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 To meet the need for product variety, many companies are shifting from a mass-
production mode to mass customization, which demands quick response to the needs 
of individual customers with high quality and low costs. The multifunctional nature of 
mechanical components necessitates that a designer redesign them each time when a 
component’s function changes. The functional Geometric Dimensioning & 
Tolerancing (GD&T) specification, also called functional tolerancing, must be 
updated for each component. Currently, this is done by humans, and thus can be very 
time-consuming and error-prone. Functional tolerancing is one of the main obstacles 
to practical mechanical product family modeling. In this paper, a graph-based 
functional tolerancing scheme in 3D CAD is proposed. In the scheme, a product is 
generated by applying production rules to the graph of the base product, following 
customers’ or manufacturing engineers’ requirements. Functional tolerancing of each 
component of a product in the family is formulated as a non-linear constrained 
optimization (or cost minimization) process. Certain critical aspects of the scheme 
have been implemented in SolidWorks®, by using its Application Programming 
Interface (API) and C++. LEDA® and MATLAB® have been used to solve the graph 
and optimization problems. 

© 2012 Growing Science Ltd.  All rights reserved
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1. Introduction 

Traditional production systems, such as produce-to-order or assembly-to-order, work well with a low 
number of variants, but not when customers require a large product variety. Developing product 
families with design-to-order strategy has been recognized as means to support product variety with 
low costs and a minimal data redundancy. In many products, building block design or modular design 
is used successfully. Based on modular product architecture, product variety can be fulfilled through 
various combinations of modules. While the modular design method has been successfully applied in 
Very Large Scale Integration (VLSI) system design and personal computer design, it is hard to use in 
mechanical product design. The reason is that design economy dominates mechanical design (if one 
element were selected for each identified function, such systems would inevitably be too big, too 
heavy, or too wasteful of energy (Whitney, 1996)). The multifunction nature of mechanical 
components calls designers into redesigning them each time when their functions change. For a 
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mechanical product, about 75% of the final cost is determined in the product design stage. Therefore, 
design tools are highly demanded to help designers face the challenge of mass customization. 
Currently, there is no well-defined design process for developing a family of mechanical products, 
nor is there research work to support designers when a variant product in the same product family is 
generated. In addition, when detailed design of a component is finished, there is no support for 
designers to specify geometric tolerances. 
Tolerance specification is the topic that has been least studied so far. It usually involves a series of 
activities, such as identifying features to be toleranced and the required datum features, determining 
types of tolerances needed and material conditions, and finally, assigning some of the tolerance 
values as per functional requirement. Other tolerance values should be generated in the tolerance 
synthesis process. Traditionally, these activities heavily rely on the designer’s experience, the 
empirical data, and/or the handbooks for designers and machinists. A systematic method is needed to 
automate this whole procedure, preferable in a CAD environment, incorporating domain-specific 
knowledge.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Map of the scheme 

In this paper, a graph grammar-based mechanical assembly family model is introduced. The 
generation of an assembly in the same family is modeled as the manipulation to the graph that 
represents the base assembly by applying graph production rules. The generated assembly variant is a 
graph with components as nodes and joints between components as edges. The joint information 
between components as well as the feature information of each component can help the designer in 
component design and tolerance specification. Fig. 1 illustrates the map of the overall scheme of the 
research in this paper. The research of this paper can be separated into two parts: mechanical product 
variant generation (product design) and tolerance generation (tolerance design). 

 In mechanical product variant generation, the user (a customer or a manufacturing engineer) enters 
his/her selections from a list of predefined requirements. The requirement selections are then mapped 
to the application conditions of a set of production rules. The production rules whose application 
conditions are satisfied are fired. The base product, which is represented by the graph of the product’s 
mechanism, is manipulated by the fired production rules. The customized product variant of the 
mechanical product family, which is also represented as a graph, is then generated after all the fired 
production rules are applied. 
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Figure 3.6.6 -2  Assembly graph of a planetary gearbox design
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Figure 3.6.6 -2  Assembly graph of a planetary gearbox design
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 The graphs that represent the base product and product variants are attributed graphs. The attributes 
of nodes and edges of the graph are to carry quantitative or qualitative design information. The 
information is utilized in tolerance generation for tolerancing of each component in the product. The 
GD&T specification rules are followed to generate Datum Reference Frames (DRFs) on each 
component. Other features on the component are toleranced to the DRFs, and the tolerance types and 
material conditions are generated based on the attributes of the features. Tolerance values or ranges of 
tolerance values are obtained through tolerance synthesis and tolerance mapping. 

2. Review 
 

In the past two to three decades, design methods were continuously being developed, tested, 
implemented in industry, and taught to the engineering community. Customer needs are first 
transformed to a repeatable functional representation, then to layouts and solution pieces, then to 
broad combinations and alternative products, and finally to an embodied realization that we can 
produce for the customer.  

The need in the market for product variety requires formal design process to develop a family of 
products instead of single products. Characteristics of a product family range from flexible modular 
designs to robust and scalable designs, to standardized and flexible products. Martin and Ishii (1996) 
identified commonality, modularity, and standardization; Rothwell and Gardiner (1990) emphasized 
robust design; Wheelwright and Clark (1992) suggested designing “platform projects” that were 
capable of meeting the needs of a core group of customers but were easily modified into derivatives 
through addition, substitution, and removal of features. MacDuffie et al. (1996) looked at how the 
variety affected manufacturing within the automotive industry by studying empirical data. 

Geometry and tolerance requirement of a specific mechanical component may change from one 
product to another in the same product family. A well-defined mechanical product family model 
should provide the logical relationships between components. These relationships are very important 
for component designing and tolerancing. However, none of the methods mentioned above has taken 
this issue into account. In this work, a graph grammar–based mechanical product family modeling 
method is presented to generate variants in a product family with the joints between components 
updated for tolerance specification. 

Tolerance specification usually encompasses a series of activities, such as the identification of 
features to be toleranced and their required datum features, the determination of the types of 
tolerances needed. As mentioned earlier, tolerance specification is the topic that has been least 
explored so far. In practice, the tolerances are specifications by the designer, mainly based on 
experience and/or empirical information. The concept of topologically and technologically related 
surfaces (TTRS) (Clement, 1996) is used in specifying tolerances on components. Tolerance types are 
selected based on the geometric relations between the functional features. But the selection of datum 
features, datum precedence, and selection of material condition are missed in this method. Linares 
(2002) presented a tolerance specification method by introducing a concept called Functional Group, 
but very limited cases of tolerance specification are covered. A tolerance specification method based 
on the influence of contacts is presented by Anselmetti (2002). Kandikjan (2001) proposed a 
tolerance advisor for tolerance specification. The scheme is totally based on the component, not the 
assembly. In this paper, the mirror method is proposed for an assembly–oriented functional tolerance 
specification to cover selection of datum features, datum precedence, selection of material condition, 
and selection of geometric tolerance types by using information stored in the generated products’ 
graph model. 
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3. Graph-based Representation of an Assembly 
 

Figure 2 shows an example of the graph formalism of the graph of a piston assembly, where the 
bigger circles represent nodes (components), the smaller circles represent ports (features) of the 
nodes, and the lines between ports are edges (joints). Labels and attributes of nodes, edges, and ports 
are also illustrated. 

 
Fig. 2. Graph representation of a piston assembly 

3.1 Graph grammar of a mechanical product family 
 

The term “graph grammar” generally means a method for generating a set of graphs from a starting 
graph. Manipulations on the starting graph are carried out by applying production rules. All graphs 
that can be derived by applying production rules to a starting graph construct the language of this 
graph grammar. This research adopts graph grammars as tools to model a mechanical product family. 
The strategy of graph grammar–based mechanical product family modeling is to design graph 
grammars to represent the organization of mechanical product family elements and accordingly to 
transform the variant derivation process into a process of assembly graph derivation. 

Graph grammar with ordered production rules is called programmed graph grammar. In a 
programmed graph grammar, the sequence of executing a set of productions can be expressed in a 
control diagram. Product variants of the family can be derived by applying production rules according 
to the control diagram to modify the starting graph which represents the base product. The resultant 
graphs are the graph models of desired variants.  

A Programmed Attributed Graph Grammar (PAGG) is defined as a nine-tuple: 

GG = (V, W, X, AV, AW, AX, S, P, CD) 

where V = {Ci} is a set, consisting of node labels (i.e., names or IDs) of all components in the product 
family; W = {Ci×Cj} is a set, consisting of edge labels that indicate the joints between the 
components; X is a set, consisting of port labels that represent features; AV is a set, consisting of node 
attributes representing attributes of components; AW is a set, including edge attributes representing 
attributes of joints; AX is a set, consisting of port attributes; S is the starting graph representing the 
base product; P = {pi} is a set, including all production rules defined for graph manipulation to 
generate variants; and CD is the control diagram over P, specifying the order by which productions 
are applied so that the variants can be derived. 

All attributed graphs that can be derived by graph grammar GG as defined above are termed language 
of the graph grammar. The derivation steps are: 1) starting with a starting graph S; 2) applying all 
applicable productions P in an order specified by the control diagram CD. 
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Set V in GG represents component names in a mechanical product family. It changes from family to 
family. Hence, it is trivial to list all possible component names. Component attributes AV may include 
parameters such as list of features, material, etc.  

1) The Base Product 

The base product should include common components or core components that all products in the 
same family contain. Other components in the same product family are termed optional components. 
The core components together with joints between them should fulfill common functions of the 
products in the family. Graph representations of a range of planar linkages, planar geared 
mechanisms, planar cam mechanisms, spherical mechanisms, and spatial mechanisms have been 
developed and cataloged in a graph atlas (Tsai 2001). The functional scheme and its graph 
representation of a crank-slider mechanism are shown in Figure 3. The circle enclosing the node 
indicates that the node is “grounded” or “fixed.” 

 
Fig. 3. Crank-Slider mechanism and its graph representation  

2) Production Rules 
A production rule P has two parts: the operation (O) and its application conditions (π). The operation 
O = (gl, gr, T, P) designates how the left-hand side (LHS) graph, gl, is replaced by the right-hand side 
(RHS) graph, gr, with respect to embedding transformation, denoted by T, or port transformation, 
denoted by P.  

Addition  

A particular component carrying out certain additional functions can be added to a base product to 
create a new product variant. Adding a component or subassembly C to a base product BP is 
equivalent to adding the graph g(C) to the host graph g(BP). Addition operation can be represented by 
a four-tuple: Addition = (gl, gr, T, P): 

 

where gl is the conditional graph which implies that the base product provides interface for 
component C to be added; gr is the resultant graph after component C being added; and T is the 
embedding transformation function that specifies that all the edges connected to the components in gl 
will be connected to the corresponding components in gr.  
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Fig. 4. An example of the Addition operation 
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Decomposition 

This category of operations serves the purpose of resembling the subsequent splitting of components 
into components that have simpler shapes. This kind of operation may be required by manufacturing 
or assembly practices. This category shows similar expressions to those in the “addition” category, 
with the slight difference that the created nodes here only serve part of the functions (joints with other 
components) of the original components. Decomposition operation can be represented by a four-
tuple: Decomposition = (gl, gr, T, P), similar to the “addition” operation. An example of the 
Decomposition operation is shown in Fig. 5. In the example, component 1 is decomposed into the 
modified component 1 and component 3, so that the cylindrical feature mating with the gear 
(component 2) is transformed from the original component 1 to the component 3. This might happen 
when a component with many functional features is easier or more economical to be manufactured if 
it can be decomposed into several components. 

Modification  

Operations belonging to this category are intended not to extend the graph model obtained so far by 
adding nodes but rather to perform necessary modifications concerning the ports and attributes of 
nodes or relations among nodes. This may happen when we want to replace a component with one 
that has similar functions. For example, a customer may want to change a gear with one gear feature 
into a gear with two gear  

 

 

features to get a larger input/output ratio. This is shown in Figure 6. Modification operation also can 
be represented by a four-tuple as above: Modification = (gl, gr, T, P). 
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After defining the operations used to modify graphs for variety generation, conditions under which 
the operations can be performed have to be specified, that is, when components should be added, 
decomposed, or modified. Application conditions are introduced for this purpose. When application 
conditions are satisfied, the applicability predicate, π, is TRUE. Otherwise, π is FALSE. Application 
conditions can be expressed as functions of customers’ or manufacturing engineers’ selected 
requirements or requirement values. A production rule is defined as a two-tuple: P = (O, π), where 1) 
O ∈ {Addition, Decomposition, Modification} is the operation; 2) π ∈ {TRUE, FALSE} is the 
applicability predicate, which is a logic function of application conditions. A few examples of 
production rules are given as follows, where Ri indicates requirement i of the product. 

P1 = (O=Addition (Bearing), AC = (α(R1) ∈ {TRUE})) 

P2 = (O=Decomposition (Holder), AC = (α(R3) ∈ {step})) 

where α is a function to get the value of the requirement Ri and λ is a function to get the name of the 
requirement Ri.  

λ (R1) = Minimize Friction, α(R1) ∈ {TRUE, FALSE} 

λ (R3) = Ease Manufacturing, α(R3) ∈ {step, non-step} 

3) Graph Derivation 
 

Deriving a product variant may involve more than one step of modification of the base product. The 
process of modifying a base product to a customized one can be modeled as a series of graph 
derivations by executing certain production rules. The derivation of a graph, g’, from a graph, g, by 
means of a production, p, follows the following procedures: 

1. Check whether gl is a subgraph in g, and check if the application condition is true. If both 
condition s are fulfilled, continue to step 2. 

2. Substitute gl, including all incoming and outgoing edges, with the nodes and edges of gr. 

3. Transform the embedding of gl in g into gr in g’. 

4. Update the ports of nodes in gr. 

4) Control Diagram 

 

 

Usually, a number of productions will be involved in the process of graph derivation. The order for a 
collection of productions to be invoked is specified by the control diagram. The control diagram in 
the graph grammar of a product family expresses the order in which productions defined for this 
product family are to be executed. Our method is to go through this process by imitating a real 
designer’s design practice in three stages: 1) adding new components or modifying existing 

P1 P2 P3 P4

P5 P6

P7

Stage 1) Stage 2) Stage 3)

Fig. 7. An example of a control diagram 
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components in the mechanism to fulfill a customer’s or an engineer’s functional requirements; 2) 
increasing performance of the product by adding components, such as gaskets or bearings; and 3) 
adding positioning or fastening components to secure the relative positioning of the components in 
the assembly. 

To map customers’ or manufacturing engineers’ requirements to a variant design, the checking of 
application conditions should start from the production that is at the beginning position of the control 
diagram. The path in the control diagram with the maximum number of applicable productions 
(application condition is TRUE) is chosen and all feasible productions along the path will be applied. 
A variant is generated when no more production rules in the path of the control diagram can be 
applied. Figure 7 shows an example of a control diagram. In figure 8, a graph that represents the base 
product of a planetary gear train is transformed into a graph that represents one possible product in 
the planetary gear train product family. Figure 9 shows the product’s physical model in SolidWorks®. 
For details of the graph generation process, please refer to Wang, 2005. 

 

 

 

 

 

 

 

 

Fig. 8. Example of graph transformation 
 

 

Fig. 9. CAD model of the planetary gearbox for the graph in Fig. 8 
 

3.2 Functional tolerancing in 3D CAD 

With enormous customer demands, commercial CAD systems open many more spaces for third-party 
developers to access the CAD model through API (Application Programming Interface) and develop 
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software for their own use. In-house software can therefore be quickly prototyped and tested. 
SolidWorks has been chosen as the CAD platform to implement the proposed tolerance specification 
and tolerance synthesis methods owning to the following reasons: 

• SolidWorks is a very popular CAD system based on a solid model which is 3D in nature. This 
matches our purpose for 3D tolerance specification and synthesis. 

• The API is well documented. 
• The API is easy to use and sample codes are available. 
• There is noo extra charge for the API.  

The tolerance specification module and the tolerance synthesis module are developed as an add-in 
DLL (Dynamic Link Library) in SolidWorks by using the Object-Oriented Design method through 
SolidWorks’ API and MS Visual C++. The system structure is in Figure 10. 

The user interacts with the tolerance specification module and tolerance synthesis module through 
SolidWorks Graphical User Interface (GUI) and GUI of the two modules by Microsoft Foundation 
Class (MFC). 

 

 

 

 

 

 

 

3.3 Example 

1)Tolerance Specification 

 

 

 

 

 

 

 

 

 

 

A base cover assembly is used to illustrate how the tolerance specification module and the tolerance 
synthesis module work in SolidWorks. The solid model of the assembly is shown in Figure 11. As 
can be seen, there are three mates between the Cover and the Base: a coincident mate between 1a and 

Fig. 10. The structure of the implementation 
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Fig. 11. The base-cover assembly in SolidWorks 
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2a, a concentric mate between 1b and 2b, and a concentric mate between 1c and 2c. The tolerance 
specification module and tolerance synthesis module are programmed as an add-in to SolidWorks in 
Dynamic Link Library (DLL) file format. This add-in file can be loaded by opening the file directly 
in SolidWorks or by checking the respective check box in the Add-ins dialog box. 

Tolerance Synthesis 
 

In this paper, only features in mates are taken into account for tolerance synthesis to simplify the 
problem. The tolerance synthesis module shows mates between components and the connection graph 
as shown in Fig. 12. As shown in Fig. 13, three points are selected on each component for mating 
features. (37.5,20,0) is for T1a, T2a, and G1a/2a; (63, 20, 12.5) is for T1b, T2b, and G1b/2b; and (12, 
20, 12.5) is for T1c, T2c, and G1c/2c. (0,0,0) is the origin of the base component (part 2) and is the 
point for T1; (0,25,0) is the origin of the cover component (part 2) and is the point for T2.  

  

Fig. 12. Mates between components and the assembly graph Fig. 13. Spanning tree of the modified connection graph 

Table 1-1 shows the labels of the nodes of torsors, their points’ coordinates, and LCSs. By using 
LEDA’s graph algorithm we get the spanning tree, as shown in Figure 13. Therefore, we know that 
there are only two independent loops: (Loop 1)1 1b 2b 2 2c 1c 1 and (Loop 2) 
1 1a 2a 2 2b 1b 1. The two loops are represented by two rows of sequenced integers (0, 1, 
or –1) as shown in Table 1-2. 

Table 1-1  
Torsors’ labels, coordinates, and LCSs of the Cover-Base assembly 
Node Label Torsor Coordinates (x,y,z) LCS (X-axis;Y-axis;Z-axis) 
0 

2T  (0,0,0) (1,0,0;0,1,0;0,0,1) 

1 
2aT  (37.5,20,0) (1,0,0;0,-1,0;0,0,-1) 

2 
2cT  (12,20,12.5) (1,0,0;0,-1,0;0,0,-1) 

3 
2bT  (0,25,0) (-1,0,0;0,1,0;0,0,-1) 

4 
1T  (63,20,12.5) (1,0,0;0,1,0;0,0,1) 

5 
1aT  (37.5,20,0) (1,0,0;0,1,0;0,0,1) 

6 
1cT  (12,20,12.5) (-1,0,0;0,-1,0;0,0,1) 

7 
1bT  (63,20,12.5) (1,0,0;0,1,0;0,0,1) 

8 
1 / 2a aG  (37.5,20,0) (1,0,0;0,1,0;0,0,1) 

9 
1 / 2c cG  (12,20,12.5) (-1,0,0;0,-1,0;0,0,1) 

10 
1 / 2b bG  (63,20,12.5) (1,0,0;0,1,0;0,0,1) 
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Table 1-2  
Loop Matrix (note: N means node, L means loop) 
 N 
L 0 1 2 3 4 5 6 7 8 9 10 
1 -1 0 1 -1 1 0 -1 1 0 -1 1 
2 -1 -1 0 1 1 1 0 -1 1 0 -1 
 

To solve the optimization (minimization) problem as formulated in this paper, the “fmincon” 
nonlinear constrained optimization solver in MATLAB is used. Results of the optimization run are 
shown in Table 1-3. The optimal deviation parameters are used for computing the tolerance 
values/ranges (Table 1-4).  

Table 1-3  
Optimal deviation parameters of torsors  
Node dx dy dz Rx Ry rz 
0 0.0099 0.01 0.0099 0.0017 0.0063 0.0005 
1 -0.0001 0 0.01 0.01 0.01 0.0024 
2 0.01 0.01 -0.0001 0.01 0.01 0.0011 
3 0.01 0.01 0 0.01 -0.0028 0.0018 
4 0.01 0.0099 0.01 0.0017 -0.0018 0.0015 
5 0.0001 0 0.01 0.01 0.01 -0.0017 
6 0.01 0.01 -0.0001 0.01 0.01 0 
7 0.01 0.01 0 0.01 0.01 -0.0008 
8 0.0001 0 0 0.01 -0.0028 -0.0017 
9 0.01 0.01 -0.0001 -0.01 -0.0012 0.0001 
10 0.0099 0.01 0 -0.01 -0.0036 -0.0008 
 

Table 1-4  
Results of tolerance values or ranges 
Feature Tolerance Type Deviation Mapping 
1a Size TL = 0.165 TU=0.585 
2a Size TL = 0.165 TU=0.585 
1b Perpendicularity fmin= 0.1773 fmax= 0.1773 
2b Perpendicularity fmin= 0.1240 fmax= 0.1375 
1c Position fmin= 0.1773 fmax= 0.1773 
2c Position fmin= 0.1626 fmax= 0.1909 
 

Table 1-4 listed the recommended ranges for size tolerances. But for perpendicularity and position 
tolerances, fmax and fmin values give the possible ranges of the values TU, TL, and Tp constrained by 
the mapping relations. These inequalities are planes in the TU, TL, Tp space and all such inequalities 
for each feature define the tolerance zone (Wang, 2006). 

4. Conclusions and future work 
 

A graph grammar-based mechanical product modeling scheme has been proposed. A product is 
generated by applying production rules to the graph of the base product, the mechanism. Both base 
product and end product are represented by graphs with components as nodes and joints between 
components as edges. The generated attributed graph is a data structure which represents the joint and 
feature information of the customized product. In the end product, the joints between a component 
and other components in the product represent the functions concerning how the components are to 
be related to each other geometrically. Therefore, the joints information can be used in designing and 
tolerancing. Further efforts should be made to extend research in the following areas. The users of the 
scheme of mechanical product family modeling can be roughly classified into “designers” and 
“experts.” While designers only have knowledge of designing the product, experts know how to 
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design the product as well as how to translate the design knowledge to production rules for the 
product family. As described in section three, the key elements of a graph grammar of a mechanical 
product family are: a starting graph which represents the mechanism of the product, production rules, 
and a control diagram. Developing the three elements might not be a problem for an expert (even if it 
might take him or her months), but it could be very challenging for a designer who has very limited 
knowledge about graphs, production rules, etc. In order to make the proposed scheme convenient and 
efficient for all kinds of users, a generic system for mechanical product family modeling should be 
developed. It should allow users to select and edit starting graphs. Production rules should be 
generated based on user input such as customers’ or manufacturing engineers’ requirements, changes 
of features on components due to said requirements, etc. Users should be able to generate or edit the 
control diagram by their knowledge of design sequence and the support of the system. 

There are two interesting questions about production rules that might indicate the directions of future 
study. One is “How do we know the production rules of a mechanical product family are complete?” 
The other is “How do we know if the production rules are optimal?” A complete production rule set 
should be able to generate product variants that meet all possible combinations of requirements for a 
product family. It should also represent all possible changes of the product configuration due to one 
specific requirement. An optimal production rule set is a complete one that has the minimum number 
of production rules. Future research about criterias that help users in evaluating the completeness of 
the production rules is needed to help searching for the optimal product design. 
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