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 Transmission Network Expansion Planning (TNEP) is a basic part of power network 
planning that determines where, when and how many new transmission lines should 
be added to the network. So, the TNEP is an optimization problem in which the 
expansion purposes are optimized. Artificial Intelligence (AI) tools such as Genetic 
Algorithm (GA), Simulated Annealing (SA), Tabu Search (TS) and Artificial Neural 
Networks (ANNs) are methods used for solving the TNEP problem. Today, by using 
the hybridization models of AI tools, we can solve the TNEP problem for large-scale 
systems, which shows the effectiveness of utilizing such models. In this paper, a new 
approach to the hybridization model of Probabilistic Neural Networks (PNNs) and 
Harmony Search Algorithm (HSA) was used to solve the TNEP problem. Finally, by 
considering the uncertain role of the load based on a scenario technique, this proposed 
model was tested on the Garver’s 6-bus network. 
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1. Introduction 

Transmission network expansion planning (TNEP) is an important component of power-system 
planning. It determines the characteristics and performance of the future electric power network and 
influences power system operation directly. TNEP should satisfy required adequacy of the lines for 
delivering safe and reliable electric power to load centers during the planning horizon (Abdelaziz, 
2000; Binato et al., 2001; Shayeghi et al., 2008). Generally, TNEP can be classified as either static or 
dynamic. Static expansion determines where and how many new transmission lines should be added 
to the network up to the planning horizon. If in the static expansion the planning horizon is separated 
for several stages, we will have dynamic planning (Shayeghi et al., 2008; Silva et al., 2005; Latorre et 
al., 2003).Nowadays, there is a growing trend in the consumption of electrical energy, necessitating 
the optimum expansion planning of power networks more than ever. In particular, network 
transmission as an interface between production and resource centers has a fundamental role in the 
provision of reliable electricity. In this case, the transmission network expansion planning systems 
should provide for the optimal operation of network transmission. In order to achieve this objective, 
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the factors affecting the system must be evaluated. One of these factors is transmission network 
losses. Reduction of these losses has been a priority for transmission network owners. In most cases, 
expansion costs and network losses are in conflict with each other, so the component losses in TNEP 
would be a multi-criteria decision making (MCDM) function. Accordingly, the network planner can 
construct the lines with lower losses and higher cost or construct the lines with lower costs but higher 
losses (Shayeghi et al., 2008; Youseef, 2001). Another factor affecting TNEP is uncertainty over 
Garver's famous offering of innovative ideas in 1970, at the same time as oil-crisis planners were 
being considered. Uncertainty refers to unknowns in the accurate diagnosis and determination of a 
case or a quantity. Uncertainties in power systems include the inability to determine the exact 
parameters of the system that are otherwise feasible. Irrespective of the uncertainty in the parameters, 
the process of transmission network expansion planning is a technical, economic optimization 
problem. But if this uncertainty were considered, the transmission network expansion problem would 
be more complicated. Some of these uncertainties include: (1) uncertainty in load, (2) uncertainty in 
fuel availability, (3) uncertainty in factor prices and financial parameters (Silva et al., 2005; Choi et 
al., 2005). Generally, the TNEP problem is a complicated optimization problem in which various 
methods are used. GA (Abdelaziz, 2000; Sadegheih & Drake, 2008), decimal codification genetic 
algorithm (DCGA) (Sadegheih & Drake, 2008) and TS have been used to solve the TNEP problem. 
Different hybridization models of AI were used (Al-Saba & El-Amin, 2002) such as the ANN with a          
Multi-Layer Perceptron (MLP) model, GA and TS. Therefore, in this paper, as a new approach, the 
hybridization model probabilistic neural networks (PNNs) and harmony search algorithm (HSA) 
were used to solve the TNEP problem. Accordingly, different solving states were considered as the 
neural network input and suitable alternatives with the features, which will be described in the next 
section, were considered as the neural network outputs. Therefore, the neural network is trained and 
the best n-solution set are made. Then, per every random input, the model used one of the best n-
solution sets as an input for the HSA; network expansion was based on this. Also in this paper, DC 
load flow was used. Finally, by considering the uncertainty role in the load based on the scenario 
technique, this proposed model was tested on Garver’s 6-bus network.  

2. Mathematical model (objective function) of the TNEP problem 

As noted earlier, one of the expansion planning parameters which made optimal use of the 
transmission network losses was that its reduction is always a priority of network owners and the 
other one is uncertainties in load. On this basis, this study evaluated the role of losses in the network 
while considering these uncertainties, which was considered the objective function according to Eq. 
(1) (Shayeghi et al., 2008; Al-Saba & El-Amin, 2002). Also, Load Not Supply (LNS), in its normal 
state, is considered as a penalty factor in the objective function.  

,Objective Function :
( , ) 1

YN

ij ij k b
i j k b B

TEC CL n ALC rα
∈Ω = ∈

= × + + ×∑ ∑ ∑  (1)

where:   
8760Loss LossALC Loss C K= × × ×  (2)

2

( , )
ij ij

i j
Loss R I

∈Ω
= ×∑  (3)

where Ω is the set of all corridors, B the set of all buses, YN the expanded network adequacy (in 
years), TEC the total expansion cost of the network, ijCL the construction cost of each line in the 
corridor i-j, ALC the annual losses cost of the network, Loss the total losses of the network, br the 
load not supplied in bus b, α the transfer coefficient of the load not supplied to the cost, ijR the 
resistance of corridor i–j, ijI the flow current of the corridor i–j, LossC the cost of one kWh 

($US/KWh) and LossK the loss coefficient.  
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The LNS component is the over load of the expanded network lines which hasn't arrived at the load 
center because of the power flow limitation and some of the load isn't supply. So, relating this 
component's cost to the consumed load value in the planning horizon, is affected by the considered 
scenario for the load growth. Of course, the value of LNS evaluation is very difficult to discern so in 
this study, it was considered as an approximate value for the coefficientα . Also, the constraints of 
the TNEP problem were set according from Eq. (4) to Eq. (9). 

0Sf g d+ − =  (4)
0( )( ) 0ij ij ij ij i jf n nγ θ θ− + − = , ( , )i j∀ ∈Ω  (5)

0( )ij ij ijj
f n n fi ≤ + , ( , )i j∀ ∈Ω  

(6)

, , ,0 , ,ij ij j
n n n is integer variablei≤ ≤ , ( , )i j∀ ∈Ω  (7)

0( ) ,,ij ij ij ijY y n i jτ= − + ≠ , ( , )i j∀ ∈Ω  (8)
0

0 ( ) ,,ii i ij ij ij
j i

Y y y n i jτ
∈

= + + ≠∑ , ( , )i j∀ ∈Ω  (9)

whereS is the branch-node incidence matrix, f the active power matrix in each corridor with 
elements ijf , g the generation vector, d the demand vector, θ  the phase angle of each bus, ijγ the 
total admittance of circuits in the corridor i-j, 0

ijn the number of initial circuits in the corridor i-j, ijn

the number of new circuits added to the corridor i-j, ijn the maximum number of constructible circuits 

in the corridor i-j, ijf the maximum transmittable active power through the corridor i-j, 0
ijy the initial 

admittance of the corridor i-j, ijτ the new circuit admittance of the corridor i-j, 0iy the shunt 
admittance at bus i, and Y the bus admittance matrix of the system.  

Eq. (4) and Eq. (5) are DC load flow relationships and Eq. (6) points to the power-flow limitations. 
Eq. (7) requires transmission line expansion within the bounds of maximum line addition. Eq. (8) and 
Eq. (9) simply update the network admittance matrix with expansion (Eliassi et al., 2009). 

3. Probabilistic neural networks 

One of the most powerful neural networks is a Radial Basis Function (RBF). This network has more 
strategic benefits than perceptron neural networks (Christodoulou & Georgiopoulos, 2001). 
Probabilistic Neural Networks (PNNs) are a kind of radial-basis network suitable for classification 
problems. PNNs are feed forward networks which are built with three layers. The input layer, hidden 
layer and one output layer. In the hidden layer, an activation function is applied to the distance 
between the unknown input and the training example. PNNs estimate the probability density function 
for each class based on the training samples using similar probability density functions, which are 
calculated for each test vector.  

Vectors must be normalized prior to be input into the network for each dimension in the vector. The 
input layer is fully connected to the hidden layer, which has a node for each classification. Each 
hidden node calculates the dot product of the input vector and the sum is sent to the output layer, 
where the highest values win. Among the advantages offered by PNNs are that they train faster (more 
than five times faster than back propagation), they converge to a Bayesian classifier if enough 
training examples are provided, they enable fast incremental training and are robust to noise 
(MATLAB Neural Network Toolbox User’s Guide, 1998). 
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4. Harmony search algorithm 

In researching TNEP, problems are solved using many algorithms (Sadegheih & Drake, 2008). The 
Harmony Search Algorithm (HSA) was recently developed in an analogy with a music improvisation 
process, where music players improvise the pitches of their instruments to obtain better harmony. The 
steps in the procedure of harmony search are shown in Fig. 1. They are as follows (Vasebi et al., 
2007): 

• Step 1: Initialize the problem and algorithm parameters 
• Step 2: Initialize the harmony memory 
• Step 3: Improvise a new harmony 
• Step 4: Update the harmony memory 
• Step 5: Check the stopping criterion 

These steps are described in the next five subsections. 

 
Fig. 1. Optimization procedure of the HSA 

4.1. Initialize the problem and algorithm parameters 

In Step 1, the optimization problem is specified as follows: 

minimize :{ ( ) | }f x x X∈  (10)
Subject to : ( ) 0 ( ) 0g x and h x≥ − − =   
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where ( )f x is the objective function and ( )g x is the inequality constraint function, ( )h x is the 
equality constraint function, x is the set of each decision variable, ix , and X is the set of the 
possible range of values for each decision variable, that is iL i iUx x x≤ ≤ , where iLx and iUx  are the 
lower and upper bounds for each decision variable.  

The HS algorithm parameters are also specified in this step. These represent the Harmony Memory 
Size (HMS), or the number of solution vectors in the harmony memory, Harmony Memory 
Considering Rate (HMCR), Pitch Adjusting Rate (PAR), number of decision variables (N) and the 
number of improvisations (NI), or stopping criterion. The Harmony Memory (HM) is a memory 
location where all the solution vectors (sets of decision variables) are stored. This HM is similar to 
the genetic pool in the GA. Here, HMCR and PAR are parameters that are used to improve the 
solution vector. Both are defined in Step 3. 

4.2 Initialize the harmony memory 

In Step 2, the HM matrix is filled with as many randomly generated solution vectors as the HMS. 
1 1 1 1
1 2 1
2 2 2 2
1 2 1

HMS 1 HMS 1 HMS 1 HMS 1
1 2 1
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1 2 1

HM

N N

N N
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⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                                 (11) 

4.3 Improvise a new harmony 

A new harmony vector, ' ' ' '
1 2( , ,... )Nx x x x= , is generated based on three rules: (1) memory 

consideration, (2) pitch adjustment and (3) random selection. Generating a new harmony is called 
improvisation. In the memory consideration, the value of the first decision variable 1

1( )x for the new 
vector is chosen from any value in the specified HM range 1

1 1( )HMSx x− . Values of the other decision 
variables ' ' '

2 3( , ,... )Nx x x are chosen in the same manner. The HMCR, which varies between 0 and 1, is 
the rate of choosing one value from the historical values stored in the HM, while (1-HMCR) is the 
rate of randomly selecting one value from the possible range of values. 

{ }1 2
'

'

, , ,' , ,..., , with probability

, with probability (1-, , , )

HMS
i i i

i

i i

x x x x HMCRix
x X HMCR

⎧ ∈⎪⇐ ⎨
∈⎪⎩

                                                                 (12) 

For example, a HMCR of 0.85 indicates that the HS algorithm will choose the decision variable value 
from historically stored values in the HM with 85% probability or from the entire possible range with 
(100–85) 15% probability. Every component obtained by memory consideration is examined to 
determine whether it should be pitch-adjusted. This operation uses the PAR parameter, which is the 
rate of pitch adjustment as follows: 

' , with probabilit, ,
, ,

y
Pitch adjusting decision for

, with probabili
, ,

ty (1 ), ,i

Y es PAR
x

No PAR
⎧

⇐ ⎨ −⎩
                                              (13) 

4.4 Update harmony memory 
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The value of 1-PAR sets the rate of doing nothing. If the pitch adjustment decision. For '
ix is Yes, '

ix
is replaced as follows: 

' ' ()*,i ix x rand bw⇐ ±                                                                                                                                
(14) 

where bw is an arbitrary distance bandwidth and rand () is a random number between 0 and 1. In Step 
3, HM consideration, pitch adjustment or random selection is applied to each variable of the new 
harmony vector in turn. If the new harmony vector, ' ' ' '

1 2( , ,... )Nx x x x= , is better than the worst 
harmony in the HM, judged in terms of the objective function value, the new harmony is included in 
the HM and the existing worst harmony is excluded from the HM. 

4.5 Check stopping criterion 

If the stopping criterion (maximum number of improvisations) is satisfied, computation is terminated. 
Otherwise, steps 3 and 4 are repeated. 

5 Case Study 

The TNEP model and the proposed method for solving it was implemented in MATLAB software 
and the TNEP algorithm was applied to the Garver's 6-bus network, shown in Fig. 2. Also, 
characteristics of the transmission lines are presented in Table 1 (Shariati et al., 2008). The total 
number of possible corridors for TNEP are considered in nine corridors out of which three corridors 
are new. The new corridors are shown by the dotted lines in Fig. 2. On the other hand, in order to 
consider uncertainty in the load, two scenarios—10% (first scenario) and 12% (second scenario)—
have been predicted based on the scenario technique and by the same probability of occurrence for 
the load growth (Al-Saba & El-Amin, 2002). Theα coefficient is assumed to be $10 million/MW. 
The planning horizon is 10 years and the network losses across each year of the planning horizon are 
determined (Shayeghi et al., 2008). Also in this paper, three expansion alternatives are suggested (see 
Table 2). The suggested alternatives with regard to the suggested prices by producers and the 
competitive power market mechanism, buying the maximum power from the plant, flatness of the 
Locational Marginal Prices (LMPs) in the network and the congestion reduction are experimentally 
achieved by the planner. So, without complicating the TNEP model, we can evaluate plans for 
different criteria such as congestion, price profile etc. The TNEP can be solved easily for large-scale 
systems. Also, for generating the alternatives, different methods can be used such as forward- and 
backward-expansion algorithms. Each algorithm will generate an alternative solution. The basic 
engineering concepts suggest using a lot of alternatives, so in this paper three different hybridization 
models are considered. 

 
Fig. 2. Garver’s 6-bus network 
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Table 1 
Lines Data (X in P.U on 100 MVA BASE) 

Investment cost 
(m$) 

Reactance  
(Ohm) 

Capacity  
(MW) To From Line 

N.O 
2 0.4 100 2 1 1 
6 0.6 80 4 1 2 
2 0.2 100 5 1 3 

1.5 0.2 100 3 2 4 
4 0.4 100 4 2 5 

2.5 0.2 100 5 3 6 
3 0.3 100 6 2 7 
3 0.3 100 6 4 8 

6.1 0.3 78 6 5 9 
 
Table 2 
Proposed Alternatives for Network Expansion 

Rights-of-Way Alternatives N.O 
{2-6, 3-5, 4-6, 5-6} Alternative1 
{2-6, 3-2, 4-6, 5-6} Alternative2 
{2-6,1-2, 4-6, 5-6} Alternative3 

It should be noted that in practical power expansion, after determining the optimized plan, this plan is 
evaluated based on the stability and short-circuit-level limitations and whether the selected plan was 
determined unsuitable due to technical reasons, the planner should use the alternative plan. PNNs are 
also used for classifying the TNEP solutions. In this paper, the expansion solutions are four 
hybridizations of the total possible corridors, which total 126 states that were achieved. These states 
have been used for training and testing the PNNs. So, for training the PNNs, 80 different states were 
chosen out of the expansion solutions. The PNN output is one of the three suggested alternatives. 
Thus, the best n-solution set is produced. Then for every randomized input, the model selects the best 
n-solution set as an input for the HSA and, based on this, the network expansion is completed. Fig. 3 
shows the hybridization algorithm between HSA and PNN. Since the number of layers and neurons 
are defined in a PNN, the only control parameter is core width (MATLAB Neural Network Toolbox 
User’s Guide, 1998). For determining it, the network error is evaluated based on the different core-
width values. It should be noted that a small core width will increase the accuracy and sensitivity of 
the network and a large core width will improve the network generality. So, there should be a 
compromise between the network accuracy and its generality. The value of this variable was selected 
to be 0.9. Furthermore, the HSA algorithm parameters were set as follows: HMS = 8, HMCR = 0.85, 
PAR = 0.5 and bw=0.01. 

 

Fig. 3. Hybridization algorithm between HSA and PNN 

On the other hand, it was assumed that a maximum of four lines could exist in each corridor. An 
optimal plan of the Garver's 6-bus network and the resulting costs of the suggested alternatives based 
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on first scenario are presented in Table 3. Fig. 4 shows the comparison of objective values for the first 
and second scenarios. As observed, the investment cost and the suggested first-alternative-losses cost 
is more suitable than the second and third alternatives and so the plan is more economical. The cost 
savings from considering the losses component is calculated by the difference in losses cost, before 
and after the expansion. Before the expansion, the losses cost for the test network is $135.36 million. 
So, for example for the first alternative according to the first scenario, the cost savings would be 
($135.36m-$34.2m) = $101.16 million.  

Table 3 
Optimal plan and objectives values for the first scenario 

Cost (million $) Lines 
N.O Rights -of-Way Alternative 

N.O Saved 
Cost 

Load not 
Supply 

Active 
Losses Investment 

101.16 0 34.2 29.1 

4 2-6 
Alternative 

1 
2 3-5 
2 4-6 
1 5-6 

98.46 0 36.9 28.6 

4 2-6 
Alternative 

2 
1 3-2 
3 4-6 
1 5-6 

96.96 0 38.4 28.1 

2 1-2 
Alternative 

3 
4 2-6 
2 4-6 
1 5-6 

       

 
Fig. 4. Comparison the objectives values for the first and second scenario 

In order to compare the results of this study, the extracted costs in the first alternative based on the 
first scenario are compared with similar results in Table 4 (Al-Saba & El-Amin, 2002). Also, Fig. 5 
shows the comparison objectives values with results similar to Al-Saba and El-Amin (2002), where 
different AI models were used for the TNEP. So, in Table 4, the hybridization model used by those 
authors, which includes MLP neural network and GA, is compared with the model presented in this 
paper. It should be noted that in the study by Al-Saba and El-Amin (2002), the LNS was not 
calculated. It can be seen, then, that the suggested first alternative based on the first scenario has more 
optimized losses and expansion costs than the referenced case. So, a more optimized plan is achieved, 
which shows the effectiveness of the optimized plan. 
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Table 4 
Comparison of the objectives values with results similar to Al-Saba and El-Amin (2002) 

Algorithms 
Cost (million $) GA-ANN 

Al-Saba and El-Amin (2002) 
HSA-PNN 

Alternative1 (based on first scenario) 
29.1 29.1 Investment 

38.254 34.2 Active Losses 
97.11 101.16 Saved Cost 

Not Calculated 0 Load not Supply 
 

 

Fig. 5. Comparison the objectives values with results similar to Al-Saba and El-Amin (2002) 

6 Conclusion 

In this paper, the transmission network expansion planning problem was analyzed using a new 
method in order to optimize the expansion costs, active losses costs and load. A hybridization model 
of the artificial intelligence tools was used to solve the TNEP. This model included a hybridization of 
the probabilistic neural networks and harmony search algorithm. Also, the suggested alternatives 
using the uncertainty role in the load were evaluated based on the expansion criteria. Based on the 
results, it was observed that the expansion plans are economical and effective. 
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