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 In this paper, an inventory model of two-warehouse is considered, which evaluates the impact of 
a reduction rate in the selling price with volume flexibility. In real life, there are many products, 
which may decay or deteriorate or become obsolete. Therefore, one alternative is to clear the 
stock by selling a large amount of items at reduced prices. Taking this concept into account, this 
paper considers a fixed demand rate at the beginning of planning until the certain time point 
occurs, while demand is assumed to follow the pattern of nonlinear and non-decreasing power 
function of the reduction rate. The total cost function includes warehouse and rented warehouse 
holding costs, set up cost and the production cost. Numerical illustrations are given to exemplify 
the model and the proposed model is solved using a Genetic Algorithm (GA) with sensitivity 
analysis. 
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1. Introduction  
 
During the past few decades, production firms and business enterprises have executed broad 
information systems in order to improve their performances but in many scenarios, the yields come out 
to be much less than anticipated (Sharma, 2012). Earlier, the researchers observed that in order to 
comprehend maximum functioning improvements, it is necessary to get well-time data about 
customer’s demand. Functioning procedures like inventory management and accumulation arrangement 
have to be valuable to improve the firms’ or enterprises’ inventory performance. The key objective of 
firms is to meet demand punctually by providing high quality services. Keeping this point in mind, 
shops or companies do their best to store inventories in their own warehouse (OW) or rented warehouse 
(RW), in case of necessary. In general, when suppliers offer price discounts for bulk purchases, or 
when the considered items are seasonal products such as the harvest output, or for stock-dependent 
demand, the administrator may procure more goods than the capacity of its own warehouse. Therefore, 
the surplus inventories are stored in a rented warehouse.  
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The inventory costs including the holding and the deterioration expenditures in the RW are generally 
higher than those in the OW due to the extra cost of safeguarding and material holding. The studies by 
Hartely (1976), Sarma (1983, 1987), Goswami and Chaudhuri (1992), Bhunia and Maiti (1994), 
Benkherouf (1997), shed light at these topics. Bhunia and Maiti (1998) established a deterministic 
inventory model with two warehouses by considering various deteriorations in both warehouses. Lee 
and Ma (2000) worked on a two-warehouse model and developed a heuristic solution of equal 
production cycle times with a general time-dependent demand function over a finite planning horizon. 
Zhou (2003) extended the model of Bhunia and Maiti (1998) allowing shortages where stock is 
transported from each RW to OW, continuously.  
 
Yang (2004) observed that the RW works as a Central Warehousing Facility that usually provides 
better preservation facility than the OW resulting in a lower deterioration rate for the goods. In order to 
decrease inventory expenditures, it is reasonable to store goods in an OW before the RW and to clear 
the stock in the RW before the OW. Yu et al. (2005) studied a production-inventory model based on 
deteriorating item with imperfect quality and partial back-ordering. Zhou and Yang (2005) explored a 
two warehouse inventory model with stock-dependent demand rate considering that the own warehouse 
had limited capacity and the rented warehouse had unlimited capacity. They assumed the transportation 
cost for transferring items from RW to OW dependent on the supplied quantity. Teng and Chang 
(2005) examined an economic production quantity (EPQ) model for deteriorating items with demand 
depending on stock-level and price.  
 
Ghosh and Chaudhuri (2006) worked on an economic order quantity (EOQ) model for quadratic 
demand assuming time-dependent deterioration rate. Chung and Huang (2007) established a two-
warehouse inventory model for deteriorating items under a permissible delay in payments assuming the 
same deterioration rates of the two warehouses. Dey et al. (2008) explored a finite time horizon 
inventory problem for a deteriorating item having two separate warehouses with interval-valued lead-
time under inflation and a time value of money. Niu and Xie (2008) customized Pakkala and Achary’s 
model (last-in-first-out) where inventory in the RW was stored last but would be consumed before 
those in the OW.  
 
Hsieh et al. (2008) examined a deterministic inventory model for deteriorating items involving two 
warehouses and assuming the inventory costs in the RW to be higher than those in the OW. Mishra and 
Mishra (2008) developed an EOQ model with the objective of analysis and computing the unit price for 
deteriorating items under the ideal competition as a significant market constitution. Rong et al. (2008) 
presented an optimization inventory policy for a deteriorating item with imprecise lead-time, 
partially/fully backlogged shortages and price dependent demand under a two-warehouse system. Lee 
and Hsu (2009) extended the Lee and Ma (2000)’s model by considering variable production cycle 
times instead of equal production cycle times. Chung et al. (2009) extended a two-warehouse inventory 
model with an imperfect quality production processes. Liao and Huang (2010) explored an order-level 
inventory model for deteriorating items with two-storage facilities and trade credit.  
 
Hariga (2011) suggested an EOQ model with multi-warehouses where both owned and rented 
warehouses had limited stock capacity. He assumed that the inventory manager could negotiate either a 
fixed or flexible space rental contract and also have access to spot markets to acquire more space, if 
needed. Liang and Zhou (2011) examined a two-warehouse inventory model for deteriorating items 
under conditionally permissible delay in payments. They considered the greater holding costs for rented 
warehouse in comparison to own warehouse while RW’s superior preservation resulting in a lower rate 
of deterioration for the goods than in the own warehouse. Sana (2010) discussed a multi-item EOQ 
model for deteriorating and ameliorating items under capacity constraint with a time varying demand 
also subjected to organizational schemes like advertising. Sana et al. (2011) developed a two-
warehouse ordering quantity model considering pricing decision. Sett et al. (2012) considered a two-
warehouse production model for quadratically increasing demand and time varying deterioration. 
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Practically, each item has a lifetime after which its value (quality) decreases. The lifetime is unfixed 
and depends on the quality of the item and also on preservation storage space. For instance, when 
deterioration occurs in textile shops, management enhances the sale of the commodities. 
Simultaneously, management offers a reduced selling price to motivate customers to buy more. Taking 
into account in this concept, a structural EPQ model is developed in this chapter that estimates the 
influence of a reduction in the selling price when the capacity of OW is limited and RW is used, if 
needed. The demand rate is fixed (d1) up to time μ; and after time μ the demand rate d2 dependent on its 
reduction rate r. The demand rate d2(r) has an exponential trend that can be estimated/fitted using a 
curve fitting method. The associated profit maximization objective function is solved using GA. All 
possible cases of the model are formulated and then numerically illustrated. Finally, conclusions are 
drawn from the proposed models.  
 
In this paper, the demand rate d2(r) is incorporated with EPQ model considering two warehouses and 
volume flexibility. This combination has not been studied methodically in existing literature. The rest 
of the chapter is organized as follows: section 2 provides the fundamental assumptions and notations, 
section 3 describes the formulation of the model, section 4 provides numerical examples, and 
conclusions are given in section 5. 
  
2. Assumptions and Notations 
 
2.1. Assumptions 
 
(i) The model is developed for a single item. 
(ii) The replenishment rate is infinite but replenishment size is finite. 
(iii) The lead time is zero. 
(iv) No shortages are permitted. 
(v) Own Warehouse (OW) and Rented Warehouse (RW) are considered. 
(vi) The time horizon is infinite.  
 
3.2. Notations  
 
(i)   Ii (t) On-hand inventory at different phases at any time t, 
(ii)  Cs Set up cost per cycle, 
(ii)  ho Inventory holding cost per unit per unit time at OW, 
(iv) hr Inventory holding cost per unit per unit time at RW, 
(v) Cp Production cost per unit, 
(vi) r Reduction rate in selling price, 
(vii) P Production rate, 
(viii) d1 Demand rate for items before time point μ, 
(ix) d2 Demand rate for items after time point μ, 
(x) μ Time after which retailers/suppliers offer discounts on the selling price, 
(xi) W Capacity of OW, 
(xii) t1 Total time elapsed for storage of items at RW, 
(xiii) t2 Production time, 
(xiv) t3Time up to which inventory level becomes zero at RW, 
(xv) t4 Cycle length. 
 
3. Model formulation 
 
The production starts at t = 0 with at a rate P and due to the combined effect of production and 
demand, inventory level increases up to W till time t=t1 in OW. After that the inventory continues to 
store at RW till the production stops at t=t2.  The inventory level in RW is depleted gradually due to 
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demand and that stock is cleared up to t=t3. Further, the inventory stored at OW starts depleting and 
reaches zero at t=t4. The unit production cost is  

Cp =   ,GR
P

            

where R is the material cost per unit item, g is the total labor/energy cost per unit time of a production 

system which is equally distributed over the unit time. So G
P

 decrease with P increase in short run 

process, total cost and average cost of production decrease with increase of production rate P. 
The demand for items (d1) is met during the time span [0, μ], μ is the expected time after which 
manufacturer starts giving discount on selling price. Here, μ is measured using an appropriate 
distribution such as normal distribution, and uniform distribution, over time, according to the quality, 
the marketplace climate and the age of the commodity. The management seeks to clear stock to 
minimize loss. To enhance these sales, reductions are proposed on the selling price. It can be justified 
that the demand d2 is a monotonic increasing function of the reduction rate r. Here, the demand rate d2 
is assumed to be d2(r) = abr, a> 0,b > 1, 0 <r < 1, where d2(r) is an exponential monotonic increasing 
function of r. For convenience, d2 is used rather than d2(r) throughout this chapter. In the proposed 
model, the following cases may arise: 
  
Case 1  10 t   

 
Fig. 1. Graphical representation of the system in case 1 

 
The system is governed by the following differential equations in case 1. 
 

11
1

( )dI t P d
dt

  ,                 0 t    
(1) 

12
2

( )dI t P d
dt

  ,  1t t    
(2) 

2
2

( )dI t P d
dt

  ,  1 2t t t   
(3) 

3
2

( )dI t d
dt

  ,   2 3t t t   
(4) 

4 ( ) 0dI t
dt

 ,   1 3t t t   
(5) 

5
2

( )dI t d
dt

  ,   3 4t t t   
(6) 

The above equations can be solved by using the boundary conditions 11(0) 0I  , 12 1( )I t W , 2 1( ) 0I t  , 

3 3( ) 0I t  , 4 1( )I t W and 5 4( ) 0I t  , respectively. The solution of the Eqs.(1-6) are given below: 
 

 11 1( )I t P d t  ,  0 t    (7) 

t1 t2 t3 t4 0 

W 

t 

I(t) 

I11 
I4 

I2 
I3 

I5 

µ 

I12 
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  12 2 1( )I t P d t t W    , 1t t    (8) 

  2 2 1( )I t P d t t   , 1 2t t t   (9) 

 3 2 3( )I t d t t   ,  2 3t t t   (10) 

4 ( )I t W ,   1 3t t t   (11) 

 5 2 4( )I t d t t   ,  3 4t t t   (12) 
 

Since 2 1
11 12

2 1

( ) ( ) W d tI I
d d

  


  


  

2 2 3
2 2 3 2 1( ) ( ) Pt d tI t I t t

P


    
(13) 

2 4
5 3 3

2

( ) d t WI t W t
d


    (14) 

Total relevant cost of the system = Set-up cost+ Production cost+ Holding costs in (OW and RW) 

         2 21 22 2
1 2 1 1 3 4 32 2 2s p o

P d P d dTC C C Pt h t W t t t t 
  

         
 

 

                                   
     2 22 2

2 1 3 22 2r
P d dh t t t t
 

    
 

 

 
 

(15) 

Case 2  1 2t t   

 

Fig. 2. Graphical representation of the system in case 2 

The system is governed by the following differential equations in case 2. 

1
1

( )dI t P d
dt

  ,                 10 t t   
(16) 

21
1

( )dI t P d
dt

  ,  1t t    
(17) 

22
2

( )dI t P d
dt

  ,  2t t    
(18) 

3
2

( )dI t d
dt

  ,   2 3t t t   
(19) 

5
2

( )dI t d
dt

  ,   3 4t t t   
(20) 

4 ( )I t  is represented by Eq. (6). 

t1 t2 t3 t4 0 

W 

t 

I(t) 

I1 I4 

I22 
I3 

I5 

µ 

I21 
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The above equations can be solved by using the boundary conditions 1(0) 0I  , 21 1( ) 0I t  , 

21 22( ) ( )I I  , 3 3( ) 0I t  and 5 4( ) 0I t  , respectively. The solution of the eq.(16)-(20) are given 
below: 
 

 1 1( )I t P d t  ,  10 t t   (21) 

  21 1 1( )I t P d t t   , 1t t    (22) 

   22 2 1 1 2( )I t P d t d t d      , 2t t    (23) 

 3 2 3( )I t d t t   ,  2 3t t t   (24) 

 5 2 4( )I t d t t   ,  3 4t t t   (25) 

Since 
 1 1 2 2 3

3 2 22 2
1

( ) ( )
d t d t t

I t I t
d P


 

  


 
(26) 

2 4
5 3 3

2

( ) d t WI t W t
d


    (27) 

1 1 1
1

( ) WI t W t
P d

  


 (28) 

     21 2 2
2 2 1 3 1 4 32 2s p o

P d dTC C C Pt h t W t t t t
 

       
 

 

             2 21 2 2 2 2
1 2 2 1 1 2 3 22 2 2r

P d P d dh t t d d t t t t    
  

          
 

 

 
 

(29) 

 
Case 3   2 3t t    

 

Fig. 3. Graphical representation of the system in case 3 

The system is governed by the following differential equations in case 3. 

1
1

( )dI t P d
dt

  ,                 10 t t   
(30) 

2
1

( )dI t P d
dt

  ,  1 2t t t   
(31) 

31
1

( )dI t d
dt

  ,   2t t    
(32) 

32
2

( )dI t d
dt

  ,   3t t    
(33) 

t1 t2 t3 t4 0 

W 

t 

I(t) 

I1 I4 

I31 

I32 

I5 

µ 

I2 
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5
2

( )dI t d
dt

  ,   3 4t t t   
(34) 

4 ( )I t  is represented by Eq. (6). The above equations can be solved by using the boundary conditions

1(0) 0I  , 2 1( ) 0I t  , 31 2 2 2( ) ( )I t I t , 32 3( ) 0I t  and 5 4( ) 0I t  , respectively. The solution of the Eqs. 
(12-14) are given as follows, 
 

 1 1( )I t P d t  ,  10 t t   (35) 

  2 1 1( )I t P d t t    , 1 2t t t   (36) 

 31 1 1 1( )I t d t P d t    , 2t t    (37) 

 32 2 3( )I t d t t   ,  3t t    (38) 

 5 2 4( )I t d t t   ,  3 4t t t   (39) 

Also, 1 1 1
1

( ) WI t W t
P d

  


 (40) 

 1 1 2 3
31 32

2 1

( ) ( )
P d t d t

I I
d d

  
 

  


 
(41) 

2 4
5 3 3

2

( ) d t WI t W t
d


    (42) 

Total relevant cost of the system is given by 

     21 2 2
3 2 1 3 1 4 32 2s p o

P d dTC C C Pt h t W t t t t
 

       
 

 

                                
           2 2 21 1 2

2 1 2 1 1 2 32 2 2r
P d d dh t t t P d t t t  
 

         
 

 

(43) 

Case 4  3 4t t    

 

Fig. 4. Graphical representation of the system in case 4 
The system is governed by the following differential equations in case 4. 
 

1
1

( )dI t P d
dt

  ,                 10 t t   
(44) 

2
1

( )dI t P d
dt

  ,  1 2t t t   
(45) 

3
1

( )dI t d
dt

  ,   2 3t t t   
(46) 

t1 t2 t3 t4 0 

W 

t 

I(t) 

I1 I4 

I3 
I51 

I52 

µ 

I2 
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51
1

( )dI t d
dt

  ,   3t t    
(47) 

52
2

( )dI t d
dt

  ,   4t t    
(48) 

 
4 ( )I t  is represented by Eq. (6). 

 
The above equations can be solved by using the boundary conditions 1(0) 0I  , 2 1( ) 0I t  , 3 3( ) 0I t  ,

51 3( )I t W  and 52 4( ) 0I t  , respectively. The solution of the Eqs. (44-48) are given below: 
 

 1 1( )I t P d t  ,  10 t t   (49) 

  2 1 1( )I t P d t t    , 1 2t t t   (50) 

 3 1 3( )I t d t t   ,  2 3t t t   (51) 

 51 1 3( )I t d t t W    , 3t t    (52) 

 52 2 4( )I t d t t   ,  4t t    (53) 

Also, 1 1 1
1

( ) WI t W t
P d

  


, (54) 

  2 2 3 2 3 2 1 1
1

1( ) ( )I t I t t Pt P d t
d

     , (55) 

1 3 2 4
51 52

2 1

( ) ( ) d t d t WI I
d d

  
  

  


, (56) 

 

Total relevant cost of the system is given by 

         2 21 2 1 2
4 2 1 3 1 3 3 42 2 2s p o

P d d dTC C C Pt h t W t t t W t t  
 

           
 

 

           2 21 1
2 1 3 22 2r

P d dh t t t t
 

    
 

. 

 
 
(57) 

 

 

The problem is to minimize TCi (t2, r) where i=1, 2, 3, 4 for each case. 

4. Numerical example  

The values of the parameters are considered in appropriate units as follows: 
 
Cs=100, R=100, G=1500, d1=10, a=0.5, b=1, ho=1, hr=1.5, W=50, t4=12 
 
The above model is solved by using genetic algorithm approach. We have considered the following 
parameters of GA: population size = 50, probability of crossover = 0.6, probability of mutation = 0.2, 
and maximum generation=50. The results are mentioned below with the path of convergence in each 
case. 
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Case1: 10 t   
r=0.569, P=17.877, t2=0.19 and TC= 99479.23 

Case 2: 1 2t t   
r=0.484, P=16.000, t2=0.5 and TC=838.65 

 
Case 3: 2 3t t   
r=0.938, P=30, t2=0.56 and TC=1105.22 

 
Case 4: 3 4t t   
r=0.581, P=19.8, t2=0.49 and TC=779.67 

 

  
Fig. 5. Path of convergence for case 1 

 
Fig. 6. Path of convergence for case 2 

 
 

Fig. 7. Path of convergence for case 3 
 

Fig. 8. Path of convergence for case 4 

5. Conclusion 
 
The objective of this paper was to model a producer’s cost minimization strategy while facing the 
special sale/reduction offer on the selling price of items. The impact of obsolete or out of season 
products trade on demand and particularly on the retailer’s reaction to speed-up sales, so as to alleviate 
the impact of the larger order’s loss results into the price cut of the item. Generally, the physical item 
has a life time (μ) after which it undergoes decay or damage. At time μ, efficient administration decides 
to provide a special offer/reduction on the selling price to clear the stock and to preserve goodwill. In 
general, customers are encouraged to buy more at more reduced prices. As a result, the demand rate 
during a special offer/reduction can be taken as increasing function of the reduction rate (r).  
 
This function is found to be suitable as per a prior survey of the market. In real life, demand fluctuates 
to a great extent with price and quality, with quality being uncertain with time, and many other 
variables and unexpected difficulties come across which may intimidate the continuous out flow of 
goods, leading to a large build stock. In several practical scenarios, the decision maker has the chance 
to lessen the selling price before the end of the cycle, in order to excite sales and circumvent ending the 
period with too much inventory. To deal with such situation, it is necessary to develop a system that 
can suck up the massive fluctuations at the least possible cost. Prices differ according to the demand 
and supply conditions in the market which in turn depends upon whether the market is subject to 
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competitive conditions, monopoly, duopoly or oligopoly. Almost all the manufacturers locate their 
prices on a cost-plus-profit or a market-price basis. However, irrespective of any approach, customers 
use to pay fair prices on the basis of the quality of the goods. For example, the textile and footwear 
industry sells products at cheap prices to maintain branded image in the market. In this context, this 
paper suggests such a demand function that is formulated so that all possible cases of the cost function 
are minimized by trading off; the inventory costs of the OW and the RW, the production cost, the setup 
cost and the different selling prices. The characteristics of the model are observed through formulation 
and the model is also solved using a GA approach. The formulation of this demand function (d2) with a 
limited capacity of OW and volume flexibility is novel and very much realistic in the field of inventory 
control. 
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