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 Integrated cell formation and layout (CFLP) is an extended application of the group technology 
philosophy in which machine cells and cell layout are addressed simultaneously. The aim of this 
technological innovation is to improve both productivity and flexibility in modern manufacturing 
industry. However, due to its combinatorial complexity, the cell formation and layout problem is 
best solved by heuristic and metaheuristic approaches. As CFLP is prevalent in manufacturing 
industry, developing robust and efficient solution methods for the problem is imperative. This 
study seeks to develop a fuzzy simulated evolution algorithm (FSEA) that integrates fuzzy-set 
theoretic concepts and the philosophy of constructive perturbation and evolution.  Deriving from 
the classical simulated evolution algorithm, the search efficiency of the major phases of the 
algorithm is enhanced, including initialization, evaluation, selection and reconstruction. 
Illustrative computational experiments based on existing problem instances from the literature 
demonstrate the utility and the strength of the FSEA algorithm developed in this study. It is 
anticipated in this study that the application of the algorithm can be extended to other complex 
combinatorial problems in industry. 

 

© 2013 Growing Science Ltd.  All rights reserved

Keywords: 
Integrated cell formation and 
layout (CFLP) 
Fuzzy simulated evolution 
algorithm (FSEA) 
Metaheuristic 

 

 

 

 

1. Introduction  
 
The integrated cell formation and layout problem (CFLP) is a recent technological innovation that 
utilizes the group technology philosophy to improve both productivity and flexibility in manufacturing 
industry (Singh, 1993; Mahdavi et al., 2010; Aryanezhadet al., 2011; Ghoshet al., 2011; Ghezavati, 
2011; Forghani et al., 2012; Hamedi et al., 2012; Rao& Singh, 2012). The CFLP consists in 
decomposing a manufacturing system into small manageable autonomous subsystems, called 
manufacturing cells, so as to improve shop-floor control, material handling, tooling, and production 
scheduling activities (Sarker&Xu, 1998). Decomposing a manufacturing system involves (i) 
identification of part families with similar process or design features and (ii) identification of machine 
cells, so that each part family can possibly be processed in a single cell. Additionally, machine layout 
within each cell, called intra-cell layout, is an essential part of manufacturing system design that should 
be considered if system productivity, efficiency and effectiveness are to be realized fully. Setup times, 
work-in-process inventories, as well as throughput times can be reduced considerably. In general, the 



  
overall process of designing cellular manufacturing system involves the following three critical generic 
decisions: 
 

1. Cell formation: involves grouping of machines which can operate on a product family with little 
or no inter-cell movement of the products. 

2. Group layout: includes layout machine within each cell (intra-cell layout), and layout of cells 
with respect to one another (inter-cell layout). 

3. Group scheduling: this involves scheduling of parts for production 
 

In respect of the above, the most ideal situation is that these criteria should be addressed concurrently, 
if the advantages of cellular manufacturing system design are to be fully realised 
(Kaebernick&Bazargan-Lari, 1996; Mahdavi&Mahadevan, 2008; Jayaswal&Adil, 2004.). 
Nevertheless, the CFLP is a complex combinatorial problem that is difficult to solve using 
conventional approaches. As such, most of the cell formation studies have focused on these decisions 
independently or sequentially, resulting in loss of quality solutions (Selim, 1998; Onwubolu&Mutingi, 
2001).  
 
In most cellular manufacturing system design problems in the literature, researchers and layout 
designers used sequence data (flow patterns of parts) for cell design issues only. On the other hand, the 
layout designers did not consider the cell formation problem (CFP) at all. Since sequential approaches 
address the cell formation and the cell layout problem in a sequential disjointed fashion, the quality of 
the final solution is compromised. The current study presents an integrated approach to cell formation 
and layout design based on use of available sequence data. Fuzzy set theory is used to develop fuzzy 
evaluation criteria for the CFLP problem. The fuzzy evaluation concepts are incorporated into 
simulated evolution algorithm (SEA) in order to develop an enhanced fuzzy simulated evolution 
algorithm (FSEA). The FSEA approach utilizes sequence data to identify machine cells as well as 
machine layout within each cell. In this vein, the specific objectives for this research are outlined as 
follows: 
 

1) to develop relevant performance metrics to address the integrated cell formation and layout 
problem. 

2) to develop enhanced fuzzy evaluation criteria for the CFLP, based on the concepts of fuzzy 
theory; 

3) to develop a FSEA algorithm that incorporates the proposed fuzzy evaluation criteria; and, 
4) to carry out illustrative computational experiments based on data sets in the CFLP literature. 

 

The advantages of the proposed FSEA approach include the following: (i) the algorithm mimics 
iterative evolution on a single solution, which considerably eliminates extra CPU time; (ii) the FSEA, 
unlike genetic algorithms, selects and discards inferior cells of only one solution in accordance with the 
goodness of each cell, and (iii) the algorithm has strong convergence capabilities leading to fewer 
iterations when compared to other competitive evolutionary metaheuristics. The strength of the 
algorithm is demonstrated on problem sets in the literature. 
 

The remainder of the paper is structured as follows. Section 2 explores related work in the literature, 
covering the CFLP problem, metaheuristics, simulated evolution algorithm, and fuzzy theory. Section 3 
gives an outline of the proposed FSEA algorithm, describing the related operators. Computational tests, 
results and relevant discussions are presented in Section 4.  Finally, conclusion and further research are 
provided in Section 5. 
 
2. Related work 
 
Interesting related studies have been taking place in the operations research community; these studies 
involve exploration of hard combinatorial problems together with the development of improved 
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metaheuristic algorithms. A typical example of hard combinatorial problem is the integrated cell 
formation and layout problem (CFLP). 
2.1 The CFLP problem 
 
The integrated cell formation problem is a new joint approach to cell formation and layout problem that 
seeks to identify manufacturing cells and the layout (sequence) of machines in the cells in an integrated 
manner. The whole aim of the approach is to avoid compromising the quality of solutions with respect 
cell formation and cell layout objectives. Therefore, this approach to the joint layout problem is of 
practical value. The basic CFP is NP-complete, meaning that it has no known polynomial time 
algorithm due to its combinatorial nature (Kumar et al., 1986). It follows that the integrated cell 
formation and cell layout problem is highly computationally intractable. In solving the CFLP, typical 
objective functions include (i) minimization of inter-cell movements, (ii) minimization of intra-cell 
movements, (iii) minimizing cell work-load imbalances and (iv) minimization of material handling 
costs. Fig. 1 provides an example of a typical solution to an 8 part × 5 machine cell formation problem 
in which cell 1 (machines 2 and 1) manufactures parts 1, 3, 4, 2 and 6, and cell 2 (machines 5, 3, and 4) 
manufactures parts 5, 7 and 8. The sequence data represents the flow of parts between machines, for 
example, part 1 (in cell 1) flows from machine 1 to machine 2, and part 3 flows from machine 1 to 3 
and finally to machine 2. Thus, the facility planner considers 2 possible cell 1 layout, that is (1-2) or (2-
1). The CFLP considers that, apart from cell formation, intra-cell layout should be considered as well. 
 

   Parts    
 1 3 4 2 6 5 7 8

Machines         
2 2 3 1 2 2 ← cell 1
1 1 1 3 1 1    
5      1 1 1
3  2  cell 2→ 3 2 2
4      2 3 3

 
Fig. 1. A solution to an 8×5 cell formation problem 

 
2.2 Metaheuristic approaches 
 
Metaheuristics such as simulated annealing (SA), genetic algorithms (GA), and evolutionary algorithms 
(EA) are potential intelligent algorithms that can obtain near-optimal solutions to hard problems such 
as the CFLP problem. SA is a stochastic optimization technique based on an analogy from statistical 
mechanics, in which a substance is reduced to its lowest energy configuration by a sequence of steps 
that involve alternate heating and cooling. On the other hand, GA is a population-based search and 
optimization algorithm derived from the principles of evolution and survival of the fittest (Goldberg, 
1989). It uses the mechanics of stochastic genetic operators such as crossover and mutation to guide its 
search and optimization process towards regions of the search space with likely improvement. 
Furthermore, EA is a population-based metaheuristic optimization algorithm inspired by the 
mechanisms of biological evolution, such as reproduction, mutation, recombination, and selection. 
Candidate solutions evolve through generations after repeated applications of the naturally-inspired 
operators. Simulated evolution algorithm (SEA), like EA, is a potential evolutionary algorithm for 
solving large-scale cell formation and layout problems. 
 
2.3 Simulated evolution algorithm 
 
The SEA algorithm, introduced by Kling and Banerjee (1987), is a general optimization technique 
based on the philosophy of natural selection in biological environments. The biological solution to the 
natural phenomena of adaptation is analogous to evaluation from one generation to the next by 
eliminating inferior cells and keeping superior ones. In every generation, every cell must constantly 



  
prove its effectiveness (fitness) under current conditions in order to remain intact so as to proceed to the 
next generation. The end goal is to gradually create stable structures, perfectly adapted to the given 
constraints. To escape from local optima, a genetic mutation operator is used for the perturbation of 
genetic inheritance (Ly &Mowchenko, 1993). 
 
Basically, the SEA algorithm is an iterative algorithm that consists of a sequence of operators, namely: 
evaluation, selection and reconstruction, operating on one candidate solution (Saiti et al., 1999) as 
shown in Fig. 2. Prior to the aforementioned operators, some critical input parameters and a valid 
starting solution are initialised in the initial step known as initialization. In evaluation, the fitness of 
each element in the current solution is computed in accordance with the objective of the optimization 
process. In this connection, a goodness measure is used to probabilistically select elements to be 
discarded during the selection stage; an element with high goodness has a lower probability of being 
discarded. The resulting partial solution is then fed to the reconstruction operator that implements 
specific heuristics to repair and derive a new and complete solution from the partial solution. 
 
In the SEA iteration process, the best solution is always preserved and finally returned as the solution 
to the problem (Saiti& Ismail, 2004; Li & Kwan, 2002). Thus, the basic SEA algorithm is a search 
heuristic that achieves improvement through iterative perturbation and reconstruction. However, to 
enhance its evaluation, selection, mutation and reconstruction processes, the basic SEA needs to 
incorporate fuzzy theory concepts so as to increase its search and optimization efficiency. 
 

 
Fig. 2. Simulated evolution algorithm 

 
2.4. Fuzzy set theory 
 
Fuzzy set theory, introduced by Zadeh (1965) as a means of presenting uncertainty, has been developed 
further to provide a flexible and robust methodology to address and solve complex real-world problems 
(Dubois &Prade, 1980). The concepts of fuzzy theory can be understood best when explained by 
contrasting fuzzy sets and crisp sets.  
 
Definition 1:Classical crisp set. Let X be the universe of objects having elementsx, and let A denote a 
proper subset of the universe X. Then, the membership of x in a classical crisp set A can be viewed as a 
characteristic transformation function μA from X to {0,1}, such that, 
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x A
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Definition 2:Fuzzy set. A fuzzy set an be described as follows: For a fuzzy set A of the universe X, the 
grade of membership of x in A can be defined as μA(x)∈[0,1], where μA(x) is the membership function 
whose value ranges from 0 to 1. 
 
According to definition 2, the fuzzy set A has no sharp boundary; the closer the value of μA(x) is to 1, 
the more x is said to belong to A.  Contrary to the crisp set, each of the subsets of Xcan be shown to 
have a one-to-one correspondence with the characteristic function. Retrospectively, since the 
membership function is an extension of the characteristic function, fuzzy sets are extensions of crisp 
sets. The cells of a fuzzy set are ordered pairs that reflect the value of each cell in the set and its grade 
of membership as in the expression; 
 

( ){ }A, ( ) |A x x x Xμ= ∈  (2) 
 
3. Fuzzy simulated evolution algorithm 
 
The FSEA algorithm incorporates the concepts of fuzzy theory into the classical SEA. In this regard, 
the SEA stages, that is, initialization, evaluation and reconstruction, are fuzzified. The proposed fuzzy 
simulated evolution algorithm and its major components are described in this section. Some key 
definitions and terminologies need to be clarified in order to facilitate the discussions that follow.  
 
Definition 3: Solution space. Let C = {C1, C2,...,Cm} denote a set of all possible cells (cells) for the 
CFLP problem, where m is the number of cells. Then C is a solution space consisting of all possible 
cells. Each cell consists of machines (items). 
 
Definition 4: Candidate solution. A candidate solution S* is defined as the most suitable combination 
of cells at the current iteration. This implies that S*⊆C. 
 
In view of the above definitions, a typical candidate solution to the CFLP is coded in form of cells that 
consist of machines. Fig. 3 provides a candidate solution for a typical problem where 6 machines are to 
be grouped into 3 cells; each cell must have a minimum of 2 machines, and inter-cell movements are to 
be minimized. The current candidate solution, coded as [1 2 | 3 5 | 6 4 7] in code 1, is made up of 
machine cells (1-2), (3-5), and (6-4-7). Code 1 defines the part of the solution upon which the operators 
of the algorithm acts. On the other hand, code 2 basically defines the position of the delimiters  (“|”) 
that separate the cells in the solution.  

       code 1         code 2

[1 2 |3 5 | 6 4 7]   [2 4] 

        cell
Fig. 3. Candidate solution representation 

 
3.1 Initialization phase 
 
The initialization phase involves generation of a good initial solution that acts a seed for succeeding 
iterations. In most cases, the quality of the seed influences the computation time as well as the quality 
of the final solution. To improve the performance of the FSEA algorithm, initial solutions can be 
generated using such methods as (i) random generation, without regard to its quality, (ii) greedy 
approach which uses a guided probabilistic bias, (iii) specific constructive heuristics, which depends on 
the application area, and (iv) selection of a candidate solution from another heuristic. After the 
initialization phase, the algorithm iterates in a loop fashion through a sequence of evaluation, selection, 
and reconstruction phases, until a termination criteria is satisfied. The termination criteria can be 



  
defined in terms of (i) predetermined number of iteration specified by the user, or (ii) the maximum 
allowable number of iterations without solution improvement. 
 
3.2 Evaluation phase 
 
Fuzzy evaluation is the first step of the iterative loop where a goodness of fit (fitness) is determined for 
the structure of each cell in the solution S*. The main purpose of evaluation phases is to determine the 
overall contribution of each cell to the solution fitness, and to determine which cells contribute much 
less than acceptable. Poorly performing cells are discarded, however, with a probability. The fuzzy 
evaluation for a typical CFLP solution S* , comprising m cells, is achieved by first defining the fitness 
of each cell c  (c = 1,2,...,m) in terms of a membership function μ1which measures the goodness of each 
cell according to the following expression; 
 
Definition 5:Trapezoidal fuzzy number. A trapezoidal fuzzy number B, illustrated in Fig.4, is defined 
by the membership function : [0,1]B Xμ →  as shown by expression; 
 
 

( ) ( )
1 if 

( ) if a
0 if otherwise

B

x b
x x a b a x bμ

≥⎧
⎪= − − ≤ ≤⎨
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⎩

 
(3) 

 
 
where, b is the most preferred value, and a and c are the lower and upper bounds of the fitness function 
values, respectively. 
 

 
Fig. 4. Trapezoidal fuzzy membership function 

 
The fitness of each cell c in the current solution S* is computed based on a fuzzy membership function 
F(c), which is a combination of normalized fuzzy functions. This implies that for a CFLP consisting of 
n evaluation functions, f1, f2,..., fn, the overall evaluation function F(c) for cell c can be computed as 
follows: 
 

*

1

( ) ( )
n

i
i

F c f c c S
=
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(4) 

 
where, n is the number of evaluation functions, c denotes the cell in the current solution S*. 
 
From the CFP design perspective, the existence of voids and exceptions should be minimized as much 
as possible. In layout design, the key consideration is adjacency of machines in a cell is a as it can 
reduce material handling costs significantly (Mahdavi et al., 2010). From a production planning and 
control perspective, the machines sequence inside the cells may potentially create unwanted reverse 
flows and skipping of workstations. For example, referring to Fig. 5, cell 1 has two possible machine 
sequences (layouts), that is, (1-2) or (2-1). Cell layout (1-2) has only 4 consecutive forward flows, 

1
μB

Xc0ab
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while (2-1) has only 1; thus, from this analysis, layout (1-2) is preferred. In the same way, layout (5-3-
4) is chosen as the best layout for cell 2. 
 

    Parts      
 2 1 4 5 3 7 6 8 9 10 11

Machines            
2 2 2 3 2 2 2 ← cell 1 cell 2
1 1 1 1 3 1 1    ↓  
5       1 1 1 1 2
3   2 1   3 2 2 2 3
4       2 3 3 3 1

 
Fig. 5. A typical solution for a cell formation problem 

 
Ideally, a good objective function should not only solve the cell formation problem, but also should 
also evaluate the effects of machine sequence (layout) within each cell. A simplified way of evaluating 
the fitness of a cell layout is to express the objective function in terms of the number of consecutive 
forward flows. In this vein, Mahdavi and Mahadevan (2008) defined the cell flow index (CFI) and the 
overall flow index (OFI) for evaluating the cell design and layout. We use the following notation in this 
model. 
 
Notation: 
n number of parts in the system 
m number of machines in the system 
nc number of parts in cell c 
mc number of machines in cell c 
vc number of voids in cell c 
Nfc number of consecutive forward flows within cell c 
Nec number of exceptional flows due to parts assigned to cell c 
S [sjk] machine-component incidence matrix in terms of sequence data, sjk= 0 if part j does not 

visit machine k; sjk = 0 otherwise 
 
To define the average flow and overall flow performance measures, the total number of operations and 
the consecutive flows between a pair of machines are calculated. The total number of flows Nflowis 
defined as follows: 
 

max flow jkjk
N s n= −∑  (5) 

The total number of flows Ntc within each cell c is determined according to the following expression: 
 

( )tc c c c cN n m v n= − −  (6) 
 
3.2.1 Cell flow index (CFI) 
 
The cell flow index for cell c, CFIc is the ratio of the number of consecutive forward flows to the total 
number of flows within the cell. The cell average flow index is the weighted average of CFIs, as shown 
by the following expressions; 

cCFI fc

tc

N
N

=  
(7) 

It is clear from the above analysis that as the number of voids in the cell decreases and as the number of 
consecutive forward flows increases, the CFI measure increases. This indicates that the CFI represents 



  
the solution quality with respect to the number of voids and the intra-cell moves. Overall, we define the 
average cell flow index (ACFI) to measure the overall performance of the manufacturing system, that 
is; 

c
1ACFI CFIc

c
n

n
⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

∑  (8) 

 

3.2.2 Inter-cell flow index (IFI) 
 
The inter-cell flow index defines the ratio of the number of flows due to exceptional parts in cell c and 
the number of flows in cell c. This can be represented by the following expression; 
 

cIFI tc

tc ec

N
N N

=
+

 (9) 

 

At system level, we utilize the overall cell flow index (OFI), which defines the ratio of the sum of 
consecutive forward flows in all the cells to the total number of the flows required to process all the 
parts (Mahdavi&Mahadevan, 2008). Decreasing the values of inter-cell moves will increase the values 
of OFI. The OFI defines the extent of inter-cell moves (exceptions) for the manufacturing system as 
follows; 
 

1OFI fc
cflow

N
N

⎛ ⎞
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⎝ ⎠

∑  
(10) 

 
While the OFI points to the inter-cell movements, the ACFI addresses the intra-cell movements. 
Consequently, a combination of these performance measures ensures that the cell formation and layout 
are addressed jointly. Since the focus of this application is on the use of CFIc and IFIc in the evaluation 
stage, these indices are combined according to expression (4) to obtain fitness function F. The ACFI 
and OFI are merely utilized for the overall evaluation of the overall candidate solution to the CFLP. 
 
3.3 Selection 
 
The purpose of the selection stage is to probabilistically determine whether or not an cell c in solution 
S*should be retained for the next generation. The selection procedure ensures that a cell c with a high 
fitness value Fc = F(c) has a higher probability of surviving into the next iteration. However, if not 
retained, the cell is placed in a queue for the next allocation phase. The selection process is achieved by 
comparing the fitness F(c) of each cell c with a predetermined allowable fitness ft defined at iteration t; 
 

max[0, ]t tf p p= −  (11) 
 

where, pt is a random number in the range [0,1] at iteration t; p is a predetermined constant less than 1. 
In connection with the above, we generalize the selection procedure according to the algorithm shown 
in Fig. 6. 
 

Algorithm: Selection 
Set constant p = 0.2; 
BEGIN 
 FOR c = 1 to m 
   Step 1.  Let Fc ← F(c); 
   Step 2.  Let pt ← Random [0,1]; 
   Step 3.  Let ft ← max [0, pt – p]; 
   Step 4.   IF (Fc<ft) THEN discard c, return  
         ELSE return c 

 ENDIF 
END FOR loop 
END 

Fig. 6. Algorithm for the selection phase 



M. Mutingi / International Journal of Industrial Engineering Computations 4 (2013) 
 

The discarded cell are set aside to be considered in the next reconstruction phase. The expression ft 
=pt– p enhances the algorithm’s convergence ability. When the value of pt is high, the probability of 
discarding good cells are very high, which leads to inefficiency. Thus, by setting the value of p to a 
reasonable value (e.g., p = 0.2), the search power can be controlled effectively. 
 
3.4 Mutation 
 
Mutation is useful for intensification and exploration. Whereas intensification facilitates local search 
around the current best solution S*, exploration enables the algorithm to explore unvisited regions of 
the solution space. The two search procedures, that is, intensification and exploration, are utilized in 
this phase. Intensification is achieved through swapping of randomly chosen pairs of machines within a 
single cell. This mutation mechanism avoids generation of infeasible solutions, and enhances the 
computation speed of the algorithm. On the other hand, explorative mutation is an evolutionary 
mechanism by which FSEA moves from local optima. This is achieved by probabilistically eliminating 
some cells of the solution, even the best performing ones. In this respect, each cell Ej has a chance to be 
randomly eliminated from the partial solution. In general the mutation operation is applied at a very 
low probability pm, so as to ensure convergence. In this application, we use a decay function to 
formulate a dynamic mutation probability as follows; 
 

1
0( ) i I

mp i p e −=  (12) 
 
wherei is the iteration count; I is the maximum allowable number of iterations; and p0 is the initial 
mutation probability. The formulation of pm(i) can be used for both explorative and intensive mutation 
probabilities. It is important to note that during explorative mutation, infeasible partial solutions may be 
created. However, these solutions will be repaired in the reconstruction phase. 
 
3.5 Reconstruction 
 
The reconstruction phase is concerned with re-building a partial solution which evolved from the 
previous phases into a complete solution. This implies that all the cells and their assigned machines 
should remain unchanged. Therefore, the reconstruction phase essentially deals with the assignment of 
machines to empty spaces in every incomplete cell. Thus, this is achieved through the use of repair 
mechanisms specially designed in consideration of the context of the CFLP problem. In every 
reconstruction phase, a number of combinations of machines and cells are possible. We build an 
effective reconstruction procedure by using a greed-based heuristic that assumes that the attractiveness 
of adding a cell c into the current incomplete solution increases with its fitness function value F(Sj). As 
such, the algorithm keeps a limited candidate list (CL) of best performing cells, comprising k cells. A 
suitable value of kis chosen through experimentation. From the illustrative experiments carried out in 
this study, the best values of k are such that, k ≤ 0.3N, where N is the maximum permissible number of 
cells. The general structure of the reconstruction procedure is illustrated in Fig. 7.  
 

Algorithm: Reconstruction 
BEGIN 
 Step 1.  Let S* = {1,2,..., s} denote a partial solution,  
     where, s is the index for each cell; 
 Step 2.  Set CL= N best cells from S, based on F(c); 
 Step3.  Set ):( *

∗∗ ∈−=′ SjEII
j

∪ where I is a set of all machines; 

 Step 4.  IF (I′ = φ) THEN stop, return S*; S* is a complete solution; 
                      ELSE randomly select a cellcr∈CL 
    ENDIF; 
 Step 5.  Add cr to S*, set I′ - cr, and return to Step 4.  
END 

Fig. 7. Algorithm for the reconstruction phase 



  
It is important to note that in some cases the reconstruction algorithm may generate redundant 
machines. In other words, some machines will be repeated, and, consequently, some will be missing. 
This implies that the current solution needs to go through a self-correction mechanism, called 
reconfiguration. First, two sets of repeated and missing machines are identified. Second, repeated 
machines are replaced with the identified missing machines, such that the solution is transfigured to a 
feasible solution. The general algorithm for the reconfiguration process is shown in Fig. 8.The next 
section provides computational experiments, results and relevant discussions based on benchmark 
problem sets from the literature. 

 
Algorithm: Reconfiguration 
BEGIN  
 Step 1.  Set },...,2,1{ 11 rR = a set of repeated machines in S*; 
 Step 2.  Set },...,2,1{ 22 rR = a set of missing machines in S*; 
 Step 3.  Replace R1 with R2 machines in S* 
END 

 
Fig. 8. Algorithm for the reconfiguration procedure 

 

4. Computational tests and results 
 
In order to assess the effectiveness of the FSEA approach, the algorithm is tested on typical CFLP 
problems in the literature. Thus, numerical illustrations were performed based on data sets obtained 
data sets obtained from the literature (Nair &Narendra, 1998; Harhalakis et al., 1990; Tam, 1988). 
 
4.1 Computationalillustrations 
 
The overall objective functions, ACFI and OFI, were used as the overall performance value of the 
solutions. Illustrative computations were carried out based on an 8 × 20 problem obtained from Nair 
and Narendran (1998), as shown in Table 1.  
 
Table 1 
An 8 x 20 problem from Nair and Narendran (1998) 

 Parts 
m/c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1  1 2     1 1  3  1 1  1 3  1  
2   1 1  1 4       2    2  2 
3  2      2 3  2  2 3  2 1  2  
4   5 2  2 2   2        1  1 
5 2    2 5    3  1   1  2    
6 1    1    2 1  3   2     3 
7   3 3  3 3    1 2      4  4 
8   4 4  4 1           3  5 

 
Table 2 provides a solution obtained by the current FSEA approach, while Table 3 presents a solution 
obtained by Nair and Narendran. The FSEA solution obtained is an improved solution when compared 
to the solution in Nair and Narendran (1998). The improved version of the solution consists of 3 cells 
with their respective grouping of parts; cell 1 contains machines 1 and 2, cell 2 contains machines 2, 4, 
7 and 8, while cell 3 consists of machines 6 and 5.  The machine cells obtained by the FSEA approach 
are similar to those obtained from CASE algorithm in Nair and Narendran (1998) and from CLASS 
algorithm in Mahdavi and Mahadevan (2008). However, compared to other heuristics, the FSEA 
algorithm obtained an improved sequence of machines with an improved layout of machines within 
cells. Therefore, FSEA is an effective algorithm for solving hard combinatorial problems.  
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Table 2 
FSEA solution for the 8 x 20 (Nair &Narendran, 1998) 

 Parts  
 2 8 9 11 13 14 16 17 19 3 4 6 7 18 20 15 1 5 10 12  

Machines  
1 1 1 1 3 1 1 1 3 1 2            
3 2 2 3 2 2 3 2 1 2             
2      2    1 1 1 4 2 2       
4          5 2 2 2 1 1    2   
7    1      3 3 3 3 4 4     2  
8          4 4 4 1 3 5       
6   2            3 2 1 1 1 3  
5        2    5    1 2 2 3 1  

 
Table 3 
Solution from Nair and Narendran (1998) – 8 x 20 problem 

 Parts 
 2 8 9 11 13 14 16 17 19 3 4 6 7 18 20 1 5 10 12 15 

Machines 
3 2 2 3 2 2 3 2 1 2            
1 1 1 1 3 1 1 1 3 1 2    
4          5 2 2 2 1 1   2   
7    1      3 3 3 3 4 4    2  
8       4 4 4 1 3 5    
2      2    1 1 1 4 2 2      
5        2    5    2 2 3 1 1 
6   2    3 1 1 1 3 2

 
4.2 Comparative experiments 
 
To illustrate the utility of the proposed FSEA algorithm, a comparative study was done considering 
FSEA, CASE and CLASS algorithms.  Table 4 provides the results of the comparative study. Though 
machine groups and part families are the same for the three algorithms, the ACFI and OFI differ with 
CASE solution. However, the ACFI and OFI values of FSEA are similar to those obtained from 
CLASS. This shows the remarkable improvement of the solution to the joint cell formation and layout 
problem.  
 
Table 4 
Comparative study of FSEA, CASE and CLASS algorithms - 8 x 20 problem 
Cell  
No. 

 CASE Solution  CLASS Solution  FSEA Solution  

 nc Nfc Ntc CFI%  nc Nfc Ntc CFI%  nc Nfc Ntc CFI% 
1 9 1 9 11.1  9 5 9 55.6  9 5 9 55.6 
2 6 7 18 38.9  6 9 18 50  6 9 18 50 
3 5 1 5 20.0  5 2 5 40.0  5 2 5 40.0 

Nflow = 41               
ACFI (%)    21.0     50.0     50.0 
OFI (%)    22.0     39.0     39.0 
 
In order to gain more understanding on the effectiveness of the FSEA, further comparative experiments 
were done based on data sets reported in literature including Tam (1988), Harhalakis et al. (1990), and 
Nair &Narendra (1998). Park and Suresh (2003) made a comparative study of known algorithms on 
sequence data, wherein algorithms such as fuzzy ART neural network and conventional clustering 
methods were compared. In addition to these algorithms, other approaches such as CASE designed by 
Nair and Narendran (1998) and CLASS originated by Mahdavi and Mahadevan (2008) are included in 
the comparative study. In the same vein, the performance of FSEA can sufficiently be analyzed based 
on these known data sets and algorithms. 



  
Table 5 
Comparison of FSEA with other algorithms 
Data 
Set 

Size CLASS  Fuzzy Art  Hierarchical  FSEA 
 Cells ACFI OFI  Cells ACFI OFI  Cells ACFI OFI  Cells ACFI OFI 

1. 12 × 19 2 65% 50%  2 49% 36%  2 48% 45%  2 65% 50% 
2. 20 × 20 4 65% 41%  4 42% 34%  4 42% 34%  4 69% 43% 
3. 25 × 40 4 52% 34%  7 38% 27%  8 37% 22%  4 68% 42% 
4. 08 × 20 3 50% 39%  - - -  - - -  3 50% 39% 
Key: 1. Tam (1988); 2. Harhalakis et al. (1990); 3. Nair &Narendra (1998); 4. Nair &Narendra (1998) 
 
The results obtained in this comparative study are shown in Table 6. In all cases, the ACFI and OFI 
values obtained by FSEA are much more preferable than those obtained from other algorithms. From 
this analysis, it can be seen that the utilization of sequence data in joint cell design and layout is 
important. 
 
5. Conclusions and further research 
 
The integrated cell formation and layout problem is a complex combinatorial problem common in 
advanced manufacturing systems. The use of sequence data in solving CFLP provides valuable 
additional information on the dominant flow patterns, which provides a platform for solving the 
problem. The challenge is on how to extend the application of sequence data and to develop a robust 
algorithm for solving the joint design and layout problem. In this study, a FSEA was proposed to solve 
the integrated design and layout problem based on sequence data. The approach incorporates into the 
well known simulated evolution algorithm the concepts of fuzzy set theory, including iterative 
improvement and constructive perturbation so as to improve the optimization and search capability of 
the algorithm. 
 
Computational results based on a set of benchmark problems concerned with the cell formation 
problem from the literature revealed that FSEA is a competitive algorithm which can solve hard 
combinatorial problems. A number of advantages of the FSEA are realised in this research. First, the 
algorithm is easy to conceptualize, construct and computerize. Second, unlike other competitive 
algorithms such as genetic algorithms, FSEA works on a single candidate solution, rather than on a 
population of solutions. The algorithm iteratively eliminates less performing cells, unlike other meta-
heuristics such as simulated annealing. This enhances FSEA convergence ability; hence, the algorithm 
can obtain a good solution within a shorter computation time. Third, FSEA is characterized with 
features of probabilistic hill climbing that provide the algorithm with the power to explore unvisited 
regions of the solution space. 
 
Possible future research directions include the application of the FSEA to other hard combinatorial 
problems such as production scheduling, aggregate production planning, and workforce scheduling. 
Improving the efficiency and effectiveness of the FSEA algorithm is another area of focus. 
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