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 In recent years, researchers have been interested in scheduling algorithms to avoid 
deadlock in Flexible Manufacturing Systems (FMS).  FMS are discrete event systems 
characterized by the availability of resources to produce a set of products.  Raw parts, 
which belong to various product types, enter the system at discrete times and are 
processed concurrently while sharing a limited number of resources.  In such systems, 
a situation may occur in which parts become permanently block.  This is called 
deadlock.  This paper presents the sufficient conditions for deadlock to exist in a 
FMS; it models a FMS using digraphs to calculate slack, knot, order and space; it 
identifies three types of circuits that are fundamental in determining if a FMS is in 
deadlock. 
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1. Introduction 

Moving the wrong part in a manufacturing system could place the live (deadlock-free) system into a 
deadlocked state or dead state.  The only recourse would be to manually resolve the deadlock and 
reset the FMS to a live state.  Clearly, avoiding deadlock altogether would lead to increased 
production and decreased labor costs.  To prevent manual deadlock resolution a Deadlock Avoidance 
Algorithm (DAA) was developed in Deering (2008).  The DAA did not allow the system to enter any 
dead states and proved sufficient conditions for the system to be live.  The DAA introduced the idea 
of space.  If space > 0 of all closed paths in the manufacturing then deadlock would be avoided.  The 
only problem was that some live states were detected dead states. See Fig. 1.  The DAA in Deering 
(2008) only proved sufficient conditions for a system to be live.  

 
Fig. 1. Live states detected as dead 
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This paper will prove sufficient condition for the manufacturing system to be dead and is the partial 
results of Deering (2000).  This paper is organized as follows:  the first section discusses previous 
research on deadlock in a FMS; the next section defines a mathematical model of a manufacturing 
systems; circuit parameter slack, knot order and space is then defined; the next section introduces 
three types of circuit uses to proves sufficient conditions for a manufacturing systems to be dead. 

2. Related research  

Many researchers use Petri nets  Banaszak and Krogh (1990), Barkaoui and Abdallah (1995), Hsieh 
and Chang (1994), Viswanadham et al. (1990), Zhou and DiCesare (1992), Zhou (1996) and Ezpeleta 
et al. (1995) as a formalism to describe deadlock in a manufacturing system. Banaszak and Krogh 
(1990) proposed a deadlock avoidance algorithm (DAA), which developed a restriction policy based 
on production route information to guarantee that no circular wait situations would occur. Their DAA 
is sufficient for avoiding deadlocks but is not an optimal solution. Viswanadham et al.  (1990) 
developed a deadlock avoidance algorithm that employed a look-ahead policy. This algorithm did not 
detect all deadlocked states, and the authors suggested using a recovery mechanism in case of system 
deadlock. Zhou and DiCesare (1992) and Zhou (1996) generalized the sequential mutual exclusions 
(SME) and parallel mutual exclusions (PME) concepts and derived the sufficient conditions for a 
Petri net (PN) containing such structures to be bounded, live, and reversible. In general, PN solutions 
are suitable for manufacturing systems that contain few resources but become very complicated for 
larger systems. 

Another formalism to describe the manufacturing system is to use graphs Cho et al.  (1995), Fanti et 
al. (1996), Judd and Faiz (1995), Judd et al. (1997), Lipset et al. (1997), Zhou (1996), Ezpeleta et al. 
(1995), Wenle et al. (2003), Deering (2000), Fanti et al. (1995), Wenle et al. (2004), Wenle et al. 
(2007). In this approach, the vertices represent resources and the edges represent part flows between 
resources.  Wysk et al. (1991) were the first to develop a specialized directed graphical structure 
called a wait relation graph (WRG) to model a manufacturing system. They developed a string 
manipulation procedure that yields a set of control actions to detect and recover from primary 
deadlock. Cho et al. (1995) used system status graphs to develop the concept of simple and non-
simple bounded circuits with empty and non-empty shared resources to detect part flow deadlock and 
impending part flow deadlock. This method introduced the concept of a bounded circuit to detect 
deadlock. The method detected deadlock based on characteristics of this bounded circuit. The 
methods in references Wysk et al. (1991) and Cho et al. (1995) could only handle single capacity 
resources. Fanti et al. (1996) used a graph called working procedure digraph and developed a simple 
graph-theoretic method for deadlock detection and recovery in systems with multiple capacity 
resources. This algorithm did not prevent deadlock from occurring either, but it suggested a suitable 
recovery strategy. 

Judd and Faiz (1995) expanded on the original formulation proposed by reference Wysk et al. (1991) 
and the first to define slack, order, and space to avoid deadlock. This method provided sufficient 
conditions for deadlock by satisfying a set of linear inequalities. Lipset et al. (1997) extended Judd et 
al. (1995) to precisely quantify necessary and sufficient conditions for deadlock to exist. In this 
research, they redefined the order of a knot, defined a special state called an evaluation state, and 
defined the concept of order reduction. The approach was to put the system into an evaluation state 
and then compute the order.  Deering (2000) and Deering (2008) improved Lipset et al.  (1997) by 
further refining the order of a knot and evaluation state, as well as eliminating the need for order 
reduction.  Wenle et al. (2003) developed a deadlock avoidance algorithm (DAA) based on Lipset et 
al. (1997) and Deering (2000), which avoided deadlock and was executed in polynomial time. Wenle 
et al. (2004) expanded upon Wenle et al. (2003) and Deering (2000) to quantify the sufficient 
conditions for a system state to be live and derived the liveness necessary and sufficient conditions 
for an evaluation state.  Wenle and Judd (2007) extended Wenle et al. (2004) to allow choice in 
process flow or flexible part routing. 
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3. Modeling a manufacturing system 

An FMS consists of a set, R, of finite resources, such as robots, buffers, and machines, which produce 
a finite set, P, of products. Each resource Rr ∈  has a capacity of cap(r) units that can perform the 
required operations. The capacity function can be extended to a set of resources, that is: 

.anyfor),cap()cap( 11
1

RRrR
Rr

⊆= ∑
∈∀

 (1)

For each product Pp ∈ , the process plan  rrrp m…21)plan( = defines the sequence of resources that 
are required to produce p. Resource mr  is the terminal resource for product p. It is assumed that all 
process plans are fixed, finite, and sequential. A part is an instance of a product that flows through the 
system. At any given time, a manufacturing system is working on a set Q  of parts. The function 

)( class q  returns the product p to which part q belongs. 

A manufacturing system can be represented by a WRG, ),( AVG = . Each vertex represents a 
resource; that is, V=R.  A directed arc is drawn from vertex 1r  to vertex 2r , if 2r  immediately follows 

1r  in at least one process plan. Each arc will be labeled with the part(s) that will flow through it. A 
subgraph GARG ⊂= ),( 111  of an WRG consists of a subset of the resources and arcs of G, so that all 
the arcs in 1A  connect resources in 1R .  The union (intersection), denoted by )( 2121 GGGG ∩∪ , of 
two subgraphs is the union (intersection) of the component resource and arc sets. A path 

),( pp ARP =  is a subgraph whose resources and arcs can be ordered in the list nn raarar 12211 −… , 

where each arc in the list connects the resources on either side. When specifying a path, writing the 
arcs is redundant. Therefore, only the resources will be enumerated when a path is defined. A simple 
path is a path with no repeated elements in the ordered list. A closed path is a path with the same first 
and last element. A simple circuit is a closed path with no repeated elements in the ordered list, 
except the first and last elements. 

The function )(n q  returns a positive integer that represents the position in )](class[plan q  of the 
operation that is currently processing q. When a new part q  is added to the system, then 1)(n =q . As 
the part is moved from resource to resource according to its plan, )(n q  is incremented until it reaches 
the end of its plan and exits the system. The state n of a manufacturing system is a vector containing 
the current n(q) for all Qq∈ . A state n of a manufacturing system is live if a sequence of part 
movements exist that will empty the system. A state n of a manufacturing system is dead, or 
deadlocked, if it is not live. Given a manufacturing system ),( ARG = , let  Aa ∈  and Rr∈ . Then, 
the function )(tail a  returns the resource at the tail of the given arc; the function )head(a  returns the 
resource at the head of the arc. A unit of the resource )(tail ar =  is said to be committed to arc a if it 
is processing a part q whose next resource in its process plan is )(head a . It is important to note that 
the number of resource units committed to the outgoing arcs of r can be less than the number of busy 
units. This happens when some of the busy units are being used for terminal operations. A resource 
unit is free if it is not committed to an arc; by this definition, a busy unit that is not committed is still 
termed free. A resource is free if any of its units are free. A resource is empty if it contains no parts. 
The commitment function ),com( na  returns the number of resource units that are committed to arc a 
when the system is in state n. The commitment function is extended to a set of arcs as follows: 

AAnanA
Aa

⊆= ∑
∈∀

11 anyfor),,(com),com(
1

 (2)
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A part is enabled if either the next resource in its process plan contains at least one resource unit that 
is not busy, or the part is in the last step of its process plan. Suppose that the system is in state 0n ; 
there exists an arc a such that resource )head(2 ar =  is free and the part in the resource )tail(1 ar =  is 
committed to a. Then, when 1r  finishes its operation, this part can be moved to resource 2r . This 
process is called propagation. The symbol kn  is used to denote the state of the system after the thk  
propagation. A part q in WRG G  can be shifted to resource r if it can be propagated to r without 
propagating any other part in G.  A part q in WRG G is said to have a free exit if it can shift its 
terminal resource mr  in G. 

4. Slack, knot, order, and space 

This section will summarize the major concepts and results from Judd and Faiz (1995), Judd et al. 
(1997), Lipset et al. (1997), and Deering (2000).  This section defines the concept of slack, knot, 
order, and space. The slack is the number of free resource units available for parts to flow on a 
subgraph. 

 Definition 1:  The slack of any subgraph GARG ⊆= ),( 111   is given by 

),com()cap(),slack( 111 nARnG −= . (3)

A closed path c in a WRG G is in primary deadlock in state n if 0),slack( =nc .         

Definition 2: Let 1c  and 2c  be any two closed paths in a WRG of a manufacturing system. If 21 cc ∩  
consists of exactly one resource with a capacity of one, then this resource is called a knot with respect 
to 21 cc ∪ .             

Definition 3: Let 1c  and 2c  be two closed paths in a WRG G. Path 1c  is connected to 2c  if 
021 ≠∩ cc  and a part currently exists in the system that must propagate from 1c  to 2c  without 

leaving 21 cc ∪ .                

Definition 4: Given two closed paths 1c  and 2c , then 1c  and 2c  are cross-connected if 1c  is 
connected to 2c  and 2c  is connected to 1c .              

Definition 5: Let the closed path c in state n consist of two closed paths, 1c  and 2c , such that 
21 ccc ∪=  and kcc =∩ 21  , where k is a knot. The order of knot k with respect to the closed path c  

in state n is defined as: 

⎭
⎬
⎫

⎩
⎨
⎧

=
otherwise. ,0

 connected. cross are   and  if ,1
),,(order 21 cc

nck  
(4)

The order of any simple circuit is zero.               

Definition 6: Let c be a closed path in a WRG G in state n that contains m knots. Then, the order of c 
is given by:  

∑
=

=
m

i
i ncknc

1

),,order(),order(
 

(5)

Definition 7: Let c be a closed path in a WRG G of a manufacturing system in state n. The free space 
on a closed path c is the difference between the slack and the order: 
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G  ),(order),(slack),(space Ccncncnc ∈∀−= (6)

where GC  is the set of all closed paths in G. The following theorem proves that if all closed paths of a 
WRG G have space greater than zero, G is live.  
 

Theorem 1: Let GC  be the set of all closed paths in a non-empty WRG G in state n. If, 

GCcnc ∈∀> 0),space( (7)

then G is live. 

Proof: See Deering (2000).               

5. Sufficient conditions for a system to be dead 

The previous section proved sufficient conditions for a manufacturing system to be live; that is, if the 
space of all closed paths in a manufacturing system is greater than zero, then the system is live.  This 
section will prove sufficient conditions for a manufacturing system to be dead.  Unfortunately, this 
cannot be proven in the general case, since there is insufficient information in the WRG to determine 
these conditions.  However, when the system is in a special system state called an evaluation state, it 
can be shown that a manufacturing system is dead if one of the closed paths equals zero.  The 
following example will demonstrate this more clearly. 

Example 1:  Let the WRG G in Figure 2 be in state n .  Suppose that the process plans for parts a, b 
and c appear as presented in Table 1.  Assume that the state of the system is 

1] 1, 1,[)](),(),([ == bnbnann .  Table 2 depicts the order and space computations for this system. 

Table 1   
Process plans for example 1 
Part Process Plan 
a  432 rrr  
b  134 rrr  
c  1321 rrrr  

 

c1

r2

r4r1

bc2

c a

bb,c

b,c a

a,c

c
r3

a

 
Fig. 2.  Manufacturing system for example 1 

Table 2   
Order and space computations for example 1 

Circuit Order Space
1c  0 1 

2c  0 1 

21 cc ∪  1 0 
 

 

Since the space of the union between 1c  and 2c  is zero, the method previously presented in Deering 
(2008) cannot conclude whether the system is live or dead.  This revised method will show that the 
order in which parts flow through order-one knots is required to describe sufficient conditions for a 
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dead system.  For example, knowing that parts a and b must pass through 3r  before any other parts 
can leave 1c  and 2c  and that the space of the union between 1c  and 2c  is zero, will allow researchers 
to know that the system in Fig. 1 to be dead. This section will contain three parts: the first section 
shows necessary and sufficient conditions which render basic closed path as dead; the next two 
sections show sufficient conditions for deadlock of chained and complex closed paths. 

5.1 Basic closed paths 

Definition 8:  A basic closed path c  is a closed path in a WRG G in state n such that 0),(order =nc . 

Theorem 1:  Given a basic closed path )(R,Ac =  in state n.  If 0),space( =nc  then c is dead. 

Proof:  See Deering (2000). 

Theorem 1 allows us to conclude that space greater than zero of a basic closed path is necessary and 
sufficient for the system to be live.  The next section addresses a particular closed path that contains 
order-one knots. 

5.2 Chained closed paths 

This section defines a chained closed path and introduces a special state called an evaluation state.  A 
series of definitions, some lemmas and a theorem will prove that if a chained closed path is in an 
evaluation state and its space is equal to zero, then the chained closed path is dead. 

Definition 9:  A chained closed path c is a closed path containing one or more order-one knots with 
respect to c, such that c can be decomposed into a set of basic closed paths which intersect at only the 
order-one knots. 

The following is a simple example of a chained closed path: 

Example 2:  Consider the manufacturing system in Figure 3.  Assume that all a part types flow to the 
right from 1c  to 3c , and that all b part types flow to the left from 3c  to 1c .  In this state, resources 2r  
to 3r  are order-one knots. The manufacturing system can be decomposed into three simple circuits, 

1c , 2c  and 3c .  Let  321 cccc ∪∪= .  In this example, c is a chained closed path, since c can be 
decomposed into basic closed paths so that each circuit intersects each other at only the order-one 
knots (i.e. 221 rcc =∩  and 332 rcc =∩ ).  

c1 c2

r1 r2 r4

c3a

r3

b
a a

bbb

a

ab

 
Fig. 3.  A chained closed path 

 
The following example will help the reader conceptualize the need for an evaluation state:  

Example 3.  Suppose that a part exists in all the resources shown in Figure 4 except 4r .  Each part is 
committed to the outgoing arc of its resource.  Assume that all part a  types must flow to circuit 2c  
before completion and parts 1d  and 2d  must flow to circuit 1c  before completion.  Call this state n.  
This state may, or may not, be dead, depending on the ultimate destination of part b in the resource 7r . 

Case 1. Suppose part b must move to resource 4r  and then to 5r  and exit the system.  Clearly, in this 
case, state n is a live state. 



P. E. Deering / International Journal of Industrial Engineering Computations 3 (2012) 
 

59

Case 2. Suppose part b must flow to 4r  and commit to circuit 1c .  Then state n is a dead state. 

c1 c2

r4

r2

r1

r7

r6

r5

r8

case 1
b exit

case 2
b flow to c1 to exit

b

d1

d2
a1

a3

a2

Fig. 4.  Manufacturing system for example 3 

To distinguish and to evaluate these two cases, the dynamics of the part crossing through the knot 
should be analyzed more closely.  Notice that in both cases, all part a’s must cross knot 4r  before any 
other part on 1c  can leave 1c .  But the part crossing dynamics are different on circuit 2c  in the two 
cases.  Notice that in case 1, part b can leave circuit 2c  before part 1d  must cross knot k.  In other 
words, a resource may become free on 2c  before part 1d  must cross the knot.  In this state, we 
conclude that state n is not in an evaluation state.  The method in Deering (2008) cannot determine if 
deadlock exists by computing the space in state n.   Notice that in Case 2, part b must cross knot 4r  
before any other part can leave 2c .  In this situation, no part can escape 2c  before the crossing must 
occur.  The state of the system in case 2 is considered to be an evaluation state.  These ideas 
motivated the following definitions. 

Definition 10:  Let 1c  and 2c  be two closed paths in a WRG G such that kcc =∩ 21  where k is an 
order-one knot.  If a part q on 1c  propagates to k and commits to an arc on 2c , then q is said to cross 
knot k. 

Definition 11:  A basic closed path in a WRG G is always in an evaluation state. 

Definition 12:  An empty chained closed path in state n is in an evaluation state. 

Definition 13:  Let a non-empty chained closed path c be in state n.  A chained closed path c can be 
divided into two closed paths, 1c  and 2c , at any order-one knot k such that kcc =∩ 21 .  Then chained 
closed path c is in an evaluation state if  

1. all order-one knots are empty, and 
2. for each order-one knot k, two parts, 1q  and 2q  exist, such that 

a. part 1q  must cross from 1c  to 2c  before any other part can leave 1c , and 2c  is in an 
evaluation state after the move; and 

b. part 2q  must cross from 2c  to 1c  before any other part can leave 2c , and 1c  is in an 
evaluation state after the move. 

The system in Example 2 is in an evaluation state.  Resources 2r  and 3r  are order-one knots.  For 
order-one knot 2r , part a must cross from 1c  to 32 cc ∪  before any other part can leave 1c , and part b 
must cross 32 cc ∪  to 1c  before any other part can leave 32 cc ∪ .  For order-one knot 3r , part a must 
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cross from 21 cc ∪  to 3c  before any other part can leave 21 cc ∪  and part b must cross 3c  to 21 cc ∪  
before any other part can leave 3c .    After moving either part a or part b, both 32 cc ∪  and 21 cc ∪  are 
in evaluation states. 

The next lemma will show how the parts are committed when a chained closed path is in an 
evaluation state. 

Lemma 1:  Given a chained closed path ),( ARc =  in a WRG G that is in an evaluation state n, 
0),( =ncspace  if, and only if, all order-one knots are empty in c and all other resources in c are filled 

and committed to resources on c. 

Proof:  See Deering (2000). 

The next two lemmas are preliminary results that are required to prove the final theorem of this 
section. 

Lemma 2:  Given a chained closed path c  that is in an evaluation state n, if 0),space( =nc  then a part 
q exists such that when it is moved, it will fill an order-one knot and commit an outgoing arc of that 
knot on c. 

Proof: See Deering (2000) 

Lemma 3:  Given a non-empty chained closed path c  that is in an evaluation state 0n , if 
0),(space 0 =nc  then propagating any part will create a chained closed path 2c  such that cc ⊂2  and 
0),(space 12 =nc . 

Proof:  See Deering (2000) 

Definition 14:  If any subgraph in a WRG G is dead, then G is dead. 

Theorem 2:  Given a non-empty chained closed path c  that is in an evaluation state 0n , if 
0),(space 0 =nc , then c is dead. 

Proof:  See Deering (2000) 

5.3 Chained closed paths 

Closed paths that are not basic closed paths or chained closed paths are classified as complex closed 
paths. This section will introduce complex closed paths.  It will also be shown, if a complex closed is 
in an evaluation state and it contains a path with space equal to zero, then this is sufficient for 
determining if the system is dead. We will first define a complex closed path and its various 
components, then follow these definitions with an example. 

Definition 15:  A complex closed path is a closed path that contains one or more order one knots that 
is not a chained closed path. 

Definition 16:  A complex path can be decomposed into two paths, one being a chained closed path 
and the other is called the auxiliary closed path.  The intersection of the auxiliary closed path 
intersects and the chained closed path must contain one or more order one knots of the chained path. 

Definition 17:  A bypass path is the portion of the auxiliary path that does not intersect the chained closed path. 

Definition 18:  The first arc on the bypass path is a bypass arc. 
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Consider the following example. 
Example 4:  Suppose that the system in Figure 5 has the following parts and process plans as depicted in Table 3. 

Table 3   
Process plans for example 4 
Part Process plan 
a 4321 rrrr  
b 1624 rrrr  
d 1653 rrrr  
 

Assume that the system is in state ]2,3,1,1,3[)](),(),(),(),([ 2121 == dndnbnanann . 

r5

r4r2r1

r3
r6

c1 c2

c3d1

bb,d
a

a

a
a

dd

d

b

b

abd2

a1

a2

Fig. 5.  Complex closed path for example 4 
 
The system consists of three simple closed paths: 16211 rrrrc = , 24322 rrrrc = , and 2165323 rrrrrrc = .  The 

1),,(order 212 =∪ nccr .  Clearly, the manufacturing system in Figure 5 is not a basic closed path.  The 
system cannot be a chained closed path either since 321 )( ccc ∩∪  is not a knot.  According to 
Definition 15, the system in Figure 5 is a complex closed path.  The complex closed path can be 
decomposed into a chained closed path, (i.e., 21 cc ∪ , and an auxiliary closed (i.e., 3c ).  Closed path 

3c  is an auxiliary closed path since the intersection of 3c  and the chained closed path 21 cc ∪  contain 
the order-one knot 3r .  The simple path 653 rrr  is a bypass path that joins 1c  and 2c  together.  Arc ba  
on resource 3r  is a bypass arc since it leaves 3r  along the auxiliary closed path 3c . We next define the 
evaluation state for a complex closed path. 

 Definition 19: A complex closed path in a WRG G is in an evaluation state if its bypass arcs are not 
committed. 

Definition 20: An empty subgraph that is a complex closed path in a WRG G in state n is in an 
evaluation state. 

Definition 21:  A WRG G is in an evaluation state if all closed paths in G are in an evaluation state. 
The system in Example 4 is in an evaluation state.  This is because part 1a  in resource 3r  is not 
committed to the bypass arc ba .  The chained closed path 21 cc ∪  is in as evaluation state per 
Definition 13.  The space of the chained closed path 21 cc ∪  is zero.  Clearly, the system is dead.  The 
next theorem proves this concept in general. 

Theorem 3:  Given a complex closed path pc  that is in an evaluation state 0n , if any chained closed 
path pcc ⊂*  has 0)*,( 0 =ncspace , then pc  is dead. 
Proof:  See Deering (2000). 
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6. Conclusion 

Three types of closed paths were identified to prove sufficient conditions for a manufacturing system 
to be dead.  A special state called an evaluation state was introduced.  It was showed that if a basic, 
chained or complex closed path that is in an evaluation state with space=0 then the system is dead.  
Unfortunately, determining if a closed path is in an evaluation state is a problem.  The problem is 
there is insufficient information in the WRG to determine if a system is in an evaluation state.  This is 
a topic of future research. 
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