 
function. However, we make fuzzy variables and solve the problem using α-cut method to have fuzzy 
variables in results. In α-cut method when α=1 means that the problem is solved in certain condition. In 
other words, we solve our problem in fuzzy and certain condition simultaneously. The results show that 
in Ward method investment proportion of variable ݔଷ is higher than others and in k-means method 
variable ݔସ is higher. These variables have more influence in forming portfolio and we can say that 
these clusters are better than others. Referring to data before clustering, number of funds in Cluster 3 in 
Ward method and Cluster 4 in k-means method is illustrated in Table 15. 

Table 15 
Comparison of number of clusters 

Number of clusters  
929185 79 787573635149 41 32 12 11 10 5 Ward 

92 91 90 83 75 73 58 56 52 51 41 34 32 20 12 8 5 k-means 
 

As shown in Table 15 although more than half of funds are common in two methods but we should 
specify that clustering method is effective on our methodology. On the other hand, our methodology 
suggests 16 or 17 mutual funds out of 92 mutual funds and also determines the investment proportion 
in each cluster. 

8. Conclusions 

Since mutual funds developed rapidly in recent years, evaluating their performance has been an 
important subject. Several multi-criteria decision making methods were explored and in this paper 
multi-objective portfolio optimization is chosen. In current study, performance indices such as rate of 
return, variance, semivariance, turnover rate and Treynor ratio and Sharpe ratio are calculated and then 
clustering based on these indices is done. We used Ward method as a hierarchical and k-means as a 
non-hierarchical method separately. We made fuzzy variables from return rate and semivariance. Risk 
measurement is very important in portfolio optimization. Semivariance is used as a downside risk 
measure. A multi-objective fuzzy mean-semivariance model is made. This model is solved with fuzzy 
technique programming. 

As shown in results, solutions with confidence level less than one are interval. These interval numbers 
helps investors to decide better. They know the range of return and risk and choose a number in 
investment proportion interval. It means that our methodology considers investors preferences. Results 
show that we cannot prefer Ward method rather than k-means and vice versa because the Pareto 
optimal solutions of clustering methods do not dominate each other. Because the clustering method was 
effective in our methodology, future studies can follow this methodology without clustering and 
compare the results and as another work can complete the optimization model and solve it using 
advanced techniques such as metaheuristics.  

 



  872

References  

Ammar, E., & Khalifa, H. A. (2003). Fuzzy portfolio optimization: A quadratic programming 
approach. Chaos, Solitons and Fractals, 18, 1045–1054. 

Anagnostopoulos, K. P., & Mamanis, G. (2010). A portfolio optimization model with three objectives 
and discrete variables. Computers & Operations Research, 37, 1285-1297. 

Basso, A., & Funari, S. (2001). A data envelopment analysis approach to measure the mutual fund 
performance. European Journal of Operational Research, 135, 477–492. 

Chang, C. H., Lin, J. J., Lin, J. H., & Chiang, M. C. (2010). Domestic open-end equity mutual fund 
performance evaluation using extended TOPSIS method with different distance approaches. Expert 
Systems with Applications, 37, 4642-4649. 

Chang, T. J., Yang, S. C., & Chang, K. J. (2009). Portfolio optimization problem in different risk 
measures using genetic algorithm. Expert Systems with Applications, 36, 10529-10537. 

Chen, L. H., & Huang, L. (2009). Portfolio optimization of equity mutual funds with fuzzy return rates 
and risks. Expert Systems with Application, 36, 3720-3727. 

Deb, G. S., & Banerjee, A. (2009). Downside risk analysis of Indian equity mutual funds: a value at 
risk approach. International Research Journal of Finance and Economics, 23, 216-230. 

Decker, R., & Lenz, H. J. (2007). Advances in Data Mining. Springer, New York. 
Jana, P., Roy, T. K., & Mazumder, S. K. (2009). Multi-objective possibilistic model for portfolio 

selection with transaction cost. Journal of Computational and Applied Mathematics, 228, 188-196. 
Larose, D. T. (2005). Discovering Knowledge in Data. New Jersey: John Wiley & Sons. 
Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance, 7, 77–91. 
Markowitz, H. M. (1959). Portfolio Selection: Efficient Diversification of Investments. New York: 

Wiley 
Mobius, M. (2007). Mutual Funds: An Introduction to the Core Concepts. Singapore: John Wiley & 

Sons (Asia) Pte Ltd. 
Murthi, B. P. S., Choi, Y. K., & Desai, P. (1997). Efficiency of mutual funds and portfolio performance 

measurement: A non-parametric approach. European Journal of Operational Research, 98, 408–
418. 

Sharpe, W. F. (1966). Mutual fund performance. Journal of Business, 39, 119–138. 
Terol, A. B., Gladish, B. P., Parra, M. A., & Uria, M. V. R. (2006). Fuzzy compromise programming 

for portfolio selection. Applied Mathematics and Computation, 173, 251-264.  
Tola, V., Lillo, F., Gallegati, M., & Mantegna, R. N. (2008). Cluster analysis for portfolio optimization. 

Journal of Economic Dynamics and Control, 32, 235-258. 
Treynor, J. (1965). How to rate management of investment funds. Harvard Business Review, 43, 63–75 
Vercher, E., Bermudez, J. D. & Segura, J. V. (2007). Fuzzy portfolio optimization under downside risk 

measures. Fuzzy Sets and Systems, 158, 769-782. 
 Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several Objective 

Functions. Fuzzy Sets and Systems, 1, 45-55. 
Zio, E.,  & Bazzo, R. (2010). Multi-objective optimization of the inspection intervals of a nuclear 

safety system: A clustering-based framework for reducing the Pareto Front. Annals of Nuclear 
Energy, 37, 798-812.  

 
 


	Multi-objective portfolio optimization of mutual funds under downside risk measure using fuzzytheory
	1. Introduction
	2. Definition indices
	3. Clustering
	4. Making fuzzy variables
	5. Fuzzy mean-Semivariance model
	6. Fuzzy programming technique
	7. Numerical example
	8. Conclusions
	References


