
* Corresponding author Tel +7405932478
E-mail: deering@ohio.edu (P. E. Deering)

© 2012 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2011.08.016

International Journal of Industrial Engineering Computations 3 (2012) 53–62

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Sufficient conditions for a flexible manufacturing system to be deadlocked

Paul E. Deering*

Department Engineering Technology and Management, Ohio University, Athens, OH, USA.

A R T I C L E I N F O A B S T R A C T

Article history:
Received 1 August 2011
Available online
10 August 2011

 In recent years, researchers have been interested in scheduling algorithms to avoid
deadlock in Flexible Manufacturing Systems (FMS). FMS are discrete event systems
characterized by the availability of resources to produce a set of products. Raw parts,
which belong to various product types, enter the system at discrete times and are
processed concurrently while sharing a limited number of resources. In such systems,
a situation may occur in which parts become permanently block. This is called
deadlock. This paper presents the sufficient conditions for deadlock to exist in a
FMS; it models a FMS using digraphs to calculate slack, knot, order and space; it
identifies three types of circuits that are fundamental in determining if a FMS is in
deadlock.

© 2012 Growing Science Ltd. All rights reserved

Keywords:
Deadlock
Deadlock avoidance algorithm
Flexible manufacturing system

1. Introduction

Moving the wrong part in a manufacturing system could place the live (deadlock-free) system into a
deadlocked state or dead state. The only recourse would be to manually resolve the deadlock and
reset the FMS to a live state. Clearly, avoiding deadlock altogether would lead to increased
production and decreased labor costs. To prevent manual deadlock resolution a Deadlock Avoidance
Algorithm (DAA) was developed in Deering (2008). The DAA did not allow the system to enter any
dead states and proved sufficient conditions for the system to be live. The DAA introduced the idea
of space. If space > 0 of all closed paths in the manufacturing then deadlock would be avoided. The
only problem was that some live states were detected dead states. See Fig. 1. The DAA in Deering
(2008) only proved sufficient conditions for a system to be live.

Fig. 1. Live states detected as dead

 54

This paper will prove sufficient condition for the manufacturing system to be dead and is the partial
results of Deering (2000). This paper is organized as follows: the first section discusses previous
research on deadlock in a FMS; the next section defines a mathematical model of a manufacturing
systems; circuit parameter slack, knot order and space is then defined; the next section introduces
three types of circuit uses to proves sufficient conditions for a manufacturing systems to be dead.

2. Related research

Many researchers use Petri nets Banaszak and Krogh (1990), Barkaoui and Abdallah (1995), Hsieh
and Chang (1994), Viswanadham et al. (1990), Zhou and DiCesare (1992), Zhou (1996) and Ezpeleta
et al. (1995) as a formalism to describe deadlock in a manufacturing system. Banaszak and Krogh
(1990) proposed a deadlock avoidance algorithm (DAA), which developed a restriction policy based
on production route information to guarantee that no circular wait situations would occur. Their DAA
is sufficient for avoiding deadlocks but is not an optimal solution. Viswanadham et al. (1990)
developed a deadlock avoidance algorithm that employed a look-ahead policy. This algorithm did not
detect all deadlocked states, and the authors suggested using a recovery mechanism in case of system
deadlock. Zhou and DiCesare (1992) and Zhou (1996) generalized the sequential mutual exclusions
(SME) and parallel mutual exclusions (PME) concepts and derived the sufficient conditions for a
Petri net (PN) containing such structures to be bounded, live, and reversible. In general, PN solutions
are suitable for manufacturing systems that contain few resources but become very complicated for
larger systems.

Another formalism to describe the manufacturing system is to use graphs Cho et al. (1995), Fanti et
al. (1996), Judd and Faiz (1995), Judd et al. (1997), Lipset et al. (1997), Zhou (1996), Ezpeleta et al.
(1995), Wenle et al. (2003), Deering (2000), Fanti et al. (1995), Wenle et al. (2004), Wenle et al.
(2007). In this approach, the vertices represent resources and the edges represent part flows between
resources. Wysk et al. (1991) were the first to develop a specialized directed graphical structure
called a wait relation graph (WRG) to model a manufacturing system. They developed a string
manipulation procedure that yields a set of control actions to detect and recover from primary
deadlock. Cho et al. (1995) used system status graphs to develop the concept of simple and non-
simple bounded circuits with empty and non-empty shared resources to detect part flow deadlock and
impending part flow deadlock. This method introduced the concept of a bounded circuit to detect
deadlock. The method detected deadlock based on characteristics of this bounded circuit. The
methods in references Wysk et al. (1991) and Cho et al. (1995) could only handle single capacity
resources. Fanti et al. (1996) used a graph called working procedure digraph and developed a simple
graph-theoretic method for deadlock detection and recovery in systems with multiple capacity
resources. This algorithm did not prevent deadlock from occurring either, but it suggested a suitable
recovery strategy.

Judd and Faiz (1995) expanded on the original formulation proposed by reference Wysk et al. (1991)
and the first to define slack, order, and space to avoid deadlock. This method provided sufficient
conditions for deadlock by satisfying a set of linear inequalities. Lipset et al. (1997) extended Judd et
al. (1995) to precisely quantify necessary and sufficient conditions for deadlock to exist. In this
research, they redefined the order of a knot, defined a special state called an evaluation state, and
defined the concept of order reduction. The approach was to put the system into an evaluation state
and then compute the order. Deering (2000) and Deering (2008) improved Lipset et al. (1997) by
further refining the order of a knot and evaluation state, as well as eliminating the need for order
reduction. Wenle et al. (2003) developed a deadlock avoidance algorithm (DAA) based on Lipset et
al. (1997) and Deering (2000), which avoided deadlock and was executed in polynomial time. Wenle
et al. (2004) expanded upon Wenle et al. (2003) and Deering (2000) to quantify the sufficient
conditions for a system state to be live and derived the liveness necessary and sufficient conditions
for an evaluation state. Wenle and Judd (2007) extended Wenle et al. (2004) to allow choice in
process flow or flexible part routing.

P. E. Deering / International Journal of Industrial Engineering Computations 3 (2012)

55

3. Modeling a manufacturing system

An FMS consists of a set, R, of finite resources, such as robots, buffers, and machines, which produce
a finite set, P, of products. Each resource Rr ∈ has a capacity of cap(r) units that can perform the
required operations. The capacity function can be extended to a set of resources, that is:

.anyfor),cap()cap(11
1

RRrR
Rr

⊆= ∑
∈∀

 (1)

For each product Pp ∈ , the process plan rrrp m…21)plan(= defines the sequence of resources that
are required to produce p. Resource mr is the terminal resource for product p. It is assumed that all
process plans are fixed, finite, and sequential. A part is an instance of a product that flows through the
system. At any given time, a manufacturing system is working on a set Q of parts. The function

)(class q returns the product p to which part q belongs.

A manufacturing system can be represented by a WRG,),(AVG = . Each vertex represents a
resource; that is, V=R. A directed arc is drawn from vertex 1r to vertex 2r , if 2r immediately follows

1r in at least one process plan. Each arc will be labeled with the part(s) that will flow through it. A
subgraph GARG ⊂=),(111 of an WRG consists of a subset of the resources and arcs of G, so that all
the arcs in 1A connect resources in 1R . The union (intersection), denoted by)(2121 GGGG ∩∪ , of
two subgraphs is the union (intersection) of the component resource and arc sets. A path

),(pp ARP = is a subgraph whose resources and arcs can be ordered in the list nn raarar 12211 −… ,

where each arc in the list connects the resources on either side. When specifying a path, writing the
arcs is redundant. Therefore, only the resources will be enumerated when a path is defined. A simple
path is a path with no repeated elements in the ordered list. A closed path is a path with the same first
and last element. A simple circuit is a closed path with no repeated elements in the ordered list,
except the first and last elements.

The function)(n q returns a positive integer that represents the position in)](class[plan q of the
operation that is currently processing q. When a new part q is added to the system, then 1)(n =q . As
the part is moved from resource to resource according to its plan,)(n q is incremented until it reaches
the end of its plan and exits the system. The state n of a manufacturing system is a vector containing
the current n(q) for all Qq∈ . A state n of a manufacturing system is live if a sequence of part
movements exist that will empty the system. A state n of a manufacturing system is dead, or
deadlocked, if it is not live. Given a manufacturing system),(ARG = , let Aa ∈ and Rr∈ . Then,
the function)(tail a returns the resource at the tail of the given arc; the function)head(a returns the
resource at the head of the arc. A unit of the resource)(tail ar = is said to be committed to arc a if it
is processing a part q whose next resource in its process plan is)(head a . It is important to note that
the number of resource units committed to the outgoing arcs of r can be less than the number of busy
units. This happens when some of the busy units are being used for terminal operations. A resource
unit is free if it is not committed to an arc; by this definition, a busy unit that is not committed is still
termed free. A resource is free if any of its units are free. A resource is empty if it contains no parts.
The commitment function),com(na returns the number of resource units that are committed to arc a
when the system is in state n. The commitment function is extended to a set of arcs as follows:

AAnanA
Aa

⊆= ∑
∈∀

11 anyfor),,(com),com(
1

 (2)

 56

A part is enabled if either the next resource in its process plan contains at least one resource unit that
is not busy, or the part is in the last step of its process plan. Suppose that the system is in state 0n ;
there exists an arc a such that resource)head(2 ar = is free and the part in the resource)tail(1 ar = is
committed to a. Then, when 1r finishes its operation, this part can be moved to resource 2r . This
process is called propagation. The symbol kn is used to denote the state of the system after the thk
propagation. A part q in WRG G can be shifted to resource r if it can be propagated to r without
propagating any other part in G. A part q in WRG G is said to have a free exit if it can shift its
terminal resource mr in G.

4. Slack, knot, order, and space

This section will summarize the major concepts and results from Judd and Faiz (1995), Judd et al.
(1997), Lipset et al. (1997), and Deering (2000). This section defines the concept of slack, knot,
order, and space. The slack is the number of free resource units available for parts to flow on a
subgraph.

 Definition 1: The slack of any subgraph GARG ⊆=),(111 is given by

),com()cap(),slack(111 nARnG −= . (3)

A closed path c in a WRG G is in primary deadlock in state n if 0),slack(=nc .

Definition 2: Let 1c and 2c be any two closed paths in a WRG of a manufacturing system. If 21 cc ∩
consists of exactly one resource with a capacity of one, then this resource is called a knot with respect
to 21 cc ∪ .

Definition 3: Let 1c and 2c be two closed paths in a WRG G. Path 1c is connected to 2c if
021 ≠∩ cc and a part currently exists in the system that must propagate from 1c to 2c without

leaving 21 cc ∪ .

Definition 4: Given two closed paths 1c and 2c , then 1c and 2c are cross-connected if 1c is
connected to 2c and 2c is connected to 1c .

Definition 5: Let the closed path c in state n consist of two closed paths, 1c and 2c , such that
21 ccc ∪= and kcc =∩ 21 , where k is a knot. The order of knot k with respect to the closed path c

in state n is defined as:

⎭
⎬
⎫

⎩
⎨
⎧

=
otherwise. ,0

 connected. cross are and if ,1
),,(order 21 cc

nck
(4)

The order of any simple circuit is zero.

Definition 6: Let c be a closed path in a WRG G in state n that contains m knots. Then, the order of c
is given by:

∑
=

=
m

i
i ncknc

1

),,order(),order(

(5)

Definition 7: Let c be a closed path in a WRG G of a manufacturing system in state n. The free space
on a closed path c is the difference between the slack and the order:

P. E. Deering / International Journal of Industrial Engineering Computations 3 (2012)

57

G),(order),(slack),(space Ccncncnc ∈∀−= (6)

where GC is the set of all closed paths in G. The following theorem proves that if all closed paths of a
WRG G have space greater than zero, G is live.

Theorem 1: Let GC be the set of all closed paths in a non-empty WRG G in state n. If,

GCcnc ∈∀> 0),space((7)

then G is live.

Proof: See Deering (2000).

5. Sufficient conditions for a system to be dead

The previous section proved sufficient conditions for a manufacturing system to be live; that is, if the
space of all closed paths in a manufacturing system is greater than zero, then the system is live. This
section will prove sufficient conditions for a manufacturing system to be dead. Unfortunately, this
cannot be proven in the general case, since there is insufficient information in the WRG to determine
these conditions. However, when the system is in a special system state called an evaluation state, it
can be shown that a manufacturing system is dead if one of the closed paths equals zero. The
following example will demonstrate this more clearly.

Example 1: Let the WRG G in Figure 2 be in state n . Suppose that the process plans for parts a, b
and c appear as presented in Table 1. Assume that the state of the system is

1] 1, 1,[)](),(),([== bnbnann . Table 2 depicts the order and space computations for this system.

Table 1
Process plans for example 1
Part Process Plan
a 432 rrr
b 134 rrr
c 1321 rrrr

c1

r2

r4r1

bc2

c a

bb,c

b,c a

a,c

c
r3

a

Fig. 2. Manufacturing system for example 1

Table 2
Order and space computations for example 1

Circuit Order Space
1c 0 1

2c 0 1

21 cc ∪ 1 0

Since the space of the union between 1c and 2c is zero, the method previously presented in Deering
(2008) cannot conclude whether the system is live or dead. This revised method will show that the
order in which parts flow through order-one knots is required to describe sufficient conditions for a

 58

dead system. For example, knowing that parts a and b must pass through 3r before any other parts
can leave 1c and 2c and that the space of the union between 1c and 2c is zero, will allow researchers
to know that the system in Fig. 1 to be dead. This section will contain three parts: the first section
shows necessary and sufficient conditions which render basic closed path as dead; the next two
sections show sufficient conditions for deadlock of chained and complex closed paths.

5.1 Basic closed paths

Definition 8: A basic closed path c is a closed path in a WRG G in state n such that 0),(order =nc .

Theorem 1: Given a basic closed path)(R,Ac = in state n. If 0),space(=nc then c is dead.

Proof: See Deering (2000).

Theorem 1 allows us to conclude that space greater than zero of a basic closed path is necessary and
sufficient for the system to be live. The next section addresses a particular closed path that contains
order-one knots.

5.2 Chained closed paths

This section defines a chained closed path and introduces a special state called an evaluation state. A
series of definitions, some lemmas and a theorem will prove that if a chained closed path is in an
evaluation state and its space is equal to zero, then the chained closed path is dead.

Definition 9: A chained closed path c is a closed path containing one or more order-one knots with
respect to c, such that c can be decomposed into a set of basic closed paths which intersect at only the
order-one knots.

The following is a simple example of a chained closed path:

Example 2: Consider the manufacturing system in Figure 3. Assume that all a part types flow to the
right from 1c to 3c , and that all b part types flow to the left from 3c to 1c . In this state, resources 2r
to 3r are order-one knots. The manufacturing system can be decomposed into three simple circuits,

1c , 2c and 3c . Let 321 cccc ∪∪= . In this example, c is a chained closed path, since c can be
decomposed into basic closed paths so that each circuit intersects each other at only the order-one
knots (i.e. 221 rcc =∩ and 332 rcc =∩).

c1 c2

r1 r2 r4

c3a

r3

b
a a

bbb

a

ab

Fig. 3. A chained closed path

The following example will help the reader conceptualize the need for an evaluation state:

Example 3. Suppose that a part exists in all the resources shown in Figure 4 except 4r . Each part is
committed to the outgoing arc of its resource. Assume that all part a types must flow to circuit 2c
before completion and parts 1d and 2d must flow to circuit 1c before completion. Call this state n.
This state may, or may not, be dead, depending on the ultimate destination of part b in the resource 7r .

Case 1. Suppose part b must move to resource 4r and then to 5r and exit the system. Clearly, in this
case, state n is a live state.

P. E. Deering / International Journal of Industrial Engineering Computations 3 (2012)

59

Case 2. Suppose part b must flow to 4r and commit to circuit 1c . Then state n is a dead state.

c1 c2

r4

r2

r1

r7

r6

r5

r8

case 1
b exit

case 2
b flow to c1 to exit

b

d1

d2
a1

a3

a2

Fig. 4. Manufacturing system for example 3

To distinguish and to evaluate these two cases, the dynamics of the part crossing through the knot
should be analyzed more closely. Notice that in both cases, all part a’s must cross knot 4r before any
other part on 1c can leave 1c . But the part crossing dynamics are different on circuit 2c in the two
cases. Notice that in case 1, part b can leave circuit 2c before part 1d must cross knot k. In other
words, a resource may become free on 2c before part 1d must cross the knot. In this state, we
conclude that state n is not in an evaluation state. The method in Deering (2008) cannot determine if
deadlock exists by computing the space in state n. Notice that in Case 2, part b must cross knot 4r
before any other part can leave 2c . In this situation, no part can escape 2c before the crossing must
occur. The state of the system in case 2 is considered to be an evaluation state. These ideas
motivated the following definitions.

Definition 10: Let 1c and 2c be two closed paths in a WRG G such that kcc =∩ 21 where k is an
order-one knot. If a part q on 1c propagates to k and commits to an arc on 2c , then q is said to cross
knot k.

Definition 11: A basic closed path in a WRG G is always in an evaluation state.

Definition 12: An empty chained closed path in state n is in an evaluation state.

Definition 13: Let a non-empty chained closed path c be in state n. A chained closed path c can be
divided into two closed paths, 1c and 2c , at any order-one knot k such that kcc =∩ 21 . Then chained
closed path c is in an evaluation state if

1. all order-one knots are empty, and
2. for each order-one knot k, two parts, 1q and 2q exist, such that

a. part 1q must cross from 1c to 2c before any other part can leave 1c , and 2c is in an
evaluation state after the move; and

b. part 2q must cross from 2c to 1c before any other part can leave 2c , and 1c is in an
evaluation state after the move.

The system in Example 2 is in an evaluation state. Resources 2r and 3r are order-one knots. For
order-one knot 2r , part a must cross from 1c to 32 cc ∪ before any other part can leave 1c , and part b
must cross 32 cc ∪ to 1c before any other part can leave 32 cc ∪ . For order-one knot 3r , part a must

 60

cross from 21 cc ∪ to 3c before any other part can leave 21 cc ∪ and part b must cross 3c to 21 cc ∪
before any other part can leave 3c . After moving either part a or part b, both 32 cc ∪ and 21 cc ∪ are
in evaluation states.

The next lemma will show how the parts are committed when a chained closed path is in an
evaluation state.

Lemma 1: Given a chained closed path),(ARc = in a WRG G that is in an evaluation state n,
0),(=ncspace if, and only if, all order-one knots are empty in c and all other resources in c are filled

and committed to resources on c.

Proof: See Deering (2000).

The next two lemmas are preliminary results that are required to prove the final theorem of this
section.

Lemma 2: Given a chained closed path c that is in an evaluation state n, if 0),space(=nc then a part
q exists such that when it is moved, it will fill an order-one knot and commit an outgoing arc of that
knot on c.

Proof: See Deering (2000)

Lemma 3: Given a non-empty chained closed path c that is in an evaluation state 0n , if
0),(space 0 =nc then propagating any part will create a chained closed path 2c such that cc ⊂2 and
0),(space 12 =nc .

Proof: See Deering (2000)

Definition 14: If any subgraph in a WRG G is dead, then G is dead.

Theorem 2: Given a non-empty chained closed path c that is in an evaluation state 0n , if
0),(space 0 =nc , then c is dead.

Proof: See Deering (2000)

5.3 Chained closed paths

Closed paths that are not basic closed paths or chained closed paths are classified as complex closed
paths. This section will introduce complex closed paths. It will also be shown, if a complex closed is
in an evaluation state and it contains a path with space equal to zero, then this is sufficient for
determining if the system is dead. We will first define a complex closed path and its various
components, then follow these definitions with an example.

Definition 15: A complex closed path is a closed path that contains one or more order one knots that
is not a chained closed path.

Definition 16: A complex path can be decomposed into two paths, one being a chained closed path
and the other is called the auxiliary closed path. The intersection of the auxiliary closed path
intersects and the chained closed path must contain one or more order one knots of the chained path.

Definition 17: A bypass path is the portion of the auxiliary path that does not intersect the chained closed path.

Definition 18: The first arc on the bypass path is a bypass arc.

P. E. Deering / International Journal of Industrial Engineering Computations 3 (2012)

61

Consider the following example.
Example 4: Suppose that the system in Figure 5 has the following parts and process plans as depicted in Table 3.

Table 3
Process plans for example 4
Part Process plan
a 4321 rrrr
b 1624 rrrr
d 1653 rrrr

Assume that the system is in state]2,3,1,1,3[)](),(),(),(),([2121 == dndnbnanann .

r5

r4r2r1

r3
r6

c1 c2

c3d1

bb,d
a

a

a
a

dd

d

b

b

abd2

a1

a2

Fig. 5. Complex closed path for example 4

The system consists of three simple closed paths: 16211 rrrrc = , 24322 rrrrc = , and 2165323 rrrrrrc = . The

1),,(order 212 =∪ nccr . Clearly, the manufacturing system in Figure 5 is not a basic closed path. The
system cannot be a chained closed path either since 321)(ccc ∩∪ is not a knot. According to
Definition 15, the system in Figure 5 is a complex closed path. The complex closed path can be
decomposed into a chained closed path, (i.e., 21 cc ∪ , and an auxiliary closed (i.e., 3c). Closed path

3c is an auxiliary closed path since the intersection of 3c and the chained closed path 21 cc ∪ contain
the order-one knot 3r . The simple path 653 rrr is a bypass path that joins 1c and 2c together. Arc ba
on resource 3r is a bypass arc since it leaves 3r along the auxiliary closed path 3c . We next define the
evaluation state for a complex closed path.

 Definition 19: A complex closed path in a WRG G is in an evaluation state if its bypass arcs are not
committed.

Definition 20: An empty subgraph that is a complex closed path in a WRG G in state n is in an
evaluation state.

Definition 21: A WRG G is in an evaluation state if all closed paths in G are in an evaluation state.
The system in Example 4 is in an evaluation state. This is because part 1a in resource 3r is not
committed to the bypass arc ba . The chained closed path 21 cc ∪ is in as evaluation state per
Definition 13. The space of the chained closed path 21 cc ∪ is zero. Clearly, the system is dead. The
next theorem proves this concept in general.

Theorem 3: Given a complex closed path pc that is in an evaluation state 0n , if any chained closed
path pcc ⊂* has 0)*,(0 =ncspace , then pc is dead.
Proof: See Deering (2000).

 62

6. Conclusion

Three types of closed paths were identified to prove sufficient conditions for a manufacturing system
to be dead. A special state called an evaluation state was introduced. It was showed that if a basic,
chained or complex closed path that is in an evaluation state with space=0 then the system is dead.
Unfortunately, determining if a closed path is in an evaluation state is a problem. The problem is
there is insufficient information in the WRG to determine if a system is in an evaluation state. This is
a topic of future research.

References

Banaszak, Z., & Krogh, B. (1990). Deadlock avoidance in flexible manufacturing systems with concurrently

competing process flows. IEEE Trans. on Robotics and Auto., 6(6), 724–733.
Barkaoui, K. and I.B. Abdallah. (1995). A deadlock method for a class of FMS, Proceedings of the 1995 IEEE

Int. Conf. On Systems, Man and Cybernetics, 4119–4124.
Cho, H., Kumaran, T. K., & Wysk, R. (1995). Graph-theoretic deadlock detection and resolution for flexible

manufacturing systems. IEEE Trans. on Robotics and Auto., 11(3) 550–527.
Deering, E. P. (2000). Necessary and sufficient conditions for deadlock in manufacturing systems. PhD

Dissertation, Ohio University.
Deering, E. P. (2008). A simple deadlock avoidance algorithm in flexible manufacturing systems.

International Journal of Modern Engineering, 9(1) 19-26.
Ezpeleta, J., Colom, J., & Martinez, J. (1995). A petri net based deadlock prevention policy for flexible

manufacturing systems. IEEE Trans. on Robotics and Automation, 11(2), 173–184.
Fanti, M.P., Maione, B., Mascolo, S., &Turchiano, B. (1995). control polices conciliating deadlock avoidance

and flexibility in FMS resource allocation. IEEE Symposium on Emerging Technologies and Factory
Automation, 1, 343–351.

Fanti, M., Maione, G., & Turchiano, B. (1996). Deadlock detection and recovery in flexible production
systems with multiple capacity resources. Industrial Applications in Power Systems Computer Science and
Telecommunications Proceedings of the Mediterranean Electrotechnical Conference, 1, 237–241.

Hsieh, F., & Chang, S. (1994). Dispatching-driven deadlock avoidance controller synthesis for flexible
manufacturing systems. IEEE Transaction on Robotics and Automation, 10(2), 196–209.

Judd, R. P., & Faiz, T. (1995). Deadlock detection and avoidance for a class of manufacturing systems.
Proceedings of the 1995 American Control Conference, 3637–3641.

Judd, R. P., Deering, P., & Lipset, R. (1997). Deadlock detection in simulation of manufacturing systems.
Proceedings of the 1997 Summer Computer Simulation Conference, 317–322.

Lipset, R., Deering, P., & Judd, R. P. (1997). Necessary and sufficient conditions for deadlock in
manufacturing systems. Proceedings of the 1997 American Control Conference, 2,1022–1026.

Lipset, R., Deering, P., & Judd, R. P. (1998). A stack-based algorithm for deadlock avoidance in flexible
manufacturing systems. Proceedings of the 1998 American Control Conference.

Viswanadham, N., Narahari, Y., & Johnson, T. (1990). Deadlock prevention and deadlock avoidance in
flexible manufacturing systems using petri net models. IEEE Transaction on Robotics and Automation,
6(6), 713–723.

Wysk R., Yang, N., & Joshi, S. (1991). Detection of deadlocks in flexible manufacturing systems. IEEE
Transactions Robotics and Automation, 7(6), 853–858.

Wenle, Z., Judd, R.P., & Deering, P. (2003). Evaluating order of circuits for deadlock avoidance in a flexible
manufacturing system. Proceedings of the 2003 American Control Conference, 3679–3683.

Wenle, Z., Judd, R.P., & Deering, P. (2004). Necessary and sufficient conditions for deadlocks in flexible
manufacturing systems based on a digraph model. Asian Journal of Controls, 6(2) 217–228.

Wenle, Z., & Judd, R. P. (2007). Evaluating order of circuits for deadlock avoidance in a flexible
manufacturing system. Asian Journal of Controls, 9(2), 111–120.

Zhou, M., & DiCesare, F. (1992). Parallel and sequential mutual exclusion for petri net modeling of
manufacturing systems with shared resources, IEEE Transaction on Robotics and Automation, 7(4), 550–
527.

Zhou, M. (1996). Generalizing parallel and sequential mutual exclusions for petri net synthesis of
manufacturing systems, IEEE Symposium on Emerging Technologies and Factory Automation, 1 49–55.

	Sufficient conditions for a flexible manufacturing system to be deadlocked
	1. Introduction
	2. Related research
	3. Modeling a manufacturing system
	4. Slack, knot, order, and space
	5. Sufficient conditions for a system to be dead
	5.1 Basic closed paths
	5.2 Chained closed paths
	5.3 Chained closed paths

	6. Conclusion
	References

