
* Corresponding author. Tel:+ 988716665813
E-mail: Alireza.eydi@uok.ac.ir (A. Eydi)

© 2012 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2012.08.002

International Journal of Industrial Engineering Computations 3 (2012) 767–776

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

A novel heuristic method to solve the capacitated arc routing problem

Alireza Eydi* and Leila Javazi

Faculty of Engineering, University of Kurdistan, Pasdaran Blvd., Post box no.: 416, Sanandaj, Iran

A R T I C L E I N F O A B S T R A C T

Article history:
Received 18 June 2012
Received in revised format
7 July 2012
Accepted July 31 2012
Available online
7 August 2012

 The capacitated arc routing problem is one of the most important routing problems with many
applications in real world situations such as snow removing, winter gritting, refuse collection, etc.
Since this problem is NP-hard, many of researchers have been developed numerous heuristics and
metaheuristics to solve it. In this paper, we propose a new constructive and improvement
heuristic in which forming a vehicle’s tour is based on choosing an unserved edge randomly as
current partial tour and then extending this partial tour from its both of end nodes base on four
effective proposed criteria. When the vehicle load is near its capacity, it should come back to the
depot immediately. Finally, the constructed tours are merged into more efficient and cheaper
tours. The quality of this new approach was tested on three standard benchmark instances and the
results were compared with some known existing heuristics and metaheuristics in the literature.
The computational results show an excellent performance of our new method.

© 2012 Growing Science Ltd. All rights reserved

Keywords:
Capacitated arc routing problem
Heuristic

1. Introduction

The capacitated arc routing problem (CARP) is one of the most important routing problems in
literature, and attracted interest of many researchers. It has numerous applications in real world
situations such as refuse collection (Dijkgraaf & Gradus, 2007), winter gritting (Eglese & Li, 1992),
snow removing (Labelle et al., 2002), inspection of gas pipeline (Han et al., 2004), street sweeping
(Tobin & Brinkmann, 2002), and electric meter reading (Stern & Dror, 1979). The CARP was first
introduced by Golden and Wong (1981) and deals with connected and undirected graph G= (V, E),
where V is the set of vertices (nodes) and E is the set of edges. Each edge of E has a definite travel cost
and some edges have positive demand, called required edges, which must be serviced by some vehicles
with limited capacity. All vehicles are identical and located at a single depot. The aim of CARP is to
design a set of vehicle tours of minimum total routing cost such that each tour starts and ends at the
depot, each required edge is serviced by exactly one vehicle, and the total demand serviced by any
vehicle most not exceed the vehicle’s capacity. Some instances (in small size) of CARP can be solved
for optimality by implementing exact methods such as branch and bound (Hirabayashi et al., 1992),
branch and cut and price algorithm (Aragão et al., 2006), and cutting plane algorithm (Belenguer &
Benavent, 2003). Wøhlk (2006) proposed a new lower bound, the Multiple Cuts Node Duplication

 768

Lower Bound, for the undirected CARP. However, the CARP is a NP-hard problem (Golden & Wong,
1981) and these exact methods are not able to solve the large-scale instances in polynomial time.
Therefore, due to the computational complexity of the problem, there have been remarkable attempts
by researchers in developing heuristic and metaheuristics algorithms to solve it. Tabu search is the first
metaheuristics proposed by Hertz et al., (2000). Here solutions breaking vehicle capacity are accepted
but penalized. Three improvement procedures (Shorten, Drop, Add) initially explained by Hertz et al.
(1999) and four new ones (Paste, Cut, Switch, and Postopt) are used. Lacomme et al. (2004a) proposed
a memetic algorithm to solve an extended version of the CARP; each required edge is represented by
two directions. The chromosomes are encoded as large tours. Each chromosome is evaluated optimally
using a splitting procedure, which partitions the large tour into feasible trips. Ant colony system
(Lacomme et al., 2004b) is one of the other metaheuristics in which two types of ant are used to work
through the problem. These are elitist ants that make the solutions converge towards a minimum cost
solution and non-elitist ants that guarantee diversification to prevent being trapped in a local minimum.
Beside metaheuristics, heuristics are better with required short CPU time. Furthermore, they are
implemented easier and provide a good initial solution to start of many metaheuristics. However,
metaheuristics give solutions with more quality. Augment-Merge (Golden & Wong, 1981), Path-
scanning (Golden et al., 1983), Double Outer Scan heuristic (Wøhlk, 2005), Ulusoy’s heuristic
(Ulusoy, 1985), Ellipse Rule based Path-scanning heuristic (Santos et al., 2009), and Construct-Strike
(Pearn, 1989) are some of the known heuristics to solve the CARP. For a detailed overview of the main
characteristics of the heuristics in the literature, the readers may refer to Wøhlk (2008). Yet, the
development of enhanced heuristics is an important research area for the CARP.

It is note that researchers try to develop various models of classical CARP and consequently develop
efficient heuristic and metaheuristic methods to solve these models. For example, recently Kirlik et al.
(2012) introduced a new model of CARP with deadheading demands and modified the Ulusoy’s
heuristic (Ulusoy, 1985) to solve it. Grandinetti et al. (2012) by giving an optimization-based heuristic
solved CARP with three objectives: the total transportation cost, the longest route cost, and the number
of vehicles. In addition, Salazar-Aguilar et al. (2012) proposed an adaptive large neighborhood search
heuristic for synchronized arc routing problem.

The main objective of the current research is to propose a new heuristic for classical CARP that
employs some ideas of “Double Outer Scan heuristic” and “Path-scanning whit Ellipse Rule heuristic”
to solve the problem. This proposed heuristic is based on selecting an unserved edge randomly, then
extending it by both of its end points, into a vehicle’s tour based on four effective criteria. When the
vehicle load is near its capacity or there is no qualified edge to add the current tour, vehicle should
return to the depot by using shortest path. Finally, in order to reduce the total cost and efficient usage of
vehicle capacity, the constructed tours are merged into shorter tours. The remainder of the paper is
structured as follows: A brief review about Double Outer Scan heuristic (DOS) and Ellipse Rule
heuristic based on Path-scanning (RSE-ER), is presented in section 2. In section 3, we describe our
heuristic method. Section 4 is devoted to computational results and experimental analysis. Finally,
some concluding remarks are stated in section 5.

2. Brief review on DOS and RSE-ER

In this section, we give a brief review of DOS and RSE-ER. Details of these methods can be found in
Wøhlk, (2005) and Santos et al. (2009), respectively. Double Outer Scan heuristic was introduced by
Wøhlk (2005) and combines the Augment-Merge algorithm and the Path-scanning method. Unlike the
Augment-Merge which always selects the edge that has the shortest path from the end points of the
current tour, here the neighbor edges is considered. In each iteration the unserved edge that is farthest
away from the depot is selected, and from this edge, vehicle scan in the Path-scanning heuristic way to
service the other edges, but unlike the Path-scanning heuristic, this done from both ends of the current
partial tour. Finally, the obtained tours are merged into shorter tours. Ellipse Rule based on path-
scanning heuristic is a modification of the path scanning algorithm in which, when the vehicle is near

A. Eydi and L.Javazi / International Journal of Industrial Engineering Computations 3 (2012)

769

the end of a route, in other words, when the vehicle load is around its capacity, the ellipse rule impels
the vehicle to service only arcs near the shortest path between the last serviced arc and the depot.

Furthermore, Path-scanning is based on construction of each tour by adding one edge to the partial tour
at a time. In order to choose the next edge, if the tie occurs, the five criteria (Golden et al., 1983)
including: 1) Minimize the distance to the depot; 2) Maximize the distance to the depot; 3) Minimize
the distance per unit demand ; 4) Maximize the distance per unit demand; 5) Use criterion 1, if the
vehicle is more than half-full, otherwise use criterion 2; are used and among the obtained five solutions,
the best one is selected as the final solution. Pearn (1989) used a modified path-scanning heuristic
based on random selection of the five criteria. Belenguer et al. (2006) suggested another path-scanning
based upon random selection of the tied arcs. Recently, Santos et al. (2009) indicate that the solutions
achieved by the random selection of tied arcs are similar quality to those identified by the five criteria
of Golden et al. (1983) and Pearn (1989). So Santos et al. (2009) used random-add approach in the
Path-scanning with Ellipse Rule heuristic.

In this paper, by employing some ideas of DOS and RSE-ER, we propose a new robust heuristic
method. At each iteration, this heuristic chooses one arc, randomly. This arc forms the current partial
tour. Like DOS, we extend the current partial tour by both of its end points, but here we use four
proposed criteria that will be presented in the next section. We choose those required edges that are
incident to current partial tour. In RSE-ER, Santos et al. (2009) used ellipse rule, which forces the
vehicle to serve only edges near the shortest path between the last serviced edge and the depot, when
the vehicle is near the end of a route. However, here if the vehicle load is near its capacity or there is no
qualified arc to add the current partial tour, we force the vehicle to return to the depot immediately then
the chance of saving cost will be increased in merging phase.

3. Problem solving technique

3.1. Problem definition and notations

In this section, we introduce the problem definition and notations to facilitate the description of the
heuristic algorithm. Let G=(V,E) be a connected and undirected graph, where 1 2{ , ,..., }nV v v v is the

set of nodes and {(,) , , }i j i jE v v v v V i j is the set of edges. Required edges are those with positive

demand and can be shown as RE E . Each edge Ee has a nonnegative travel cost () 0c e , and

each edge Re E is associated with a positive demand () 0q e . Node 1v denotes the depot where a

fleet of identical vehicles with limited capacity (max{ (), })RQ Q q e e E , are located at 1v . We

represent each edge in two directions; positive (from iv to jv) and negative (from jv to iv) directions

that so called arcs. In order to facilitate, the arcs with positive direction is denoted by p and the arcs
with negative direction is denoted by n. Each arc has a tail node t and a head node h. Further, the
opposite direction of arc is denoted by inv. Hence, the following features are notable:

() () ; () () ; () (); () (); () ; () ;i jh p t n v t p h p v c p c n q p q n inv p n inv n p

Let td be the total demand, nre be the number of required edges, rvc be the remaining vehicle capacity,
and be a real parameter. The goal of the problem is to determine a set of least-cost tours of all edges

Re E such that each required edge is served by one vehicle exactly, and the total vehicle load at any

time does not exceed the definite capacity Q.

3.2. Description of the new heuristic algorithm

In this section, we present our new heuristic algorithm. As mentioned before, by employing some
features of DOS, and RSE-ER with some differences, we present a new robust heuristic. Like DOS, we

 770

extend the current partial tour by its both of ends, but here, we use four new criteria, and like RSE-ER,
we force the vehicle back to the depot when its load is near its capacity, but without serving any edge
between the last served edge and the depot. Finally, we merge the obtained tours in order to reduce the
total cost. Our algorithm can be described as follows:

Step 1. Select one unserved arc randomly, and remove its inverse from unserved arc set. This arc forms
the current partial tour.

Suppose that the selected arc is in positive direction and is shown as selP , so let selhp and seltp be the

first and last arcs of the current partial tour, respectively.

Step 2. Set { }ip as those tail-neighbor and head-neighbor required arcs with selP such that head-

neighbor 1{ () () }i i selp t p h hp v and tail-neighbor 1{ () () }i i selp h p t tp v . For the sake of

convenience, we abbreviate tail-neighbor and head-neighbor by tngb and hngb, respectively. Fig. 1.a
shows this step of the algorithm.

Step 3. Randomly choose one of following four criteria with equal probability. Then based on the
result, sort the arcs in tngb and hngb sets.

1) Minimum distance from (), i ih p p hngb to depot and Minimum distance from (), i it p p tngb to

depot;
2) Maximum distance from (), i ih p p hngb to depot and Maximum distance from (), i it p p tngb to

depot;
3) Minimum distance from (), i ih p p hngb to depot and Maximum distance from (), i it p p tngb to

depot;
4) Maximum distance from (), i ih p p hngb to depot and Minimum distance from (), i it p p tngb to

depot;

Step 4. If both hngb set and tngb set are not empty and /rvc td nre , choose the first arc with
smaller demand to serve and add it to current partial tour, and then if /rvc td nre , add another arc
in another set with greater demand to current partial tour, else back to the depot (see fig. 1.b). By this
idea, we force the vehicle to services just those unserved edges that are incident to the current partial
tour. Consequently, more of the required edges are served by the vehicle in its tour. Note that when one
arc is selected to receive a service, its inverse must be deleted from unserved arcs.

 If hngb(tngb) set is empty, in other words: there are no unserved edges incident to current partial tour
by its head, and the remaining capacity of vehicle rvc is greater than /td nre , vehicle services the
first arc in obtained tngb(hngb) set in step 2, otherwise it should return to the depot.

Step 5. Update hngb set and tngb set, in other words subject to new obtained current partial tour, form
the hngb and tngb again.

Step 6. Repeat step 3 to step 5 until vehicle load approaches its capacity or both hngb and tngb,
becoming empty. Then connect the ()selh hp and ()selt tp to the depot by using the shortest path.

Step 7. Repeat step 1 to step 6 until all required edges are served.

Step 8. Merge the constructed tours into less cost tours, subject to vehicle capacity.

Step 9. Repeat steps 1 to 8 for maximum iteration (stopping criterion) determined by decision maker;
finally the best solution is selected.

A. Eydi and L.Javazi / International Journal of Industrial Engineering Computations 3 (2012)

771

This algorithm is same as explained before if the selected arc in step 1 be in negative direction, and just
p in all notations is replaced with n (e.g., selp is replaced with seln). Fig. 2 presents the general

structure of the proposed heuristic:

Fig. 1.a. Presentation of forming the hngb set and tngb set Fig. 1.b. Presentation of determining the ()selhp and ()seltp

Fig. 2. General structure of the proposed heuristic

4. Computational results

In this section, we show our computational results. The aforementioned algorithm has been coded in C#
language and run on a laptop computer with CPU clock frequency 2.66 GHz and 4Gbyte of RAM. In
order to evaluate the performance of our heuristic method, we have implemented it on three standard
CARP benchmark test sets. The first set contains 23 gdb instances introduced by DeArmon (1981) with

While (maximum iteration to be reached){
 While (all reqired edges to be served){
 Select a required arc to be served
 Form tngb and hngb

 While (/ or rvc td nre hngb tngb){

 Choose one of four proposed criteria and sort hngb and tngb based on

 If (/ rvc td nre hngb tngb){

 Between the first required arcs of two sets hngb and tngb,
 serve that with less demand

 If (/rvc td nre)
 Serve another arc of another set
 update hngb and tngb
 }

 else if (/ rvc td nre hngb tngb){

 Serve the first arc of tngb
 update hngb and tngb
 }

 else if (/ rvc td nre hngb tngb)

 Serve the first arc of hngb
 update hngb and tngb
 }
 else connect the constructed partial tour to depot from both of its end
 by shortest path
 }
 }
 Merge constructed tours
}

 , sel selhp tp

Depot
hngb Set tngb Set

selhp

tngb Set Depothngb Set

seltp

 772

7-27 nodes and 11-55 edges, all of which is required. This set contains 25 instances but gdb8 and gdb9
contain inconsistencies, and they have never been used in the literature. The second set consists of 34
val problems proposed by Benavent et al. (1992) whose ranges are from 24 to 50 nodes and fro 34 to 97
edges. The last set is bigger which is based on a winter gritting problem (Eglese, 1994) proposed by
Belenguer and Benavent (2003) and includes 24 egl instances with 77–140 nodes and 98–190 edges
and in some instances not all edges are required. All these set of benchmark are available at
http://www.uv.es/~belengue/carp.html. In our implementation, we have followed the practice of Santos
et al. (2009). Hence, the parameter is set at 1.5.

The results of our algorithm for three sets of benchmark (gdb, val, egl files) are given in table 1 to 3,
respectively. In all these tables, the row named “our algorithm” shows the obtained results by proposed
algorithm, over 10 runs for 1000, 10000 and 20000 iterations. Note that due to the large size instances
in egl files, the row in Table 3 is divided to 10000, 20000 and 25000 iterations. We have compared our
computational results with four known heuristics; Path-scanning heuristic (PS) (Golden et al., 1983),
Augment-Merge heuristic (AM) (Golden & Wong, 1981), Double Outer Scan heuristic (DOS) (Wøhlk,
2005), and Ellipse Rule based Path Scanning heuristic (with 10000 iteration) (RSE-ER (10000))
(Santos et al. 2009) and also three of the well known metaheuristics including Tabu Search algorithm
(CARPET) (Hertz et al., 2000), Memetic algorithm (MA) (Lacomme et al., 2004a) and Ant Colony
Optimization algorithm (BACO) (Lacomme et al., 2004b). The columns headed “Ave”, “#Opt”, “Dev
(%)”, and “Time” (en second) provide, for each row, average value, number of optimal results, average
percentage deviation above lower bound, and running time, respectively. (i.e., deviation above lower
bound is equal to ((cos) / 100t LB LB). The details of results can be found in Appendix A.

Table 1
Computational results for gdb files

 Ave
 Cost Time(s) #Opt Dev (%)

1000 257.4 0.09 16 1.16
Our algorithm: 10000 256.7 0.84 16 1

20000 256.4 1.75 16 0.87
 PS 279.6 * 3 8.27
Heuristics: AM 286.2 * 2 10.92
 DOS 313.6 * 0 24.07
 RSE-ER(10000) * 1.25 * 1.13
 CARPET 255 3.6 18 0.48
Metaheuristics: MA 253.9 2.12 21 0.15
 BACO 254.4 7.43 18 0.28
 “*” unknown values

Table 2
Computational results for val files

 Ave
 Cost Time(s) #Opt Dev (%)

1000 360.2 0.36 7 4.3
Our algorithm: 10000 357.4 3.71 7 3.6

20000 355.6 7.16 7 3.2
 PS 415 * 0 20.35
Heuristics: AM 402.1 * 0 16.4
 DOS 484.2 * 0 35
 RSE-ER(10000) * 2.6 * 4.46
 CARPET 350.8 25.55 15 1.9
Metaheuristics: MA 344.8 15.34 22 0.61
 BACO 346.4 82.9 19 0.89
 “*” unknown values

A. Eydi and L.Javazi / International Journal of Industrial Engineering Computations 3 (2012)

773

Table 3
Computational results for egl files

 Ave
 Cost Time(s) Dev (%)

 10000 10421.5 35.18 8.1
Our algorithm: 20000 10391.4 70.41 7.8
 25000 10375.04 88.15 7.7
 PS 12958.2 * 33.6
Heuristics: AM 11866.2 * 25.8
 DOS 10633 * 11.4
 RSE-ER(10000) * 9.216 8.95
 CARPET 10074 * 4.74
Metaheuristics: MA 9834.1 210.8 2.47
 BACO 10033 702.4 4.1
 “*” unknown values

Note that in order to have a fair comparison, the running times are scaled for the 2.66 GHz computer
used in this paper, in other words we normalize the running times by multiplying with a CPU speed
ratio. Since MA of Lacomme et al. (2004a) and RSE-ER (10000) of Santos et al. (2009) was
implemented on 1 GHz Pentium III PC, the running times were multiplied by 0.4, and the running
times for CARPET scaled to 1 GHz Pentium III PC by Lacomme et al. (2004a); so they were
multiplied by 0.4 too. BACO of Lacomme et al. (2004b) was executed on an 800 MHz Pentium III PC;
so here the execution times are multiplied by 0.3. All running times are in seconds. The “*” symbol
indicate the values that we do not have any information about them, unfortunately.

4.1. Analysis of experiments

As it can be seen from Table 1, our proposed heuristic algorithm outperforms all Path-Scanning,
Augment-Merge, and Double Outer Scan heuristics. In all 1000, 10000, and 20000 iterations for the 16
problem instances, our algorithm reached the optimal solution, whereas PS and AM reached the 3 and 2
optimal solutions respectively, and DOS reached to no optimal solution. In addition, our proposed
heuristic algorithm with 10000 and 20000 iterations performs better than ERS-ER (10000) with the
routing cost. It is obvious the metaheuristics give the solutions with higher quality rather than
heuristics. For example, the ratio of average percentage deviation to LBs of our algorithm (20000) to
CARPET, MA and BACO are 1.8, 5.8 and 3.1 respectively, and prove that our approach has significant
advantages than other heuristic algorithms with quality of solutions. Table 2 shows the similar results
for val files. The best lower bound is obtained in 7 problem instances while the number of optimal
solution obtained by PS, AM and DOS is zero. Furthermore, average percentage deviation above the
LBs for our heuristic is less and is compatible with RSE-ER. Compared to CARPET, MA and BACO,
the quality of solutions with our heuristic (20000 iterations) is 1.68, 5.25 and 3.6 times better,
respectively. In Table 3, the computational results for egl files are reported. The egl files are much
harder than the previous files (gdb and val files), and lower bounds are never reached. Hence, we have
removed the column headed “#opt” from Table 3. Concerning the average percentage deviation to LBs,
one can see that our heuristic algorithm is superior to PS, AM, DOS and RSP-ER. Also, the solutions
obtained by our method are near to those obtained from CARPET, MA and BACO with total routing
cost and average results.

5. Conclusion

CARP is a NP-hard problem (Golden & Wong, 1981); consequently many of researchers attempt to
develop heuristics and metaheuristics to solve it. In this paper we attempt to incorporate ideas of both,
Double Outer Scan heuristic (Wøhlk, 2005) and Ellipse Rule based Path scanning heuristic (Santos et
al., 2009), to provide a new heuristic for the CARP that can be effective to generate an initial solution
in many kinds of metaheuristics. Our heuristic chooses an unserved edge randomly, and then extends it

 774

by both its end points based on four criteria that stated in section 3.2. If the remaining capacity of
vehicle is less than predefined value or there is no qualified edge to add the current tour, the vehicle
should return to the depot and a new tour is started. We implemented the new heuristic algorithm on
three set of standard instances (gdb, val and egl files) and compared our computational results with
some known heuristics (Path-scanning, Augment-Merge, Double Outer Scan and Ellipse Rule based
Path-Scanning) and metaheuristics(Tabu Search, Memetic Algorithm and Ant Colony Optimization
algorithm) that have been presented in the literature. In addition, we compared the results with best
lower bounds designed by Belenguer and Benavent (2003). Although the solution times of our heuristic
algorithm are rarely long, but subject to the quality of obtained solutions, one can disregards the
solution time. Our research is emblematic of that this new approach to solve the CARP is excellent, and
when the solution time is important, even it can be replaced metaheuristics methods. The results
indicate our approach can be used and developed to solve the other types of CARP in real-world
applications.

References

Aragão, M.P., Longo, H., & Uchoa, E. (2006). Solving capacitated arc routing problems using a

transformation to the CVRP. Computers & Operations Research, 33(6), 1823–1837.
Belenguer, J.M., & Benavent, E. (2003). A cutting plane algorithm for the Capacitated Arc Routing

Problem. Computers & Operations Research 30(5), 705-728.
Belenguer, J.M., Benavent, E., Lacomme, P., & Prins, C. (2006). Lower and upper bounds for the

mixed capacitated arc routing problem. Computers & Operations Research, 33, 3363–3383.
Benavent, E., Campos, V., Corberan, A., & Mota, E. (1992). The capacitated arc routing problem:

Lower bounds. Networks, 22, 669-690.
DeArmon, J.S. (1981). A comparison of heuristics for the capacitated Chinese postman problem.

Dissertation, University of Maryland.
Dijkgraaf, E., & Gradus, R. (2007). Fair competition in the refuse collection market. Applied Economic

Letters, 14(10), 701–704.
Eglese, R.W. (1994). Routing winter gritting vehicles. Discrete applied mathematics, 48(3), 231-244.
Eglese, R.W., & Li, L.Y.O. (1992). Efficient Routing for Winter Gritting. Journal of Operational

Research Society 43(11), 1031–1034.
Golden, B.L., DeArmon, J.S., & Baker, E.K. (1983). Computational experiments with algorithms for a

class of routing problems. Computers & Operations Research, 10, 47–59.
Golden, B.L., & Wong, R.T. (1981). Capacitated arc routing problems. Networks, 11, 305–315.
Grandinetti, L., Guerriero, F., Lagana, D., & Pisacane, O. (2012). An optimization-based heuristic for

the Multi-objective Undirected Capacitated Arc Routing Problem. Computers & Operations
Research, 39(10), 2300-2309.

Han, H.S., Yu, J.J., Park, C.G., & Lee, J.G. (2004). Development of inspection gauge system for gas
pipeline. Korean Society Mechanical Engineering International Journal, 18(3), 370–378.

Hertz, A., Laporte, G., & Mittaz, M. (2000). A tabu search heuristic for the capacitated arc routing
problem. Operations Research, 48(1), 129–135.

Hertz, A., Laporte, G., & Nanchen-Hugo, P. (1999). Improvement procedures for the undirected rural
postman problem. INFORMS Journal on Computing, 11(1), 53–62.

Hirabayashi, H., Saruwatari, Y., & Nishida, N. (1992). Tour construction algorithm for the capacitated
arc routing problems. Asia-Pacific Journal of Operations Research, 9, 155–175.

Kirlik, G., & Sipahioglu, A. (2012). Capacitated arc routing problem with deadheading demands.
Computers & Operations Research, 39(10), 2380-2394.

Labelle, A., Langevin, A., & Campbell, J.F. (2002). Sector design for snow removal and disposal in
urban areas. Socio-Economic Planning Sciences, 36(3), 183–202.

Lacomme, P., Prins, C., & Ramdane-Cherif, W. (2004a). Competitive memetic algorithms for arc
routing problems. Annals of Operation Research, 131, 159–185.

A. Eydi and L.Javazi / International Journal of Industrial Engineering Computations 3 (2012)

775

Lacomme, P., Prins, C., & Tanguy, A. (2004b). First competitive ant colony scheme for the CARP.
Lecture Notes in Computer Science, 3172, 426-427.

Pearn, W.L. (1989). Approximate solutions for the capacitated arc routing problem. Computers &
Operations Research, 16, 589-600.

Salazar-Aguilar, M.A., Langevin, A., & Laporte, G. (2012). Synchronized arc routing for snow
plowing operations. Computers & Operations Research, 39(7), 1432-1440.

Santos, L., Coutinho-Rodrigues, J.R., & Current, J.R. (2009). An improved heuristic for the capacitated
arc routing problem. Computers & Operations Research, 36(9), 2632–2637.

Stern, H.I., & Dror, M. (1979). Routing Electric Meter Readers. Computers & Operations Research
6(4), 209–223.
Tobin, G.A., & Brinkmann, R. (2002). The effectiveness of street sweepers in removing pollutants

from road surfaces in Florida. Journal of Environmental Science and Health (Part A) 37(9), 1687–
1700.

Ulusoy, G. (1985). The fleet size and mix problem for capacitated arc routing. European Journal of
Operational Research, 22, 329–337.

Wøhlk, S. (2008). A decade of capacitated arc routing. In: Golden B, Raghavan S, Wasil E, editors.
The vehicle routing problem: latest advances and new challenges. New York, USA: Springer, 29–
48.

Wøhlk, S. (2005). Contributing to arc routing. PhD thesis, University of Southern Denmark.
Wøhlk, S. (2006). New lower bound for the capacitated arc routing problem. Computers & Operations

Research, 33(12), 3458-3472.

Appendix A. Details of results

Tables A.1 to A.3 show a comparison between the obtained results by proposed heuristic and the
obtained results by some heuristic and metaheuristic algorithms reported in literature. In all these tables
the first column gives the name of instance. Columns labeled “|V|”and “| RE |” stands for the number of

vertices and required edges, respectively. The column headed “LB” shows the best lower bonds that
proposed by Belenguer and Benavent (2003). Note that the best obtained solution over 10 runs by our
algorithm has been selected as final solution. The times reported for CARPET and MA are those given
by Lacomme et al. (2004a), and for BACO are those presented by Lacomme et al. (2004b). These times
are scaled in tables 1 to 3 as described in section 4. Unfortunately, we do not have any information
about details of results of RSE-ER, so subject to Santos et al. (2009), we have only provided the
average of percentage deviation to LBs and average of running time in section 4.

Table A.1
Computational results for gdb filse

 Our algorithm
 Iteration=1000 10000 20000 Heuristics Metaheuristic

Instances |V| |ER| LB Cost Time Cost Time Cost Time PS AM DOS CARPET Time MA Time BACO Time
gdb1 12 22 316 316 0.05 316 0.45 316 0.9 345 351 370 316 3.15 316 0 316 0.5
gdb2 12 26 339 345 0.06 345 0.53 345 1.06 369 394 414 339 5.17 339 0.44 339 1.8
gdb3 12 22 275 275 0.05 275 0.5 275 1.01 284 338 354 275 0.07 275 0.06 275 0.5
gdb4 11 19 287 287 0.04 287 0.43 287 0.87 321 342 372 287 0.09 287 0 287 0.1
gdb5 13 26 377 383 0.06 383 0.54 383 1.09 429 383 501 377 5.59 377 0.11 377 2.2
gdb6 12 22 298 298 0.04 298 0.41 298 0.84 332 354 370 298 0.85 298 0.17 298 1.1
gdb7 12 22 325 325 0.05 325 0.48 325 0.96 359 359 368 325 0 325 0.05 325 0.1
gdb8 27 46 344 365 0.21 360 2.02 358 4.07 402 399 400 352 61 350 0.66 350 130.6
gdb9 27 51 303 331 0.21 327 2.07 322 4.12 374 369 375 317 53.91 303 7.09 306 330.1
gdb10 12 25 275 275 0.06 275 0.56 275 1.13 307 319 371 275 1.55 275 0.06 275 0.7
gdb11 22 45 395 395 0.2 395 2.03 395 4.11 451 457 515 395 2.29 395 1.26 395 7.3
gdb12 13 23 450 468 0.05 468 0.55 468 1.1 550 577 594 458 20.63 458 0.06 458 2.8
gdb13 10 28 536 548 0.07 544 0.68 544 1.37 562 586 641 544 2.42 536 7.42 542 26.6
gdb14 7 21 100 100 0.04 100 0.41 100 2.37 112 108 146 100 0.48 100 0.05 100 0.4
gdb15 7 21 58 58 0.04 58 0.4 58 0.8 58 58 74 58 0 58 0 58 0.2
gdb16 8 28 127 127 0.07 127 0.68 127 1.37 131 137 143 127 1.7 127 0.06 127 6.5
gdb17 8 28 91 91 0.07 91 0.65 91 1.32 91 91 109 91 0 91 0.05 91 0.2
gdb18 9 36 164 164 0.09 164 0.97 164 1.89 168 170 202 164 0.28 164 0.11 164 1.1
gdb19 8 11 55 55 0.02 55 0.2 55 0.41 55 63 73 55 0.2 55 0 55 0.2
gdb20 11 22 121 121 0.05 121 0.46 121 0.9 123 123 147 121 9.5 121 0.33 121 22.3
gdb21 11 33 156 156 0.09 156 0.9 156 1.8 162 160 181 156 1.13 156 0.17 156 8
gdb22 11 44 200 200 0.14 200 1.34 200 2.76 202 204 224 200 3.38 200 3.35 200 19.6
gdb23 11 55 233 237 0.2 235 2 235 4.07 243 241 269 235 34.37 233 51.19 235 7

 776

Table A.2
Computational results for val filse

 Our algorithm
 Iteration=1000 10000 20000 Heuristics Metaheuristic

Instances |V| |ER| LB Cost Time Cost Time Cost Time PS AM DOS CARPET Time MA Time BACO Time
val1a 24 39 173 173 0.14 173 1.39 173 2.91 197 194 240 173 0.02 173 0 173 0.1
val1b 24 39 173 179 0.12 177 1.32 177 2.57 199 200 243 173 9.26 173 8.02 173 120.6
val1c 24 39 235 260 0.13 258 1.39 256 2.74 321 298 284 245 93.2 245 0.27 245 13.1
val2a 24 34 227 227 0.1 227 1.05 227 2.06 258 263 317 227 0.17 227 0.05 227 2
val2b 24 34 259 260 0.09 260 0.97 260 1.96 296 311 363 260 13.02 259 0.22 259 8.4
val2c 24 34 455 482 0.1 476 1.07 463 2.11 538 533 533 494 31.66 457 8.08 457 135.1
val3a 24 35 81 81 0.1 81 1.05 81 2.1 92 84 102 81 0.77 81 0.05 81 1.2
val3b 24 35 87 88 0.09 88 0.94 88 1.95 107 90 115 87 2.79 87 0 87 3.6
val3c 24 35 137 146 0.1 143 1.02 142 1.99 155 160 157 138 41.66 138 0.49 138 10.6
val4a 41 69 400 400 0.36 400 3.3 400 6.87 490 435 577 400 28.32 400 0.72 400 15.3
val4b 41 69 412 432 0.34 422 3.43 422 6.65 478 641 596 416 75.66 412 1.21 412 117.1
val4c 41 69 428 461 0.33 456 3.03 448 6.35 518 491 593 453 70.06 428 19.11 430 285.4
val4d 41 69 520 578 0.36 572 3.55 574 7.02 662 653 660 556 233.56 530 6.37 539 315.9
val5a 34 65 423 433 0.29 433 2.9 433 5.68 498 502 637 423 3.8 423 1.86 423 49.5
val5b 34 65 446 460 0.25 453 2.77 451 5.26 509 487 588 448 41.4 446 1.04 446 24.3
val5c 34 65 469 492 0.24 483 2.72 483 5.1 600 550 680 476 53.27 474 0.44 474 200.3
val5d 34 65 571 647 0.29 636 2.87 624 5.41 821 726 791 607 224.11 581 11.32 597 193.8
val6a 31 50 223 223 0.19 223 1.91 223 4.26 243 252 294 223 3.89 223 0.17 223 3.8
val6b 31 50 231 242 0.18 242 1.93 241 3.42 282 258 314 241 26.94 233 6.48 233 78.4
val6c 31 50 311 334 0.19 334 2.14 327 4.04 391 370 364 329 85.18 317 52.23 317 91.6
val7a 40 66 279 279 0.45 279 4.43 279 9.05 358 329 393 279 6.59 279 4.66 279 11.2
val7b 40 66 283 287 0.44 293 4.41 286 8.28 345 335 397 283 0.02 283 0.44 283 6.6
val7c 40 66 333 352 0.36 348 3.59 344 7.52 417 405 409 343 121.44 334 60.53 334 569.3
val8a 30 63 386 386 0.29 386 2.9 386 6.07 445 411 556 386 3.84 386 0.66 386 15.4
val8b 30 63 395 404 0.26 403 2.68 403 5.57 499 425 572 401 81.46 395 9.95 395 259.5
val8c 30 63 517 588 0.27 578 2.75 579 5.28 613 645 660 533 147.4 528 62.83 534 358.1
val9a 50 92 323 325 0.9 324 9.51 324 18.48 388 367 458 323 28.51 323 18.29 323 969
val9b 50 92 326 329 0.83 327 8.83 327 17.1 388 373 467 329 59.89 326 29.39 326 1076.2
val9c 50 92 332 341 0.81 338 8.12 338 15.68 407 385 473 332 56.44 332 71.19 332 1368.5
val9d 50 92 382 431 0.72 420 7.24 424 13.57 503 457 507 409 353.28 391 211.13 404 634
val10a 50 97 428 434 0.83 433 8.44 432 15.57 471 471 587 428 5.52 428 25.48 428 341.8
val10b 50 97 436 448 0.78 448 7.81 448 14.4 471 471 598 436 18.43 436 4.67 437 683.4
val10c 50 97 446 470 0.73 466 7.74 464 13.43 509 497 601 451 93.47 446 17.3 448 515.8
val10d 50 97 524 575 0.71 570 7.14 562 13.11 641 603 652 544 156.31 528 215.04 536 916.1

Table A.3
Computational results for egl filse

 Our algorithm
 Iteration=10000 20000 25000 Heuristics Metaheuristic

Instances |V| |ER| LB Cost Time Cost Time Cost Time PS AM DOS CARPET MA Time BACO Time
e1-a 77 51 3515 3779 4.08 3779 8.2 3779 10.33 3885 4939 4414 3625 3548 1.48 3548 70.7
e1-b 77 51 4436 4716 4.16 4715 8.4 4716 10.45 6601 5371 4770 4532 4498 48.39 4534 307.5
e1-c 77 51 5453 5884 4.09 5835 8.15 5855 10.17 6719 6827 6063 5663 5595 39.98 5647 159.1
e2-a 77 72 4994 5275 10.86 5302 21.7 5271 27.22 6199 6596 5778 5233 5018 20.6 5018 470.4
e2-b 77 72 6249 6670 10.64 6668 21.37 6652 26.83 7451 8372 6735 6422 6340 22.19 6401 406.4
e2-c 77 72 8114 8691 10.84 8700 21.5 8687 27.08 9532 10590 8934 8603 8395 27.52 8498 707.4
e3-a 77 87 5869 6136 20.81 6132 41.84 6117 52.37 6169 7643 6442 5907 5898 24.44 5934 609.8
e3-b 77 87 7646 8199 18.81 8144 37.54 8115 46.98 8510 9441 8107 7921 7816 173.18 7915 781.9
e3-c 77 87 10019 10775 17.48 10725 35.27 10695 44.06 12175 12657 11084 10805 10369 111.5 10402 226.7
e4-a 77 98 6372 6716 17.7 6702 35.32 6716 44.23 7410 8116 7322 6489 6461 275.5 6520 616.8
e4-b 77 98 8809 9505 16.84 9516 33.87 9460 42.58 9916 10302 9681 9216 9021 291.49 9234 839.8
e4-c 77 98 11276 12286 16.59 12276 33.18 12219 41.65 68226 13692 12404 11824 11779 77.83 11883 799.3
s1-a 140 75 4992 5256 6.99 5252 13.74 5252 17.6 5345 6512 5529 5149 5018 15.88 5049 1010.5
s1-b 140 75 6201 6706 6.94 6682 13.79 6684 17.26 6296 8552 6806 6641 6435 21.42 6541 2899.8
s1-c 140 75 8310 9001 6.42 8932 12.75 8904 15.77 8692 10608 9053 8687 8518 160.38 8561 2388.9
s2-a 140 147 9780 10685 80.91 10645 162.19 10716 203.16 10217 12097 11111 10373 9995 795.1 10368 4108
s2-b 140 147 12886 14015 68.46 13908 137.48 13848 172.7 14773 15249 14242 13495 13174 641.58 13676 5377.6
s2-c 140 147 16221 17732 60.67 17728 121.2 17755 151.51 17517 19767 17890 17121 16715 743.69 17115 3099.3
s3-a 140 159 10025 10939 84.31 10871 168.9 10857 211.14 11931 12544 11471 10541 10296 651.03 10619 1392.1
s3-b 140 159 13554 14645 70.26 14601 139.95 14657 176.02 13916 16116 14962 14291 14028 1043.6 14264 6568.6
s3-c 140 159 16969 18744 64.34 18639 131.13 18600 161.25 17740 20070 18563 17789 17297 622.58 17797 3160
s4-a 140 190 12027 13343 90.11 13356 179.15 13269 224.65 13596 14989 13962 13036 12442 1529.6 12868 8919.2
s4-b 140 190 15933 17817 78.2 17731 155.07 17675 195.52 16830 19249 17723 16924 16531 1184.5 17090 6360
s4-c 140 190 20179 22601 73.9 22554 148.03 22502 184.99 21351 24493 22142 21486 20832 1464.3 21314 4911.4

	A novel heuristic method to solve the capacitated arc routing problem
	1. Introduction
	2. Brief review on DOS and RSE-ER
	3. Problem solving technique
	3.1. Problem definition and notations
	3.2. Description of the new heuristic algorithm

	4. Computational results
	4.1. Analysis of experiments

	5. Conclusion
	References

