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 In this paper, we present a Bayesian analysis of a data set selected from a Brazilian food 
company. This data set represents the times taken for different quality control analysts to test 
manufactured products arriving at the company’s quality control department. The samples 
selected from each batch contain mixtures of different products, which may be submitted to 
quality testing taking different times. From preliminary analysis of the data, it was observed that 
the histograms presented two clusters, indicating a mixture of distributions. A mixture of 
parametrical distributions was thus assumed in the presence of a covariate in order to analyze the 
data set and to establish standards to be used by the company for the times taken by the analysts. 
Inferences and predictions are obtained using a Bayesian approach with standard existing Markov 
Chain Monte Carlo (MCMC) methods. 
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1. Introduction  
 
The times taken in carrying out quality control tests can often vary greatly, influenced by a range of 
factors, including the experience and skill of the quality control analysts, and the presence of different 
products being analyzed. It is, then, of interest to industrial managers to model these data sets, from 
which they can make inferences and predictions and identify important factors that could affect these 
times. In the study herein, we consider a data set from a food company in São Paulo state, Brazil. This 
data set comprises quality control times for two different analysts observed on different days. This data 
set comprises random samples selected from all the batches of manufactured products. These different 
products are assessed by quality control tests lasting for different timeframes. The batches arrive in 
random order at the quality control department. Fig. 1 shows the histograms for the test times for the 
two analysts. 
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Fig. 1. Histograms for the test times considering the two analysts. 

From the histograms shown in Fig. 1, it can be observed that the two analysts perform the control tests 
differently (analyst 1 with 1,200 samples, and analyst 2 with 1,504 samples). A discordant observation 
(greater than 64 minutes) for analyst 1 was discarded. It was observed that analyst 2 took less time than 
analyst 1. Fig. 2 shows the histogram for all the combined data for both analysts (n=2704 
observations). From the histograms in Fig. 1 and Fig. 2, the mixture of two distributions for the times 
taken for the quality control tests is observed, where a proportion of units has short times and a second 
proportion of the data has long times. This made it possible to use a mixture of parametrical 
distributions to analyze the data. A mixture of parametrical distributions has been considered by many 
authors in the literature to analyze non-homogeneous data sets (see, for example, Titterington et al. 
1985; Stephens, 2000a; Stephens, 2000b; Richardson & Green, 1997; Diebolt & Robert, 1994; Dey et 
al., 1995; Finkelstein & Esaulova, 2001). 

 

Fig. 2. Histogram of times for two analysts 
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In the parametric mixture model, the component distributions are from a parametric family with known 
parameters θj with the probability density function given by 

   jjj

k

j
tfptf |

1 
  (1) 

 

for some mixture proportions 0≤pj≤1, where p1+ p2+…+ pk=1. If k=2, we have a mixture of two 
distributions. 

Inferences for finite mixture models could be obtained using Bayesian methods (see, for example, 
Mengersen & Robert, 1996; Carroll et al., 1999) where the posterior summaries of interest are obtained 
using simulation methods, especially standard Markov Chain Monte Carlo (MCMC) methods, such as 
the popular Gibbs sampling algorithm (see for example, Gelfand & Smith, 1990) and the Metropolis-
Hastings algorithm (see, for example, Chib & Greenberg (1995)). 

Recently, Achcar et al. (2012) published a paper with the same data analyzed in this article where the 
focus of analysis was the use of a Weibull distribution in the presence of a changing point. In this 
paper, the authors compare the results obtained from the use of the change point model with the results 
obtained from a model considering the mixture of two Weibull distributions. As the two competing 
methodologies showed to be appropriated to analyze this data set, this article aims to explore in more 
detail the use of mixtures of Weibull distributions, as a good alternative for quality engineers, also 
introducing a comparative study with the use of other mixture models like the mixture of normal 
distributions. 

This paper is organized as follows: in section 2, the models and inference are presented considering a 
mixture of two normal distributions and a mixture of two Weibull distributions; in section 3, a 
Bayesian analysis for the data of the food company is presented. Finally, in section 4, some concluding 
remarks are presented. 

2. Models and inference 

In this section, we introduce two mixture models for the times taken for the quality control tests at the 
food company: a mixture of two normal distributions and a mixture of two Weibull distributions. 

2.1. Mixture of two normal distributions 

Since we have two analysts receiving samples for quality control tests in the food company, we first 
assume a mixture of two normal distributions considering a covariate X  (an indicator variable for each 
analyst), where 0X  for analyst 1 and 1X  for analyst 2. Let iT  be a random variable denoting the 

quality control test time for the thi  sample  ni ,,2,1   where 2704n , assuming a mixture of two 

normal distributions  2; jjiN  , 2,1j  given (from Eq. (1)) by the density, 

       2
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where ijjji X  ; ;2,1j  2704,,2,1 i ;   12 ; 0iX  (analyst 1); 1iX  (analyst 2) and 

 2;| jjiij tf   is a normal density given by, 
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For a Bayesian analysis of the regression mixture model defined by Eq. (2) and Eq. (3), we assume the 
following prior distributions for the parameters  , j , 1  and 2

1

j
j 

  , :2,1j  

   
 
   
 

 1.0,1.0

1,1

0;10,0

10,0

0;10,

1
6

1

2

3

Gamma

Betap

truncatedN

N

truncatedaN

j

j


















 (4) 

where  2,N  denotes a normal distribution with mean   and variance 2 ;  cbGamma ,  denotes a 

gamma distribution with mean c
b  and variance 2c

b ;  edBeta ,  denotes a beta distribution with mean  ed
d
  

and variance     12  eded
de . The hyperparameter a for the normal prior of   is assumed known from a 

preliminary data analysis. This choice of a also implies in the identifiability of the mixture model. Note 
that we are assuming large variances for the prior distributions, that is, approximately non-informative 
priors (see for example, Paulino et al. (2003)). We further assume prior independence among the 
parameters. 

2.2 Mixture of two Weibull distributions 

Another possibility is to assume a mixture of two Weibull distributions for the times of the two 
analysts. In this case, we assume in Eq. (1), a mixture of two Weibull distributions (see for example, 
Lawless, 1982) given by the density, 

       1 1 1 2 2 2| ; 1 | ; ,i i i i if t pf t v p f t v     (5) 

where    jj v
iji

v
ijijjjiij ttvvtf    exp;| 1  and the scale parameter of the Weibull distributions is given 

by  ,exp ijjji X   ;2,1j  ;2704,,2,1 i  ;12    jv  is the shape parameter of the Weibull 

distribution; 0iX  (analyst 1) and 1iX  (analyst 2 ). Note that the mean time for each component 
distribution in the mixture model (5) is given by, 
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where    dtttx x  
 exp1
0  is a gamma function; ;2,1j  2704,,2,1 i . For a Bayesian analysis of 

the model we assume the following prior distributions for the parameters: 

         11,1    0.1,0.1    1,1   0.1,0.1 ; 1,2  0,10j jp Beta Gamma Gamma v Gamma j N         (7) 
 

3. A Bayesian analysis for the data of the food industry 

To analyze the times taken for quality control tests by the two analysts at the food company using a 
Bayesian approach, we first assume a mixture of two normal distributions defined by Eq. (2) and Eq. 
(3) with priors Eq. (4) with 8a . This model is denoted model 1. The value 8a  was chosen from a 
preliminary data analysis (see Fig. 1 and Fig. 2). 

In the simulation procedure of samples for the joint posterior distribution of  212121 ,,,,,, p  and 
, we used OpenBUGS, an open source software available from http://openbugs.info/w/Downloads (see, 
for example, Lunn et al. (2009)). 

OpenBUGS requires only the distribution of the data and the prior distributions for the parameters of 
the model, and the conditional posterior distributions used for the Gibbs sampling algorithm do not 
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have to be specified; that is to say, the samples for the joint posterior distribution of interest is greatly 
simplified. 

In the simulation procedure, a sample size of 000,5  was initially simulated from the joint posterior 
distribution discarded to eliminate the effect of the initial values used in the iterative routine (burn-in 
sample). Following this burn-in sample another 000,20  Gibbs samples were generated, taking every 

th20  sample to have approximately uncorrelated samples, from which a final simulation sample of size 
000,1  was used to get the posterior summaries of interest. Convergence of the Gibbs sampling 

algorithm was monitored from the usual traceplots for each parameter sample. Table shows the 
posterior summaries obtained assuming the mixture of two normal distributions. 

Table 1  
Posterior summaries (“model 1”) 

parameter mean S. D. 95% credible interval 
p  0.4812 0.0096 (0.4622;0.4998) 

p1  0.5188 0.0096 (0.5003;0.5380) 

1  −0.0247 0.0068 (−0.0376;−0.0116) 

2  −0.4060 0.1221 (−0.6458;−0.1623) 

1  0.7521 0.0053 (0.7421;0.7632) 

2  8.011 0.0845 (7.852;8.177) 

1  67.39 2.75 (62.16;72.99) 

2  0.2005 0.0076 (0.1857;0.2166) 

1  0.1219 0.0025 (0.1171;0.1269) 

2  2.234 0.043 (2.149;2.320) 

  7.258 0.085 (7.100;7.424) 
 

Fig. 3 shows times observed for quality control versus samples, and the fitted means (Bayesian 
estimates for the means) versus samples.  

 
Fig. 3. Quality control times and fitted means versus samples (all data set) 
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A good fit was observed for the data for the proposed model. The posterior mean for the first normal 
cluster for analyst 1 had a Monte Carlo estimate based on the 000,1  simulated Gibbs samples given by 

7521.01̂  , and a %95  credible interval for 1  given by  7632.0;7421.0 . For the second normal cluster, 

the posterior mean for 2  is estimated by 011.8ˆ
2   with a %95  credible interval given by 

 177.8;852.7 . 
From ijjji X  , for analyst 2  1iX , there is a Bayesian estimate for the mean for the first 

normal cluster given by 7273.00247.07521.0ˆˆ
11   , and for the mean of the second normal 

cluster given by 6050.7406.0011.8ˆˆ
22   . That is, analyst 2 has less time to perform the quality 

tests than analyst 1. It is also observed that the regression parameters 1  and 2  have significant 
effects on the quality control times for the analysts, since zero is not included in the %95  credible 
interval for 1  and 2  (see Table 1). Similar proportions of samples in the two clusters of data are 
observed. To check the quality of fit for the data for the mixture of normal distributions, we could 
calculate the differences of observed and fitted means given by 

  iii
tlfit ̂

2704

1


 (8) 

 
where i̂  are the fitted means, 2704,,2,1 i  and l  indexes model (here, 1l ). We observe 

  59.23381 fit . From (8), it is observed that  1fit  for analyst 1 is given by 80.1115  and for analyst 2 is 
given by 79.1222 . In Fig. 4, we have the observed values and fitted means for each analyst. 

(a) (b) 
Fig. 4. Quality control times and fitted means versus samples: (a) Analyst 1 and (b) Analyst 2 

 

In the Bayesian analysis of the data from the food company, a mixture of two Weibull distributions is 
also assumed as defined by Eq. (5) and the prior distributions Eq. (7). Let us denote this model as 
model 2. Considering the same simulation steps used for model 1, Table 2 shows the posterior 
summaries of interest based on 000,1  simulated Gibbs samples using the OpenBUGS software.  

From the results in Table 2, the covariate X  (analyst) shows a significant effect in the means of the two 
cluster Weibull distributions since zero is not included in the %95  credible intervals for 1  and 2 . 
Note that the regression parameter j , 2,1j  has a multiplicative effect on the scale parameter for the 

Weibull distributions  ijjji X exp , 2,1j ; 2704,,2,1 i .  
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From the results in Table 2, we observe that since  ijjji X exp , 2,1j ; 2704,,2,1 i , we get 

Bayesian estimates for the scale parameter of the Weibull distributions (5), given, respectively by 
  265.4ˆˆ 1
1

1    and   000076.0ˆˆ 2
1

2    for analyst 1  0iX  and  
      0720.51733.0exp265.4ˆexpˆˆ 11
2

1     and       000091.01839.0exp000076.0ˆexpˆˆ 22
2

2    for 
analyst 2  1iX . 

Table 2  
Posterior summaries (“model 2”) 

parameter Mean S. D. 95% credible interval 
p  0.4807 0.0099 (0.4615;0.5015) 

p1  0.5193 0.0099 (0.4991;0.5386) 

1  0.1733 0.0594 (0.0592;0.2868) 

2  0.1839 0.0554 (0.0760;0.2945) 

1  4.265 0.228 (3.842;4.699) 

2  0.000076 0.00002 (0.000046;0.00016) 

1v  6.5520 0.1460 (6.2630;6.8580) 

2v  4.3970 0.1170 (4.1950;4.5970) 

  0.000018 0.000005 (0.00001;0.00003) 

 

From Eq. (6), we get Bayesian estimates for the means of both analysts, given by: 

 

 i  Analyst 1: 

݉݁ܽ݊ෟ ଵ(ଵ)  
1 1
ˆ 6.55211 1

1

1 1 1 1
1 1 0.7471

ˆ 6.5524.265ˆ
v v

            
   

 

 

for cluster 1, and  ݉݁ܽ݊ෟ ଶ(ଵ)  
1 1
ˆ 4.39721 2

2

1 1 1 1
1 1 7.8796

ˆ 4.3970.000076ˆ
v v

            
   

 

 

for cluster 2 of the mixture of two Weibull distributions. 

 

 ii  Analyst 2: 

݉݁ܽ݊ෟ ଶ(ଵ)  
1 1
ˆ 6.55212 1

1

1 1 1 1
1 1 0.7276

ˆ 6.5525.07205ˆ
v v

            
   

 

 

for cluster 1, and ݉݁ܽ݊ෟ ଶ(ଶ)  
1 1
ˆ 4.39722 2

2

1 1 1 1
1 1 7.5633

ˆ 4.3970.000091ˆ
v v

            
   

 

 

for cluster 2 of the mixture of two Weibull distributions. 
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Similar results are observed for the means of the two distributions in the mixture model assuming 
normal or Weibull distributions (see Table 1). Fig. 5 and Fig. 6 show the timings of quality control 
versus samples and also of the fitted means (see Eq. (6)) versus samples considering respectively, the 
combined data of the two analysts; the data of analyst 1 and the data of analyst 2.  

From Eq. (8), we get  
  23572 allfit  (all combined data);  

  98.11311
2 fit  (data of analyst 1) and 

 
  42.12252
2 fit  (data of analyst 2). Overall, both models give similar inference results, but model 1 

(mixture of two normal distributions) shows a small improvement in the fit for the data. 

 

Fig. 5. Quality control times and fitted means versus samples (all data set) 

(a) (b) 
Fig. 6. Quality control times and fitted means versus samples: (a) Analyst 1 and (b) Analyst 2 
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4. Concluding remarks  
 

In industrial applications, managers and industrial engineers are usually interested in modeling the time 
taken in tasks carried out by different operators, especially in order to get performance indicators for 
their systems (by Discrete Event simulation, for example). This paper analyzed the times taken in 
quality control carried out by two different analysts in a Brazilian food company. The main goal at 
every company is to standardize and optimize these times, as a reference that should be followed by all 
analysts in the company. In many cases, as was considered in this paper based on the data set from the 
food company, the batches of manufactured products arrive in a random order at the company's quality 
control department, with a mixture of different products, and the quality control tests usually take 
different times. Hence, the use of a mixture of parametrical distributions in the presence of a covariate, 
considered as it was to be of great interest in industrial applications. In this case, we were able to 
consider Bayesian confidence intervals, or classical confidence intervals, for the means of the two 
component distributions for the best analyst (short times) as standard reference intervals to be followed 
by all the operators in the company's quality control department.  

It is important to point out that these results could be generalized for other mixed data sets consisting of 
more than two clusters, and in the presence of other covariates that could affect the performance of 
analysts, such as skill in performing the quality control tests, experience, calibration of the test 
equipment, day of the week, temperature, and many other factors. The use of Bayesian methods for a 
mixture of parametrical distributions especially considering existing simulation MCMC methods, such 
as the Gibbs sampling algorithm and OpenBUGS software, could be of great interest, since the 
computational cost to get the posterior summaries required is not high. 
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