
* Corresponding author Tel.: +1-860-832-1824; fax: +1-860-832-1806
E-mail: wanghao@ccsu.edu (H. Wang)

© 2012 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2011.08.019

International Journal of Industrial Engineering Computations 3 (2012) 81–92

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

A scheme for functional tolerancing: A product family in 3D CAD system

Haoyu Wang* and Ravindra Thamma

Central Connecticut State University, New Britain, CT 06050 USA

A R T I C L E I N F O A B S T R A C T

Article history:
Received 1 August 2011
Available online
10 August 2011

 To meet the need for product variety, many companies are shifting from a mass-
production mode to mass customization, which demands quick response to the needs
of individual customers with high quality and low costs. The multifunctional nature of
mechanical components necessitates that a designer redesign them each time when a
component’s function changes. The functional Geometric Dimensioning &
Tolerancing (GD&T) specification, also called functional tolerancing, must be
updated for each component. Currently, this is done by humans, and thus can be very
time-consuming and error-prone. Functional tolerancing is one of the main obstacles
to practical mechanical product family modeling. In this paper, a graph-based
functional tolerancing scheme in 3D CAD is proposed. In the scheme, a product is
generated by applying production rules to the graph of the base product, following
customers’ or manufacturing engineers’ requirements. Functional tolerancing of each
component of a product in the family is formulated as a non-linear constrained
optimization (or cost minimization) process. Certain critical aspects of the scheme
have been implemented in SolidWorks®, by using its Application Programming
Interface (API) and C++. LEDA® and MATLAB® have been used to solve the graph
and optimization problems.

© 2012 Growing Science Ltd. All rights reserved

Keywords:
Tolerancing
Product family
Graph
CAD

1. Introduction

Traditional production systems, such as produce-to-order or assembly-to-order, work well with a low
number of variants, but not when customers require a large product variety. Developing product
families with design-to-order strategy has been recognized as means to support product variety with
low costs and a minimal data redundancy. In many products, building block design or modular design
is used successfully. Based on modular product architecture, product variety can be fulfilled through
various combinations of modules. While the modular design method has been successfully applied in
Very Large Scale Integration (VLSI) system design and personal computer design, it is hard to use in
mechanical product design. The reason is that design economy dominates mechanical design (if one
element were selected for each identified function, such systems would inevitably be too big, too
heavy, or too wasteful of energy (Whitney, 1996)). The multifunction nature of mechanical
components calls designers into redesigning them each time when their functions change. For a

 82

mechanical product, about 75% of the final cost is determined in the product design stage. Therefore,
design tools are highly demanded to help designers face the challenge of mass customization.
Currently, there is no well-defined design process for developing a family of mechanical products,
nor is there research work to support designers when a variant product in the same product family is
generated. In addition, when detailed design of a component is finished, there is no support for
designers to specify geometric tolerances.
Tolerance specification is the topic that has been least studied so far. It usually involves a series of
activities, such as identifying features to be toleranced and the required datum features, determining
types of tolerances needed and material conditions, and finally, assigning some of the tolerance
values as per functional requirement. Other tolerance values should be generated in the tolerance
synthesis process. Traditionally, these activities heavily rely on the designer’s experience, the
empirical data, and/or the handbooks for designers and machinists. A systematic method is needed to
automate this whole procedure, preferable in a CAD environment, incorporating domain-specific
knowledge.

Fig. 1. Map of the scheme

In this paper, a graph grammar-based mechanical assembly family model is introduced. The
generation of an assembly in the same family is modeled as the manipulation to the graph that
represents the base assembly by applying graph production rules. The generated assembly variant is a
graph with components as nodes and joints between components as edges. The joint information
between components as well as the feature information of each component can help the designer in
component design and tolerance specification. Fig. 1 illustrates the map of the overall scheme of the
research in this paper. The research of this paper can be separated into two parts: mechanical product
variant generation (product design) and tolerance generation (tolerance design).

 In mechanical product variant generation, the user (a customer or a manufacturing engineer) enters
his/her selections from a list of predefined requirements. The requirement selections are then mapped
to the application conditions of a set of production rules. The production rules whose application
conditions are satisfied are fired. The base product, which is represented by the graph of the product’s
mechanism, is manipulated by the fired production rules. The customized product variant of the
mechanical product family, which is also represented as a graph, is then generated after all the fired
production rules are applied.

Rule 1
Rule 2

…
Rule n

2

5

7

12

3 1

11

4

12

6

9

10

1
 9

8

2

G

G

CYC

PC

HF

HF
 F

 F

CYI

 HF

HF
 CYI

CYC

CYI

CYI

 CYI

CYI

F

Figure 3.6.6 -2 Assembly graph of a planetary gearbox design

PC

PC

PC

PC

Tolerance
Mapping

Tolerance
Specification Tolerance

Synthesis

Product
Graph

Product
CAD Model

Mechanical Product
Family Graph Grammar

User

G

1

4

2

31

R

 R

R

G

Function
Attributes

Mating
Attributes

Requirements

Datum Reference Frame

Cost Function

Assemblability
Constraints

Tolerances

Rule 1
Rule 2

…
Rule n

2

5

7

12

3 1

11

4

12

6

9

10

1
 9

8

2

G

G

CYC

PC

HF

HF
 F

 F

CYI

 HF

HF
 CYI

CYC

CYI

CYI

 CYI

CYI

F

Figure 3.6.6 -2 Assembly graph of a planetary gearbox design

PC

PC

PC

PC

Tolerance
Mapping

Tolerance
Specification Tolerance

Synthesis
Tolerance
Mapping

Tolerance
Specification Tolerance

Synthesis
Tolerance
Mapping

Tolerance
Specification

Tolerance
Specification Tolerance

Synthesis

Product
Graph

Product
CAD Model

Mechanical Product
Family Graph Grammar

User

G

1

4

2

31

R

 R

R

G

Function
Attributes

Mating
Attributes

Requirements

Datum Reference Frame

Cost Function

Assemblability
Constraints

Tolerances

Product Generation

GD&T
Specification
Rules Tolerance G

eneration

H. Wang and R. Thamma / International Journal of Industrial Engineering Computations 3 (2012)

83

 The graphs that represent the base product and product variants are attributed graphs. The attributes
of nodes and edges of the graph are to carry quantitative or qualitative design information. The
information is utilized in tolerance generation for tolerancing of each component in the product. The
GD&T specification rules are followed to generate Datum Reference Frames (DRFs) on each
component. Other features on the component are toleranced to the DRFs, and the tolerance types and
material conditions are generated based on the attributes of the features. Tolerance values or ranges of
tolerance values are obtained through tolerance synthesis and tolerance mapping.

2. Review

In the past two to three decades, design methods were continuously being developed, tested,
implemented in industry, and taught to the engineering community. Customer needs are first
transformed to a repeatable functional representation, then to layouts and solution pieces, then to
broad combinations and alternative products, and finally to an embodied realization that we can
produce for the customer.

The need in the market for product variety requires formal design process to develop a family of
products instead of single products. Characteristics of a product family range from flexible modular
designs to robust and scalable designs, to standardized and flexible products. Martin and Ishii (1996)
identified commonality, modularity, and standardization; Rothwell and Gardiner (1990) emphasized
robust design; Wheelwright and Clark (1992) suggested designing “platform projects” that were
capable of meeting the needs of a core group of customers but were easily modified into derivatives
through addition, substitution, and removal of features. MacDuffie et al. (1996) looked at how the
variety affected manufacturing within the automotive industry by studying empirical data.

Geometry and tolerance requirement of a specific mechanical component may change from one
product to another in the same product family. A well-defined mechanical product family model
should provide the logical relationships between components. These relationships are very important
for component designing and tolerancing. However, none of the methods mentioned above has taken
this issue into account. In this work, a graph grammar–based mechanical product family modeling
method is presented to generate variants in a product family with the joints between components
updated for tolerance specification.

Tolerance specification usually encompasses a series of activities, such as the identification of
features to be toleranced and their required datum features, the determination of the types of
tolerances needed. As mentioned earlier, tolerance specification is the topic that has been least
explored so far. In practice, the tolerances are specifications by the designer, mainly based on
experience and/or empirical information. The concept of topologically and technologically related
surfaces (TTRS) (Clement, 1996) is used in specifying tolerances on components. Tolerance types are
selected based on the geometric relations between the functional features. But the selection of datum
features, datum precedence, and selection of material condition are missed in this method. Linares
(2002) presented a tolerance specification method by introducing a concept called Functional Group,
but very limited cases of tolerance specification are covered. A tolerance specification method based
on the influence of contacts is presented by Anselmetti (2002). Kandikjan (2001) proposed a
tolerance advisor for tolerance specification. The scheme is totally based on the component, not the
assembly. In this paper, the mirror method is proposed for an assembly–oriented functional tolerance
specification to cover selection of datum features, datum precedence, selection of material condition,
and selection of geometric tolerance types by using information stored in the generated products’
graph model.

 84

3. Graph-based Representation of an Assembly

Figure 2 shows an example of the graph formalism of the graph of a piston assembly, where the
bigger circles represent nodes (components), the smaller circles represent ports (features) of the
nodes, and the lines between ports are edges (joints). Labels and attributes of nodes, edges, and ports
are also illustrated.

Fig. 2. Graph representation of a piston assembly

3.1 Graph grammar of a mechanical product family

The term “graph grammar” generally means a method for generating a set of graphs from a starting
graph. Manipulations on the starting graph are carried out by applying production rules. All graphs
that can be derived by applying production rules to a starting graph construct the language of this
graph grammar. This research adopts graph grammars as tools to model a mechanical product family.
The strategy of graph grammar–based mechanical product family modeling is to design graph
grammars to represent the organization of mechanical product family elements and accordingly to
transform the variant derivation process into a process of assembly graph derivation.

Graph grammar with ordered production rules is called programmed graph grammar. In a
programmed graph grammar, the sequence of executing a set of productions can be expressed in a
control diagram. Product variants of the family can be derived by applying production rules according
to the control diagram to modify the starting graph which represents the base product. The resultant
graphs are the graph models of desired variants.

A Programmed Attributed Graph Grammar (PAGG) is defined as a nine-tuple:

GG = (V, W, X, AV, AW, AX, S, P, CD)

where V = {Ci} is a set, consisting of node labels (i.e., names or IDs) of all components in the product
family; W = {Ci×Cj} is a set, consisting of edge labels that indicate the joints between the
components; X is a set, consisting of port labels that represent features; AV is a set, consisting of node
attributes representing attributes of components; AW is a set, including edge attributes representing
attributes of joints; AX is a set, consisting of port attributes; S is the starting graph representing the
base product; P = {pi} is a set, including all production rules defined for graph manipulation to
generate variants; and CD is the control diagram over P, specifying the order by which productions
are applied so that the variants can be derived.

All attributed graphs that can be derived by graph grammar GG as defined above are termed language
of the graph grammar. The derivation steps are: 1) starting with a starting graph S; 2) applying all
applicable productions P in an order specified by the control diagram CD.

1

2

Node

Edge

Port

Component

Joint

Feature
C

Node Label

Edge Label 1a

2a
Port Label

1

2

Node

Edge

Port

Component

Joint

Feature
C

Node Label

Edge Label 1a

2a
Port Label

axis fAttb: clearance

Attb: clearance

Attb: axis = ‘f’

x y

z

H. Wang and R. Thamma / International Journal of Industrial Engineering Computations 3 (2012)

85

Set V in GG represents component names in a mechanical product family. It changes from family to
family. Hence, it is trivial to list all possible component names. Component attributes AV may include
parameters such as list of features, material, etc.

1) The Base Product

The base product should include common components or core components that all products in the
same family contain. Other components in the same product family are termed optional components.
The core components together with joints between them should fulfill common functions of the
products in the family. Graph representations of a range of planar linkages, planar geared
mechanisms, planar cam mechanisms, spherical mechanisms, and spatial mechanisms have been
developed and cataloged in a graph atlas (Tsai 2001). The functional scheme and its graph
representation of a crank-slider mechanism are shown in Figure 3. The circle enclosing the node
indicates that the node is “grounded” or “fixed.”

Fig. 3. Crank-Slider mechanism and its graph representation

2) Production Rules
A production rule P has two parts: the operation (O) and its application conditions (π). The operation
O = (gl, gr, T, P) designates how the left-hand side (LHS) graph, gl, is replaced by the right-hand side
(RHS) graph, gr, with respect to embedding transformation, denoted by T, or port transformation,
denoted by P.

Addition

A particular component carrying out certain additional functions can be added to a base product to
create a new product variant. Adding a component or subassembly C to a base product BP is
equivalent to adding the graph g(C) to the host graph g(BP). Addition operation can be represented by
a four-tuple: Addition = (gl, gr, T, P):

where gl is the conditional graph which implies that the base product provides interface for
component C to be added; gr is the resultant graph after component C being added; and T is the
embedding transformation function that specifies that all the edges connected to the components in gl
will be connected to the corresponding components in gr.

2
R

1
R

1 3 2
C

gl gr
Revolute Feature

Cylindrical Feature

2

1 3

(attb: interference)

Fig. 4. An example of the Addition operation

 86

Decomposition

This category of operations serves the purpose of resembling the subsequent splitting of components
into components that have simpler shapes. This kind of operation may be required by manufacturing
or assembly practices. This category shows similar expressions to those in the “addition” category,
with the slight difference that the created nodes here only serve part of the functions (joints with other
components) of the original components. Decomposition operation can be represented by a four-
tuple: Decomposition = (gl, gr, T, P), similar to the “addition” operation. An example of the
Decomposition operation is shown in Fig. 5. In the example, component 1 is decomposed into the
modified component 1 and component 3, so that the cylindrical feature mating with the gear
(component 2) is transformed from the original component 1 to the component 3. This might happen
when a component with many functional features is easier or more economical to be manufactured if
it can be decomposed into several components.

Modification

Operations belonging to this category are intended not to extend the graph model obtained so far by
adding nodes but rather to perform necessary modifications concerning the ports and attributes of
nodes or relations among nodes. This may happen when we want to replace a component with one
that has similar functions. For example, a customer may want to change a gear with one gear feature
into a gear with two gear

features to get a larger input/output ratio. This is shown in Figure 6. Modification operation also can
be represented by a four-tuple as above: Modification = (gl, gr, T, P).

2 1
1
3

2 3G GG
G

gl gr

1

2

3

Fig. 6. An example of the Modification operation

Fig. 5. An example of the decomposition operation

1 2 1 3
R

2
R

Cylindrical Feature

gl gr
1

2

3

(attb: interference)

H. Wang and R. Thamma / International Journal of Industrial Engineering Computations 3 (2012)

87

After defining the operations used to modify graphs for variety generation, conditions under which
the operations can be performed have to be specified, that is, when components should be added,
decomposed, or modified. Application conditions are introduced for this purpose. When application
conditions are satisfied, the applicability predicate, π, is TRUE. Otherwise, π is FALSE. Application
conditions can be expressed as functions of customers’ or manufacturing engineers’ selected
requirements or requirement values. A production rule is defined as a two-tuple: P = (O, π), where 1)
O ∈ {Addition, Decomposition, Modification} is the operation; 2) π ∈ {TRUE, FALSE} is the
applicability predicate, which is a logic function of application conditions. A few examples of
production rules are given as follows, where Ri indicates requirement i of the product.

P1 = (O=Addition (Bearing), AC = (α(R1) ∈ {TRUE}))

P2 = (O=Decomposition (Holder), AC = (α(R3) ∈ {step}))

where α is a function to get the value of the requirement Ri and λ is a function to get the name of the
requirement Ri.

λ (R1) = Minimize Friction, α(R1) ∈ {TRUE, FALSE}

λ (R3) = Ease Manufacturing, α(R3) ∈ {step, non-step}

3) Graph Derivation

Deriving a product variant may involve more than one step of modification of the base product. The
process of modifying a base product to a customized one can be modeled as a series of graph
derivations by executing certain production rules. The derivation of a graph, g’, from a graph, g, by
means of a production, p, follows the following procedures:

1. Check whether gl is a subgraph in g, and check if the application condition is true. If both
condition s are fulfilled, continue to step 2.

2. Substitute gl, including all incoming and outgoing edges, with the nodes and edges of gr.

3. Transform the embedding of gl in g into gr in g’.

4. Update the ports of nodes in gr.

4) Control Diagram

Usually, a number of productions will be involved in the process of graph derivation. The order for a
collection of productions to be invoked is specified by the control diagram. The control diagram in
the graph grammar of a product family expresses the order in which productions defined for this
product family are to be executed. Our method is to go through this process by imitating a real
designer’s design practice in three stages: 1) adding new components or modifying existing

P1 P2 P3 P4

P5 P6

P7

Stage 1) Stage 2) Stage 3)

Fig. 7. An example of a control diagram

 88

components in the mechanism to fulfill a customer’s or an engineer’s functional requirements; 2)
increasing performance of the product by adding components, such as gaskets or bearings; and 3)
adding positioning or fastening components to secure the relative positioning of the components in
the assembly.

To map customers’ or manufacturing engineers’ requirements to a variant design, the checking of
application conditions should start from the production that is at the beginning position of the control
diagram. The path in the control diagram with the maximum number of applicable productions
(application condition is TRUE) is chosen and all feasible productions along the path will be applied.
A variant is generated when no more production rules in the path of the control diagram can be
applied. Figure 7 shows an example of a control diagram. In figure 8, a graph that represents the base
product of a planetary gear train is transformed into a graph that represents one possible product in
the planetary gear train product family. Figure 9 shows the product’s physical model in SolidWorks®.
For details of the graph generation process, please refer to Wang, 2005.

Fig. 8. Example of graph transformation

Fig. 9. CAD model of the planetary gearbox for the graph in Fig. 8

3.2 Functional tolerancing in 3D CAD

With enormous customer demands, commercial CAD systems open many more spaces for third-party
developers to access the CAD model through API (Application Programming Interface) and develop

Input Housing
7

Planetary Gear
31

Sun Gear
2

Planetary Holder
1

Left Bearing
9

Retaining Ring
10

Right Bearing
9

Ring Gear
4

Locating Pin
11

Output Housing
6

Holder Pin
82

Motor
5

Ra

Ra
Rb

G

G

1

2

4

Graph Grammar

SG
MT

IH
SW

PG1

 LP RG

SW
OH

BR

RR

PH

BR

HPS

G

G
C

P

H
F

F

C

H
H

C C

C

C

C
F

P

P
P

P

C

H

P

P

H. Wang and R. Thamma / International Journal of Industrial Engineering Computations 3 (2012)

89

software for their own use. In-house software can therefore be quickly prototyped and tested.
SolidWorks has been chosen as the CAD platform to implement the proposed tolerance specification
and tolerance synthesis methods owning to the following reasons:

• SolidWorks is a very popular CAD system based on a solid model which is 3D in nature. This
matches our purpose for 3D tolerance specification and synthesis.

• The API is well documented.
• The API is easy to use and sample codes are available.
• There is noo extra charge for the API.

The tolerance specification module and the tolerance synthesis module are developed as an add-in
DLL (Dynamic Link Library) in SolidWorks by using the Object-Oriented Design method through
SolidWorks’ API and MS Visual C++. The system structure is in Figure 10.

The user interacts with the tolerance specification module and tolerance synthesis module through
SolidWorks Graphical User Interface (GUI) and GUI of the two modules by Microsoft Foundation
Class (MFC).

3.3 Example

1)Tolerance Specification

A base cover assembly is used to illustrate how the tolerance specification module and the tolerance
synthesis module work in SolidWorks. The solid model of the assembly is shown in Figure 11. As
can be seen, there are three mates between the Cover and the Base: a coincident mate between 1a and

Fig. 10. The structure of the implementation

User

SolidWorks

SolidWorks API

LEDAMatLab

Tolerance

Specification

Tolerance

Synthesis

Base

Cover

1a

2a1b

2b 2c

1c

Fig. 11. The base-cover assembly in SolidWorks

 90

2a, a concentric mate between 1b and 2b, and a concentric mate between 1c and 2c. The tolerance
specification module and tolerance synthesis module are programmed as an add-in to SolidWorks in
Dynamic Link Library (DLL) file format. This add-in file can be loaded by opening the file directly
in SolidWorks or by checking the respective check box in the Add-ins dialog box.

Tolerance Synthesis

In this paper, only features in mates are taken into account for tolerance synthesis to simplify the
problem. The tolerance synthesis module shows mates between components and the connection graph
as shown in Fig. 12. As shown in Fig. 13, three points are selected on each component for mating
features. (37.5,20,0) is for T1a, T2a, and G1a/2a; (63, 20, 12.5) is for T1b, T2b, and G1b/2b; and (12,
20, 12.5) is for T1c, T2c, and G1c/2c. (0,0,0) is the origin of the base component (part 2) and is the
point for T1; (0,25,0) is the origin of the cover component (part 2) and is the point for T2.

Fig. 12. Mates between components and the assembly graph Fig. 13. Spanning tree of the modified connection graph

Table 1-1 shows the labels of the nodes of torsors, their points’ coordinates, and LCSs. By using
LEDA’s graph algorithm we get the spanning tree, as shown in Figure 13. Therefore, we know that
there are only two independent loops: (Loop 1)1 1b 2b 2 2c 1c 1 and (Loop 2)
1 1a 2a 2 2b 1b 1. The two loops are represented by two rows of sequenced integers (0, 1,
or –1) as shown in Table 1-2.

Table 1-1
Torsors’ labels, coordinates, and LCSs of the Cover-Base assembly
Node Label Torsor Coordinates (x,y,z) LCS (X-axis;Y-axis;Z-axis)
0

2T (0,0,0) (1,0,0;0,1,0;0,0,1)

1
2aT (37.5,20,0) (1,0,0;0,-1,0;0,0,-1)

2
2cT (12,20,12.5) (1,0,0;0,-1,0;0,0,-1)

3
2bT (0,25,0) (-1,0,0;0,1,0;0,0,-1)

4
1T (63,20,12.5) (1,0,0;0,1,0;0,0,1)

5
1aT (37.5,20,0) (1,0,0;0,1,0;0,0,1)

6
1cT (12,20,12.5) (-1,0,0;0,-1,0;0,0,1)

7
1bT (63,20,12.5) (1,0,0;0,1,0;0,0,1)

8
1 / 2a aG (37.5,20,0) (1,0,0;0,1,0;0,0,1)

9
1 / 2c cG (12,20,12.5) (-1,0,0;0,-1,0;0,0,1)

10
1 / 2b bG (63,20,12.5) (1,0,0;0,1,0;0,0,1)

H. Wang and R. Thamma / International Journal of Industrial Engineering Computations 3 (2012)

91

Table 1-2
Loop Matrix (note: N means node, L means loop)
 N
L 0 1 2 3 4 5 6 7 8 9 10
1 -1 0 1 -1 1 0 -1 1 0 -1 1
2 -1 -1 0 1 1 1 0 -1 1 0 -1

To solve the optimization (minimization) problem as formulated in this paper, the “fmincon”
nonlinear constrained optimization solver in MATLAB is used. Results of the optimization run are
shown in Table 1-3. The optimal deviation parameters are used for computing the tolerance
values/ranges (Table 1-4).

Table 1-3
Optimal deviation parameters of torsors
Node dx dy dz Rx Ry rz
0 0.0099 0.01 0.0099 0.0017 0.0063 0.0005
1 -0.0001 0 0.01 0.01 0.01 0.0024
2 0.01 0.01 -0.0001 0.01 0.01 0.0011
3 0.01 0.01 0 0.01 -0.0028 0.0018
4 0.01 0.0099 0.01 0.0017 -0.0018 0.0015
5 0.0001 0 0.01 0.01 0.01 -0.0017
6 0.01 0.01 -0.0001 0.01 0.01 0
7 0.01 0.01 0 0.01 0.01 -0.0008
8 0.0001 0 0 0.01 -0.0028 -0.0017
9 0.01 0.01 -0.0001 -0.01 -0.0012 0.0001
10 0.0099 0.01 0 -0.01 -0.0036 -0.0008

Table 1-4
Results of tolerance values or ranges
Feature Tolerance Type Deviation Mapping
1a Size TL = 0.165 TU=0.585
2a Size TL = 0.165 TU=0.585
1b Perpendicularity fmin= 0.1773 fmax= 0.1773
2b Perpendicularity fmin= 0.1240 fmax= 0.1375
1c Position fmin= 0.1773 fmax= 0.1773
2c Position fmin= 0.1626 fmax= 0.1909

Table 1-4 listed the recommended ranges for size tolerances. But for perpendicularity and position
tolerances, fmax and fmin values give the possible ranges of the values TU, TL, and Tp constrained by
the mapping relations. These inequalities are planes in the TU, TL, Tp space and all such inequalities
for each feature define the tolerance zone (Wang, 2006).

4. Conclusions and future work

A graph grammar-based mechanical product modeling scheme has been proposed. A product is
generated by applying production rules to the graph of the base product, the mechanism. Both base
product and end product are represented by graphs with components as nodes and joints between
components as edges. The generated attributed graph is a data structure which represents the joint and
feature information of the customized product. In the end product, the joints between a component
and other components in the product represent the functions concerning how the components are to
be related to each other geometrically. Therefore, the joints information can be used in designing and
tolerancing. Further efforts should be made to extend research in the following areas. The users of the
scheme of mechanical product family modeling can be roughly classified into “designers” and
“experts.” While designers only have knowledge of designing the product, experts know how to

 92

design the product as well as how to translate the design knowledge to production rules for the
product family. As described in section three, the key elements of a graph grammar of a mechanical
product family are: a starting graph which represents the mechanism of the product, production rules,
and a control diagram. Developing the three elements might not be a problem for an expert (even if it
might take him or her months), but it could be very challenging for a designer who has very limited
knowledge about graphs, production rules, etc. In order to make the proposed scheme convenient and
efficient for all kinds of users, a generic system for mechanical product family modeling should be
developed. It should allow users to select and edit starting graphs. Production rules should be
generated based on user input such as customers’ or manufacturing engineers’ requirements, changes
of features on components due to said requirements, etc. Users should be able to generate or edit the
control diagram by their knowledge of design sequence and the support of the system.

There are two interesting questions about production rules that might indicate the directions of future
study. One is “How do we know the production rules of a mechanical product family are complete?”
The other is “How do we know if the production rules are optimal?” A complete production rule set
should be able to generate product variants that meet all possible combinations of requirements for a
product family. It should also represent all possible changes of the product configuration due to one
specific requirement. An optimal production rule set is a complete one that has the minimum number
of production rules. Future research about criterias that help users in evaluating the completeness of
the production rules is needed to help searching for the optimal product design.

References

Anselmetti, B., Thiebaut, F., & Mawussi, B. (2002). Functional Tolerancing Based on the Influence
of Contacts. APSE 2002 Summer Topical Meeting on Tolerance Modeling and Analysis. Charlotte,
North Carolina. CD ROM. 15-16 July 2002.

Clement, A., Valade C., & Rivière A. (1996). The TTRSs: 13 oriented constraints for dimensioning,
tolerancing and inspection. Proceedings of the Advanced Mathematical Tools in Metrology III
Conference. Berlin. September, 25-28.

Kandikjan, T., Shah, J.J., & Davidson, J.K. (2001). A mechanism for validating dimensioning and
tolerancing schemes in CAD systems. Computer-Aided Design, 33, 721-737.

Linares, J. M. (2002). Synthesis of tolerancing by functional group. Journal of Manufacturing
Systems, 21(4), 260-275.

MacDuffie, J. P., Sethuraman, K., & Fisher, M. L. (1996). Product Variety and Manufacturing
Performance: Evidence from the International Automotive Assembly Plant Study. Management
Science, 42, 350-369.

Martin, M. V., & Ishii, K. (1996). Design For Variety: A Methodology for understanding the Costs of
product proliferation. ASME Design Engineering Technical Conferences, Irvine, CA. 96-
DETC/DTM-1610.

Rothwell, R., & Gardiner, P. (1990). Robustness and Product Design Families, Design management:
a handbook of issues and methods. Moakley. Cambridge, MA. Basil Blackwell Inc.

Wang, H., & Roy, U. (2005). A Graph-Based Method For Mechanical Product Family Modeling And
Functional Tolerancing. The 31st Design Automation Conference, ASME IDETC/CIE.

Wang, H., Pramanik, N., Roy, U., Sudarsan, R., Sriram, R.D., Lyons, K.W. (2006). A Scheme for
Mapping of Tolerance Specifications to Generalized Deviation Space for Use in Tolerance
Synthesis and Analysis. IEEE Transactions on Automation Science and Engineering (T-ASE).
3(1), 81-91.

Wheelwright, S. C., & Clark, K. B. (1992). Revolutionizing Product Development: Quantum Leaps in
Speed, Efficiency and Quality. New York, The Free Press.

Whitney, D. (1996). Why mechanical design cannot be like VLSI design. Research in Engineering
Design, 8, 125-138.

	A scheme for functional tolerancing: A product family in 3D CAD system
	1. Introduction
	2. Review
	3. Graph-based Representation of an Assembly
	3.1 Graph grammar of a mechanical product family
	3.2 Functional tolerancing in 3D CAD
	3.3 Example

	4. Conclusions and future work
	References

