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 In this paper, we develop a novel framework for defining radial measures of centrality in complex 
networks. This framework is based on the combination of two approaches: social network 
analysis and traditional social science approach by considering both structure of relations and 
individual characteristics. It is always an important issue to detect communities in complex 
networks as efficiently as possible to understand both the structure and function of the networks 
and to interpret radial centrality measures. Therefore, we propose spectral clustering by 
determining the best number of communities as a prerequisite stage before finding radial 
measures. Based on the proposed framework, an algorithm to compute the closeness centrality in 
complex networks is developed. We test the proposed algorithm on Zachary’s karate club 
network, which is considerably used as a benchmark for community detection in a network. The 
preliminary results indicate that the new method is efficient at detecting both good inter-cluster 
closeness centrality and the appropriate number of clusters. 
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1. Introduction  
 
The recent advances on complex networks represent an essential area of multidisciplinary research 
including physics, mathematics, chemistry, biology, social sciences, and information sciences, among 
others. These systems are commonly represented by (un)directed graphs techniques, which consist of 
sets of nodes representing the objects under investigation such as people or groups of people, molecular 
entities, computers, etc., joined together in pairs by links,showing the corresponding nodes are related 
by some kind of relationship. These networks include the Internet, World Wide Web, social networks, 
information networks, neural networks, food webs, reaction and metabolic networks, and protein–
protein interaction networks(Estrada& Rodríguez-Velázquez, 2006; Mello et al., 2009). 
 
Centrality is a fundamental concept in network analysis and it has been used to investigate (potential 
for) autonomy, control, risk, exposure, influence, belongingness, brokerage, independence, power and 
so on. In addition, many other studies use well-known measures of centrality but do not identify them 
as such. For example, researchers working with ego-networks use the term “network size” to refer to a 
variable that in another context we would recognize as degree centrality (Borgatti& Everett, 2006; 



  

 

Agarwal et al., 2011).One of the key problems in complex networks is how to detect community 
structures, which have dense internal links and a lower density of external links. Many studies have 
verified the community structure in various complex networks (for review papers see 
Newman(2004)and Fortunato(2010), and a comparison paper seeDanon et al.(2005)). For example, in 
protein-protein interaction networks, communities are likely to group proteins having the same specific 
function within the cell, in the graph of the World Wide Web they may correspond to groups of pages 
dealing with the same or related topics. In metabolic networks they may be associated with functional 
modules such as cycles and pathways, in food webs they may identify compartments, in economy they 
may represent a set of tightly coupled stocks or industrial sectors, and so on (Niu et al., 2008; Pollner et 
al., 2008; Zhang et al., 2007; Ghosh et al., 2011). 
 
Clearly, the ability to detect community structure in a network has important practical applications. For 
instance, it can help us reduce complex networks to much simpler systems, since there is a growing 
need to deal with huge real-world networks and few of the existing methods scale up to large graphs 
(Liu & Liu, 2010). It gives us insights into the structure-functionality relationship (Ma et al., 2010) and 
can help us understand the network system, well.  
 
Community detection plays important role for interpreting centrality measures; because identifying 
clusters and their boundaries allow for a classification of vertices based on their structural position in 
the modules. Therefore, vertices with a central position in their clusters, i.e. sharing large number of 
edges with other group partners, may have an important function of control and stability within the 
group. In addition, vertices lying at the boundaries among modules play an important role of mediation 
and lead the relationships and exchanges among different communities (Fortunato, 2010). On the other 
hand, some measures of centrality assign correct centrality scores only if the network has a core-
periphery structure in which all nodes revolve more or less closely around a single core. Therefore, 
without such a cluster analysis, we cannot proceed with developing these kinds of centrality measures. 
 
An individual’s propensity to make new connections may influence the extent and value of his or her 
social network. The effect of individual characteristics on social networks is important because 
empirical studies of the consequences of networks have discovered associations among the number, 
structure, strength and content of network ties and a range of individual and organizational outcomes, 
including personal influence, job performance, innovation, career success, satisfaction and affect 
(Bidart&Lavenu, 2005; Hu & Wang, 2012; Lippert&Spagnolo, 2011; Liu, 2011; Louch, 2000; 
Reagans, 1998; Simon &Tellier, 2011;Totterdell et al., 2008; Valente & Foreman, 1998). 
 
Although social network research has examined the influence of observable individual attributes, such 
as gender, it has largely ignored the individual psychological characteristics that may shape personal 
networks. This is due, in part, to the fact that social network research has been principally concerned 
with the structure and effects of relations among people, groups or organizations, rather than on 
psychological attributes of the individuals. Nevertheless, such attributes are likely to contribute to the 
formation and maintenance of ties among people within networks. It will thereby impact the behavior 
of those networks (Borgatti& Everett, 1999). This conception, in which both individual agency and 
social structure determine action, offers an alternative to a strict structural perspective in which action 
derives solely from the structure of social networks. 
 
As mentioned earlier, this work makes a novel framework on complex networks analysis by 
considering individual characteristics as well as structure of relations and it introduces an extended and 
improved algorithm to find closeness centrality that has five valuable advantages at the same time: 
 

• The algorithm is suitable for (un)weighted, (un)directed graphs. 
• It tackles the core-periphery assumption problem with clustering as a preprocessing stage. 
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• It maps graph to separate nodes clustered via data clustering techniques and does not need 
clustering methods in graphs. 

• Its dimensionality reduction (from n×n matrix to n×k matrix, (k<n)) makes computations 
much simpler. 

• It converts person-to-person data to person-to-attribute and provides the opportunity to 
consider individual’s characteristics beside relations structure. 

 
The present paper also validates the proposed algorithm on a real-world social network, Zachary’s 
karate club, which is by far the most investigated system used as a benchmark to test community 
detection algorithms. This network was the only standard network in Social Network Analysis (SNA) 
context we could find which has some information about vertices’ individual characteristics. 
 
The remainder of the paper is organized as follows: The subsequent part, Section2, introduces the 
necessary background and notations. Then, in Section 3, three main problems in this context, which are 
derived from reviewing the related literature, are discussed and, their solutions introduced. The 
proposed framework and algorithm based on these solutions is then represented. Furthermore, section 4 
applies the proposed algorithm to a commonly used benchmark for community-finding and compares 
the results to various state-of-the-art techniques. Finally, in section 5, conclusions and remarks as well 
as further works are presented.  

 

2. Basic concepts  

2.1. Centrality  
 
Social Network Analysis (SNA) focuses on depicting the structure of the group, the most important 
members in it and the influence of the structure on individuals (Wasserman&Faust, 1994). Based on 
this, there are several measures, which help to identify key members or the most important members in 
the network as well as the underlying structure of the network itself. Among all introduced measures, 
four measures stand out as foundational in our field: degree, closeness, betweenness, and eigenvector 
centralities. Their prominence within the field of network analysis stems from the fact that they all have 
strong yet distinct theoretical underpinnings and that they are frequently applied for empirical analysis 
of social systems (Borgatti et al., 2006; Kuhnert et al., 2012). For these reasons, we will restrict the 
present paper to these four measures and introduce them as Guzman (2008) suggested: 
 

• Degree Centrality (introduced by Nieminen (1974)): considers the number of connections at a 
specific node (in directed graphs it is measured using the in-degree and out-degree as measures). 
This attribute is used as a surrogate for a measure of the level of potential communication activity 
from a specific node. The easier it is for an individual to communicate directly with others, the 
more degree centrality that individual has. 
 
• Closeness Centrality (proposed by Sabidussi (1966)): represents a measure of the sum of the 
geodesic distances between a specific node and the remaining nodes in the network. The lower the 
sum, the greater the centrality. A node is more "central" if it is closer to many more nodes than any 
other node. It also stands for a level of independence for a given node. When a specific node has 
the ability to communicate with many other nodes and has a minimum number of intermediaries, it 
is more autonomous and thus has higher independence. 

 
• Betweenness Centrality (developed by Freeman (1979)): focuses on the ability to communicate 
with other nodes. This attribute is obtained by counting the number of possible geodesic paths 
among pairs of nodes. It means that the most "central" node lies among the most pairs of nodes. It 
can also be measured by analyzing the node that, which falls between any other two nodes on the 
shortest path between them. 



  

 

 
• Eigenvector centrality (presented by Bonacich (1987)): is based on the largest characteristic 
eigenvalue of the adjacency matrix. In other words, it assesses a person’s centrality as a function 
of the centrality of the people, which is associated. This means that rather than measuring the 
extent in which a given actor “knows everybody”, it measures the extent to which the actor 
“knows everybody who is anybody (Borgatti& Everett, 2006). 

 
Some centrality measures such as all degree-like, closeness-like and eigenvector-like measures evaluate 
volume or length of the walks (A walk from node u to node v is a sequence of adjacent nodes which 
begins with u and ends with v and may have repeated nodes or edges) that emanate from or terminate 
with a given node. Social network researchers refer to these as radial measures. Another kind of 
centrality measures which assess the number of walks that pass through a given node, are called medial 
measures, including all betweenness-like measures. The distinction between radial and medial 
measures is called Walk Position, which determines type of nodal participation (Borgatti& Everett, 
2006). It is obvious that all centrality indices evaluate an overall summary of a node’s involvement in 
the walk structure of the network. It is a measure of how much of the walk structure is dependent on a 
given node but one may raise the question: under what conditions is it reasonable to summarize, with a 
single value, a node’s cohesion with all others? Consider the mean of any list of numbers. It can always 
be computed, but only serves as a summary when the distribution of the numbers is unimodal. 
Therefore, if the list is known to be normally distributed, one can produce the entire distribution by the 
mean and standard deviation. However, if the shape of the distribution is bimodal, the mean is a very 
poor summary. For example, imagine the ideal serving temperature of milk is in the range of 30–45◦ 
for much of the population (because they like iced milk), and the ideal serving temperature for the other 
half of the population is in the range of 120–150◦ (because they like hot milk). Now, does the average 
of the ideal temperatures identify a good assessment of the population’s tastes? In other words, does a 
luke-warm temperature of 86.25◦ provide a right picture of what the people’s tastes are? Apparently 
not.According to Borgatti and Everett (2006) a radial centrality measure is unmistakably interpretable 
in a network which has unimodal dyadic cohesion, but not in one which has multimodal type. Namely, 
radial centrality makes sense in networks, which have, at most, one center and would not be partitioned 
in two or more components.  
 
If a network contains more than one subgroup, eigenvector centrality will specify zeros to all nodes not 
in the largest subgroup, even if they are highly central in their own subgroup. Rather, those nodes load 
highly on the remaining eigenvectors. That is to say, the eigenvectors of a cohesion matrix measure 
strength of involvement of each node to each major component (subgroup). 
 
A usual image in SNA and other fields is that of the core/periphery structure. Given its wide currency, 
it comes as a gap in related literature that the notion of a core/periphery structure is not often tested 
before computing a radial measure of centrality. It should be mentioned that medial centrality measures 
do not make the same one-group assumption. These measures correctly determine high centrality 
scores to nodes serving as bridges among components. Nevertheless, it is still the case that it is difficult 
to interpret a given value of medial centrality without specifying the group’s cohesive structure.  
 

2.2. Spectral clustering approaches 
 
Graph nodes clustering and ‘‘community detection” are important subjects that have been the content 
of much recent studies in various fields of science: physics, applied mathematics, computer science, 
social science, pattern recognition (see for instance Fortunato, 2010; Donetti & Muñoz, 2004; Jabal-
Ameli et al., 2011).There is also a vast literature on spectral graph theory. As Yen et al. (2009) 
mentioned, spectral techniques have been applied in a wide variety of contexts including high 
performance computing, image segmentation, web pages ranking, information retrieval, data clustering, 
and dimensionality reduction. 
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In this section, we shall follow the nice tutorial by Fortunato (2010), with the focus on spectral 
clustering. Spectral clustering is made up of a change of representation of the initial set of objects into a 
set of points in space, whose coordinates are elements of eigenvectors: the obtained set of points is then 
clustered via standard techniques, like k-means clustering. Here a question is when one can directly 
cluster the initial set of objects by applying the similarity matrix and why it is required to cluster the 
points resulting from the eigenvectors. The underlying fact is that the transformation induced by the 
eigenvectors makes the cluster properties of the initial data set much more obvious. In this way, 
spectral clustering is able to resolve data points, which could not be separated by applying direct k-
means clustering, for example one reason is that the latter tends to deliver convex sets of points. The 
Laplacian, which is by far the most used matrix in spectral clustering,is given by 
 
ܮ ൌ ܦ െ ,ܣ  (1)
whereA is the adjacency matrix and D is the diagonal matrix whose elements are the vertex degrees. In 
general, using the eigenvectors of the Laplacian, L, in spectral clustering is more promising and 
applying A (or of its weighted counterpart W) is not reliable. In this way, from the components of the 
eigenvectors one can identify the components of the graph. If a graph consists of k components, which 
are disconnected from each other, its Laplacian has k zero eigenvalues. Otherwise, if the graph is 
connected, but has k sub graphs which are weakly linked to each other, the spectrum of the Laplacian 
will have one zero eigenvalue, with all others being positive. However, the lowest k-1 non-vanishing 
eigenvalues are still close to zero. For instance, let us consider the n×k matrix, V, whose columns are 
the k eigenvectors above mentioned. The n rows of Vare used to represent the graph vertices in a k-
dimensional Euclidean space, through a Cartesian system of coordinates. Therefore, techniques like k -
means clustering can clearly distinguish k groups of points, with the points of each group localized 
close to each other and far from the other groups.  
 
By reversing this argument, the number of clusters of a graph which has to be given as input, could be 
derived by checking whether there is an integer k such that the first k eigenvalues are small and the 
(k+1)-th is relatively large. However, when the clusters are very mixed with each other, it may be hard 
to identify significant gaps between the eigenvalues. 

2.3. Considering nodes attributes 
 
According to Borgatti and Everett (1999), social network analysis differs from traditional social science 
in that traditional social science studies attributes of individuals (which is called monadic attributes) 
whereas network analysis studies social relations i.e. attributes of pairs of individuals (which is called 
dyadic attributes). By concentrating on different monadic and dyadic attributes, traditional social 
science and network analysis have various canonical data sets. In traditional social science, the people 
are considered as cases and the monadic attributes are observed as variables, therefore, the canonical 
data set can be considered as a person-by-attribute matrix. In the network case, the canonical data set 
can also be considered as a person-by-person matrix, which is conceived of as considering a single 
social relationship (or other dyadic attribute) among a set of actors. In such circumstance, the cases are 
the (ordered or unordered) pairs of actors, and the entire relation or dyadic attribute is considered as a 
single variable. In spite of this, the difference between traditional social science and network analysis is 
not practically so neat. One explanation is that there are methods of converting 2-mode data sets into 1-
mode matrices, in which the techniques of network analysis can be applied, consequently. Another 
reason is that some 2-mode data are evidently relational in spirit and come up as expected in network 
research. For instance, the assignment of workers to projects may be seen as relationships among the 
set of workers and the set of projects. Another reason is that some data can be collected and preserved 
either as 1-mode or 2-mode, at the ease of the researcher. For example, if two different related sets such 
as students and teachers are regarded as separate sets of entities, the data are 2-mode, but if they are 
seen as a single set of entities (persons), the data are 1-mode.  
 



  

 

Nowadays, even traditional social scientists are concerned with the structure and effects of relations 
among people, groups or organizations. People normally deal with networks more than individuals do, 
so in this paper we choose the network analysis paradigm but we also consider individuals attributes 
since such attributes influence the formation and maintenance of relationships among people within 
networks, and will thereby impact the behavior of those networks. This idea, in which both individual 
agency and social structure give direction to action, presents an alternative to a narrow structural 
perspective in which action originates exclusively from the structure of social networks or from the 
personal characteristics.  

3. Closeness centrality in complex network by considering both structure of relations and 
industrial characteristics  
 

3.1.  General framework for computing closeness centrality in complex networks 
 
The resulting structure shown in Fig.1 is based on points mentioned in previous sections, classifies a 
series of problems, their casual factors and proposals for solutions and specifies the general framework 
in which every radial measures of centrality can be assessed and interpreted, properly.  
 

 

Fig. 1 General framework for computing closeness centrality in complex networks 

Our proposed solutions are then applied for the algorithm offered for computing closeness centrality in 
complex networks. The resulted framework indicates three main challenges; the first challenge in 
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complex network context is that in latest years we have encountered an unpredictable growth of interest 
and activity, which regards the structure and dynamics of complex networks. This is as a result of the 
appearance of motivating and challenging new cases of complex networks such as the internet and 
wireless communication networks.  
 
Moreover, network models have become standard tools in social science, economics, the design of 
communication and transportation systems, banking systems, etc. In view of the fact that these 
networks are in general very complex and not many of the methods upgrade to large graphs, it is 
advantageous to see whether they can be cut down to much simpler systems. Particularly, much effort 
has gone into splitting networks into small numbers of communities. On the other hand, differential 
focus in traditional social science (which studies personal attributes) and social network analysis 
(studies attributes of pairs of individuals) is a considerable challenge too. Converting person-by-
attribute data into person-by-person data or vice versa and considering both individual agency and 
social structure is our proposed solution to this challenge. In the second challenge, which occurs in 
radial centrality context, as a result of core/periphery assumption, radial measures may be assigned and 
interpreted, improperly. Therefore, determining whether the network satisfies the one-group 
requirement must be accomplished first and if the network contains more than one component, 
subgraph radial indices should be assigned. The last challenge is the computational complexity in 
closeness centrality context, which is detailed in section 3.3.  

3.2. The proposed algorithm 
 
Based on the framework presented in Section 3.1, we propose an algorithm (Fig.2) consisting of the 
following steps: 
 
• Form the input datasets according to the spectral analysis 

• Given the input datasets. (For complex networks, these datasets is described by the 
adjacency matrix such that Aij= 1if node i and j are connected by an edge and Aij= 0 
otherwise.) 

• Define D to be the diagonal matrix whose (i, i)-element is the sum of A’s i-th row, which 
represents the degree of the node i. Then construct the normalized Laplacian, which is 
defined as follows, 
௥௪ܮ ൌ ܮଵିܦ  (2)

• Find k nontrivial eigenvalues of the normalized Laplacian, Lrw, such that the first k 
eigenvalues of Lrw are small and the (k+1) -th is relatively large; where k is the number of 
clusters. 
 

•  Preparing a matrix as an input for clustering 
• If k=1, then network has core-periphery structure; Compute closeness centrality via usual 

techniques. 
• If k>1, then Computinga n×k matrix, V, whose columns are eigenvectors of Lrw. 
• Adding l attributes of individuals nodes to have a n×(k+l) matrix Q as an input for 

clustering.  
 

• Given the input matrix, Q and number of clusters, k, cluster the nodes using usual techniques like k-
means. 

• Determine center of clusters (Closeness centrality within clusters). 
• Finally, compute graph’s closeness centrality (Closeness centrality between centers of clusters). 

3.3. Computational complexity 
 
Let us accomplish the presentation of our proposed algorithm with a brief discussion on computational 
complexity. The two critical computational components of the approach are the spectral mapping and 



  

 

pairwise distances. The other steps of the framework, like computing the Laplacian matrix have 
insignificant computational cost compared with the computation of those mentioned above. All 
closeness centralities need computing distance matrix D (Borgatti& Everett, 2006).  
 

 

Fig. 2 Data flow of the proposed algorithm 

Freeman’s measure, closeness depends on geodesic distances where each dij entry in the geodesic 
distance matrix can be viewed as the minimum of the vector of lengths of all paths from i to j. In spite 
of this, if we do not suppose that a given substantive observable fact, such as diffusion of information, 
always makes use of the shortest paths, it implies to take into account all paths from i to j, perhaps by 
choosing the median or mean length of all paths. The hardship in all this, is that they oblige defining all 
walks among every pair of nodes and assessing their length. However, our proposed measure uses the 
adjacency matrix A, and pairwise Euclidean distance which makes the computation much faster than 
that of the pairwise geodesic distances. In spite of this, other variants of closeness are inverse measures 
of centrality, because larger values specify less centrality. As a result, they technically measure farness 
rather than closeness (Borgatti& Everett, 2006) but our index is a direct measure of closeness (rather 
than farness) and does not need any transformation.  
 
The spectral mapping necessitates computing the eigenvectors of potentially very large matrices. 
Though this may be computationally cost-effective, some concepts make this step actually faster. 
Primarily, in spectral mapping, approximating all the eigenvectors is not necessary, and in such 
circumstances, the classical speed-up techniques can be used for finding only the eigenvectors 
corresponding to the top eigenvalues. If further speed-up is required, classical techniques from Kernel 
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methods can be applied, where the eigenvectors are determined for a subset of the surface points, and 
then interpolated to the rest (Mahmoudi&Sapiro, 2009). 

4. Experimental results  

4.1. Dataset description 
 
Testing an algorithm implies applying it to a particular problem whose solution is identified and 
comparing such solution with that provided by the algorithm. In order to test our method on such 
networks, we have a big limitation, finding a standard dataset in which there are some precise 
information about the vertices and their properties as well as the relationships and edges among them. 
Since, as mentioned before, almostall network analysts focus on attributes of edges in a network, while 
on the other hand, social science researchers are interested in individual characteristics of vertices in a 
network.   
 
Finally, we consider the well-known karate club friendship network studied by Zachary (1977), which 
has grown to be a commonly used benchmark for testing community-finding algorithms (Arenas et al., 
2008; Duch& Arenas, 2005; E et al., 2008; Estrada, 2011; Fortunato et al., 2004; Girvan & Newman, 
2002; Li et al., 2009;Newman, 2004, 2006a, 2006b; Newman & Girvan, 2004; Radicchi et al., 2004; 
Reichardt&Bornholdt, 2004; Wu &Huberman, 2004; Zhang et al., 2008; Zhang et al., 2011; Zhou, 
2003). It is composed of 34 vertices, the members of a karate club in the United States, who were 
studied during a period of three years. Some individuals who were detected to interact outside the 
activities of the club are connected by edges. Sometime later, a conflict between the club president and 
the instructor causes the fission of the club into two separate factions, supporting the instructor and the 
president, respectively. Here, the question is whether the real partition in two social groups could be 
calculated from the graph topology.  

4.2. Experimental settings and parameter tuning 
 
We use the ‘faction’ feature in Zachary`s work (1977) as a node attribute which is added to edge 
attributes after mapping them in spectral space. ‘Faction’ gives the factional affiliation of the 
individual, either with that of John A. (the officer), or that of Mr. Hi (the instructor), or none. The 
strong/weak designations in this feature indicate whether the individual was a strong or a weak 
supporter of the faction's ideological position. We deal with this feature as an ordinal variable that 
varies from 1(John strong) to 5(Hi strong). 
 
The other issue is the choice of the Laplacian matrix to use in this application; because the graph 
vertices do not have the same or similar degrees, the choice of the Laplacian significantly influences 
the results. Since in most cases, normalized Laplacians are more promising and of the normalized 
Laplacians, Lrw is more reliable, we choose Lrw as our Laplacian matrix. 
 
Main computational stages of our algorithm are performed by using appropriate software; we use 
MATLAB for computing eigenvalues and vectors, SPSS Clementine for clustering, and UCINET for 
assessing centralities. 

4.3. Results and discussions 
 
Based on our algorithm, we find eigenvalues of the normalized Laplacian, Lrw; Because first three 
nontrivial eigenvalues were still close to zero, and that the forth was clearly different from zero, the 
vertex vectors of the first three nontrivial eigenvectors should still enable us to clearly distinguish the 
clusters in a 3-dimensional space and 4 communities would be the best partitioning of the network. 
Fig.3 shows the size of the eigen-gap between pairs of consecutive eigenvalues of the matrix Lrw, as a 
function of k, number of clusters. As mentioned before, clustered data have four features, three 



  

 

correspond to elements of first three nontrivial eigenvectors, which is obtained from relationships 
among nodes (edges), and one feature corresponds to nodes ‘faction’ attributes.  Results of our 
clustering with different community numbers done by SPSS Clementine software confirm this, i.e. four 
communities made less Sum of Squared Error (SSE). 
 

 
Fig. 3.Functional representation of the gaps between pairs of consecutive eigenvalues of the matrix and 

number of clusters 
 

However, different clustering methods based on optimizing various modularity functions have 
proposed the same cluster numbers. For example, Fortunato (2010) proposed four clusters based on the 
best partition found by optimizing the modularity of Newman and Girvan (2004), and based on multi-
resolution method by Arenas et al. (2008) indicated the most stable partition was two clusters. 
However, the partition obtained with straight modularity optimization consists of four clusters, which is 
less stable, Liu and Liu (2010) showed the community structure obtains the greatest modularity could 
be of four clusters, etc.  
 
Fig.4 and Table 1 show results of applying our method on Zachary’s karate club network. In Table 1, 
the column named ‘Node with highest closeness centrality within each cluster’ determines the closest 
node to the cluster center, which is determined by k-means clustering technique. Since node 34 has less 
‘Sum of proximities with other cluster centers’, it is obvious that node 34 has the greatest closeness 
centrality among these four central nodes and, thus, it is the whole network’s closeness centrality. In 
this case, our data were partitioned into two clusters via proposed method. The results obtained exactly 
match the social fission observed by Zachary (1977).  
 
In order to examine the effect of considering individual node attributes on the results, we clustered 3 
field data (removing ‘faction’ attribute) by our proposed method in two communities; which leads to 12 
nodes misclassified as compared to the real fission in the karate club. 
 
For comparing results with the case when closeness centrality is computed without clustering as a 
preprocessing stage and via usual techniques, we determine closeness scores of network’s node by 
UCINET software. According to Table 2, node 2, which in our method obtains the second score in 
closeness centrality, is 7th in the analysis by UCINET; Node 11 is third in our method and 15th in the 
UCINET analysis, and finally node 26, which is forth in our method, is 16th. Therefore, the 
preprocessing proposed considerably affects the results and could not be removed. 
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Fig. 4. Zachary`s karate club network. Squares and circles indicate the two communities observed by 
Zachary, colors denote the subdivision found by our algorithm. 

 
Table 1 
Results of applying the proposed method on Zachary’s karate club network 
Cluster Number 

of nodes 
Nodes Cluster center Node with highest 

closeness centrality 
within cluster 

Sum of proximities 
with other cluster 

centers 
1 10 N1, N2, N3, N4, N8, N13, N14, N18, 

N20,N22 
(-0.082,0.184,0.026,0.0875) N2 2.82 

2 4 N25, N26, N28, N32 (0.138, -0.129, -0.376, 0.062) N26 3.07 
3 6 N5, N6, N7, N11, N12, N17 (-0.3,-0.268,-0.011,0.917) N11 2.95 
4 14 , N9, N10, N15, N16, N19, N21, N23, N24, 

N27, N29, N30, N31, N33, N34 
(0.132,-0.051,0.117,0.125) N34 2.77 

 
 

Table 2 
Closeness centrality analysis without clustering as a preprocessing stage, done by UCINET software 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
Closeness 
centrality 

56 48 55 46 37.9 38 38 44 51 43 37.9 36.6 37 51 37 37 28 

Rank 1 7 2 8 15 14 14 11 4 12 15 18 17 4 17 17 20 
Node 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

Closeness 
centrality 

37.5 37 49 37 37.5 37 39 37.5 37.5 36.2 45.8 45.2 38 45.8 54 50 54 

Rank 16 17 6 17 16 17 13 16 16 19 9 10 14 9 3 5 3
 
 According to Zachary (1977), an edge connects the individuals who are said to be friends outside the 
club activities. During the factional conflict in the club, which led to the fission, the club meeting kept 
on the setting for decision making. If, at a specified meeting, one faction had a majority, it would try to 
pass resolutions and decisions beneficial to its ideological position. The other faction would then get 
revenge at a future meeting when it held the majority, by canceling the unfavorable decisions and 
replacing with ones favorable to itself. Therefore, the result of any crisis was identified by which 
faction was able to "stack" the meetings most successfully. The information (the calling of a meeting) 
usually began with one of the factional leaders, Mr. Hi or John A. Considering the course of political 
conflict in the club; it would be beneficial to the source if members of the opposing faction did not get 
this information. So in such network the closest person to members of his group is important not to all 
members of the network, and therefore clustering before determining the closeness centrality is 
necessary. On the other hand nodes which are center of clusters, indicate persons that are the closest 
one to members of their community, i.e. they attend in more number of contexts outside the club in 



  

 

which interaction took place between the two individuals involved and can call group members for 
meeting faster than others. This means they are not necessarily faction’s leader.   

5. Conclusions and future works  
 
We have introduced a new algorithm based on a general framework aimed at computing closeness 
centrality in complex networks in an efficient and systematic way. The method combines spectral 
techniques, considering individual node attributes, and cluster analysis as preprocessing stages. 
 
The nodes of the network are projected into a D-dimensional space, where D is a number of first 
nontrivial eigenvectors of the Laplacian matrix; their coordinates are the node-projections on each 
eigenvector. Then nodes attributes are added and by computing Euclidean distance in such an 
eigenvector space, k-means clustering technique are employed to generate network`s partition in 
communities. The number of clusters giving the maximum modularity is taken as the output of the 
algorithm for a fixed D. It has also been discussed that in conditions where the clusters are not very 
mixed with each other, D can be determined by assessing gaps between eigenvalues, providing a way 
to avoid computing all or large number of eigenvalues, which significantly reduces computational 
complexity, and maximizes the modularity by defining the best number of communities as an input of 
clustering and thus enhance the performance of the method. The best results are obtained using both 
edge structure and node attributes. 
 
Even if assessing closeness centrality have been profusely discussed before, we believe that our 
algorithm represents a step forward in studying complex networks, as it combines spectral techniques 
with (i) the novel concept of considering both node and edge attributes, which provide a link between 
traditional social studies and modern network research and (ii) a way to optimize the number of 
eigenvalues taken into consideration. 
 
An interesting result we can see in this experiment is that by clustering the network as a preprocessing 
stage, the picture of the network after fission which happened later, is obvious. This again confirms that 
individual characteristics effect networks future status. Challenges in SNA can be classified into three 
broad areas: instance modeling, evolution modeling, and predictive modeling (Kaza, 2008). Instance 
modeling concentrates on the study of static network properties, evolution modeling investigates 
factors behind network growth, and predictive modeling looks at recognition of hidden and future 
network links. This essay focuses on instance modeling and examines the role of node status in 
network’s centrality. It is found that centrality indices as measured by both considering edge and node 
attributes can help us in evolution and predictive modeling. 
 
Further work will be devoted to the extension and to the study of other centrality measures that lie in 
our proposed framework as well as the development of new clustering algorithms dealing, for instance, 
with other dissimilarity measures (for instance weighted distance, parametric Pearson product moment 
correlation, or angular distance (Yen et al., 2009)). We will also investigate the possibility of adapting 
multiple contexts (layers). Moreover, it would be interesting to study the behavior of the proposed 
algorithm in other real complex networks of larger size. 
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