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 Location Allocation is one of the most important decision making problems, which attracted 
many operational researchers during recent decades and many solution procedures are developed 
so far to cope with this problem. This paper proposes a new graph theory based method to cope 
with small size capacitated location allocation problems. Additionally, a genetic algorithm is 
utilized to solve medium and large scale problems. Finally, through some computational 
experiments, the quality and capability of these algorithms are shown. 
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1. Introduction  
 
Location Allocation (LA) is a strategic decision making problem concerns with choosing the best set of 
logistics depots between potential locations and allocating customers to the selected locations. This 
problem has wide applications in real life issues such as locating health care services, building 
telecommunication networks and so on. Solving this problem also plays an important role in supply 
chain network design. Making the best decision, impacts the economics of the organization and is 
considered as a competitive advantage in national and international markets. An inefficient decision 
making can lead to poor service quality towards customers, long delivery times, and high investment 
for the logistics operators, which can badly effect business operations and its profitability. Due to all 
these reasons LA problem has been studied by many researchers since Cooper (1963) proposed it for 
the first time. Since then many approaches are developed to tackle this problem. For a detailed and 
comprehensive review on facility location allocation models and solution methods, interested readers 
are referred to Owen and Daskin (1998), Mello et al. (2009), Mohammadi et al. (2011) and Yazdianand 
and Shahanaghi (2011).  The definition of the problem, in general, is to choose the optimal subset of 
facility locations from a set of candidate sites in order to satisfy the demand nodes. To solve a LA 
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problem the following questions should be answered: How many facilities should be opened, on which 
candidate sites the opened facilities should be located and eventually each opened facility should 
covers which demand nodes, in such a way that the total cost (including transportation and fixed 
location cost) is minimized (Cooper, 1963; Krarup & Pruzan, 1983). Cooper (1963) categorized the LA 
problem into two different classes. One of them is called Uncapacitated LA problem, which is studied 
in detail by many researchers such as Logendran and Terrell (1988) and Brimberg et al. (2000). In this 
category of LA problems the capacity of facilities are limitless and it is obvious that each customer 
should be supplied by the nearest facility. Otherwise, in Capacitated LA problem, which is the second 
class of LA problems, each facility is able to cover a limited amount of demand and it should be 
determined how much demand of each node should be covered by each facility. The capacitated LA 
problem is also considered by many researchers including Ernst and Krishnamoorthy (1999), Barreto et 
al. (2007) and Zhou and Liu (2007). After this categorization, in order to solve the LA problem many 
approaches are developed considering different location criteria such as cost, time, coverage, and 
accessibility between locations.  
 
Many researchers including Love and Moris (1975), Anandand Knott (1986) and Badri (1999) consider 
exact approaches that involve the use of techniques such as linear programming, integer programming 
and multi objective optimization. These methods can get the correct answer of the problem, but the 
calculating scale and store content will be increased nonlinearly with the addition of parameters in the 
model, so it would be helpful to use other approaches such as heuristic or meta-heuristic methods to 
solve this problem. Therefore in recent years many of researches such as Charnes et al. (1978), 
Brimberg et al. (2000) and Bischoff and Dächert (2009) tried to tackle the LA problem in this way. 
They tried to find the best near optimal solution for the LA problem as a NP-hard one, by proposing 
different heuristic or meta-heuristic methods. Especially the application of Genetic Algorithm (GA) in 
location allocation problem has been investigated by several researchers such as Beasley and Chu 
(1996) and Zhou et al. (2002,2003), Zhou and Liu (2007) and Marian and Luong (2008). Here, as a 
new approach, a LA problem is solved using Graph Theory methods. As it is important to have a visual 
understanding of a problem, using graph theory as a capable concept to visualize, model and solve a 
problem, can be helpful. As the first step, a graph drawing of the problem is presented in Fig. 1 to 
better understanding, then in next sections the location of facilities on the candidate sites and 
assignment of demand nodes to each located facility are determined such that the total cost including 
transportation and fixed location costs is minimized. 
 

 

 

 

 

 

 

a) b) 

■ Selected areas ◘  Unselected areas ●Demand Nodes ── Assignment 

Fig.1. Graph Representation of a Location Allocation problem 
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In Fig.1, a graph with two different kinds of nodes is defined. The cycle nodes are used to show the 
demand centers and the square shaped nodes are used to show the candidate sites. When a candidate 
area turns to black it means that it is selected to locate a facility in it and an edge between these two 
kind of nodes means that the demand point is covered by the selected area. This graph also can be 
represented as a bipartite graph in which the nodes set is divided into two subsets where there is no 
edge between the nodes in the same sub set and each node relates one of the nodes from the first subset 
with another node in the other subset. In this problem 

To sum up, we have a complete bipartite graph and we need to find a sub graph of it with the minimum 
sum of weights.To do so, the remainder of the paper is structured as follows. In Section 2 a more 
detailed definition of the aforementioned problem is presented, then in Section 3 the solution 
methodology is described in detail for both small and large size problems. Finally, in Section 4 some 
experimental results are presented in order to evaluate the quality of proposed algorithms. 

2. Problem Definition 

As mentioned before, a location–allocation problem is discussed in this research. Having capacitated 
facilities, the formulation of the abovementioned problem is as follows:  

There are I demand nodes, in which P products are required and the required amount of each of which 
is specific. In the other hand, there exist J candidate sites to be considered in order to locate K facilities. 
The transportation cost of unit product from each candidate site to each demand node and the fixed 
location cost of each facility on each candidate site are known. To cover the demands of each node, 
facilities use S different resources that the available level of each of which is known in each candidate 
site: 
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where k = 1,2, . . . ,K is the index of facility numbers, j = 1,2,. . . , J is the index of candidate sites, and i 
= 1,2,. . . ,I is the index of demand nodes. The parameters and decision variables of the proposed model 
are as follows: 
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Cji = Transportation cost of unit product from the jth candidate site to the ith demand node. This unit cost is 
assumed to be equal for all P products. 

Fkj = Fixed cost of locating the kth facility on the jth candidate site. 

Dpi= Demand of the pth product of the ith node. 

1          if  facility  is located on candidate site 
0          Otherwise,
⎧

= ⎨
⎩

kj

k j
x  

1          if  demand node  is covered by the facility located on candidate site 
0          Otherwise,ji

i j
y ⎧

= ⎨
⎩

 

CAPkjp = Capacity of the kth facility located in the jth candidate site to supply the pth product. 

bjip = Amount of the pth product of ith demand node allotted to the facility located on jth candidate site. 

It should be noted that if yji = 1, all requirements of P products required in the ith demand node is 
covered by the facility located on the jth candidate site. The objective function of the presented model 
minimizes the total cost including transportation and fixed location costs. Eq. (2) implies that all 
requirements of demand node i should be served (i.e., consisting of the requirements of all P products). 
Constraints Eq. (3) indicate that not more than one facility can be located on one candidate site. On the 
other hand, Constraints Eq. (4) implies that each facility can be located on at most one candidate site. It 
is obvious that,first a facility should be located on the jth candidate site and then it can serve the ith 
demand node. This is satisfied by Eq. (5). Eq. (6) implies that the demand requirement of at least one 
node should be assigned to the located facilities. In other words, any located facility should not be idle.   

Now the problem is how many facilities should be applied, the applied facilities should be located on 
which candidate sites and should cover which demand nodes.  We are given a complete bipartite graph 
G = (V,E) with bipartition V I J= ∪ , where J refers to the set of potential sites to locate the facilities 
and I to the set of demand nodes. Establishing a facility j causes opening cost Fj. Attaching demand 
node i to an opened facility j yields connection cost cji. The problem is to find a subset K J⊆ of 
facilities to open and a mapping  :a I K→ for assigning demand nodes to opened facilities in a way 
that each demand node is connected to exactly one facility as to minimize the total opening and 
connection cost. In this problem each one of the demand nodes should be supplied by just one of the 
opened facilities, it means that every node from set I have a degree of one, while the facilities in the set 
J could be even isolated (not opened) or have a degree of more than one (attached to more than one 
demand node).  In addition, a positive number is written on each edge as its weight, which can show 
either the distance between nodes, time between them or the cost of transporting objects between them. 
The Bipartite complete graph related to our problem considering aforementioned assumptions is 
represented in Fig.2.  

 

Fig. 2. Bipartite Representation of the Location Allocation Problem 
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3. Solution methodology 

In order to solve the location allocation problem using graph theory methods, some definitions are 
required: 

a. Matching 

M is a matching in graph G if it contains a set of pairwise nonadjacent links. In a matching, the two 
vertices of each edge of Mare said to be matched under M, and each node related to an edge of M is 
said to be covered by M. If all of the graph nodes are covered by matching M, it is said to be a perfect 
matching (Bondy & Murty, 2008). 

b. Bipartite Graph 

In a bipartite graph G = (U,V,E) nodes are divided into two disjoint sets U and V such that each edge 
(ui, vj)  connects a node ui∈ U and one vj∈  V . If each edge in graph G has an associated weight wij , 
the graph G is called a weighted bipartite graph (Bondy & Murty, 2008). 

c. Matching in Bipartite Graphs 

Given a bipartite graph G = (U,V,E) of two node sets U and V with positive numbers as weights on its 
edges. The target is to find a minimum weighted matching in G i.e., a subset of edges with minimum 
aggregate weight ( ( ) ( )

e M
w M w e

∈
= ∑ ), considering the limitation that no two chosen edges share an 

end-point (Bondy & Murty, 2008).  

The following is an ILP formulation of the minimum weight perfect matching problem: 
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( , ) 1
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x u v        u U= ∀ ∈∑  (12) 

( , ) 1
u

x u v       v V= ∀ ∈∑  (13) 

{ }( , ) 0,1 ,x u v       u U v V∈ ∀ ∈ ∀ ∈  (14) 
   
In the above formulation nodesu∈U and v∈ V are matched under M if and only if x (u,v) gets a value of 
1. Constraints Eq. (12,13) guaranty that each node in each subset U and V will be matched by one and 
only one node in the other subset.  

d. Bipartite Semi- Matching  

Now we discuss representing location-allocation problem as a bipartite matching problem, in which 
two node sets will be interpreted as facilities and demand nodes. We seek a matching of the two node 
sets with minimum weight. In the semi-matching problem, we allow nodes on one side to be used 
multiple times, which means that one of Eq. (12) or Eq. (13) set will be relaxed. This is appropriate 
here because usually multiple demand nodes may be served by the same facility, but not vice versa. 

Bipartite Semi-Matching is similar to ordinary bipartite matching, except that the matching constraint is 
relaxed on one side, we now seek a subset of edges such that no two chosen edges share an endpoint in 
U(Lovász & Plummer, 2009). The problem can be formulated for both cardinality and weighted 
settings. Both the weighted and unweighted matching models can be applied to location-allocation 
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problem. Given a bipartite graph of facilities and demand nodes, the presence of an edge (Ui,Vj) 
indicates that Ui is capable of serving Vj . A weighted semi-matching model can also be used to solve the 
allocation problem. In this case, given a weighted bipartite graph of locations and demand nodes, each edge 
(Ui,Vj) is associated with a corresponding utility value which can be a measure of the outcome which is 
earned by connecting a demand node to a location. The motivation here is that each node wants to be 
covered, and different facilities may be capable of covering it, but some might get better.  

e. Alternating Path 

Considering a semi-matching Min G, an alternating path will be described as a sequence of edges P = 
({v1, u1}, {u1, v2}, . . . , {uk−1, vk}) with vi∈ V , ui∈ U, in which we have {vi, ui} ∈ M for each i. Note that 
if Pis an alternating path relative to a semi-matching Mthen P Δ M, which is the symmetric difference 
of sets P and M, is also a semi-matching, derived from Mby switching matching and non-matching 
edges along P. If the new semi-matching is feasible due to capacities of the facilities and if it has a 
lowercost,  than Pis called a cost-reducing path relative to M. Cost-reducing paths are so named 
because switching matching and non-matching edges along Pyields a semi-matching PΔMwhose cost is 
less than the cost of M (Lovász & Plummer, 2009). 

Using terms which is defined above, we are going to solve the location allocation problem by modeling 
the problem as a bipartite semi matching problem in a graph. Each U-vertex represents a demand node, 
and each V-vertex representsa possible location. For any demand node j and facility i, we set pi,j = 1 if 
the edge {uj, vi} exists in graph G, and otherwise pi,j = 0. Clearly, any feasible semi-matching 
determines a location for the problem. In particular, an optimal semi-matching determines the optimal 
allocation that minimizesthe cost or distance ( ij ijc p∑ ). In order to solve the problem a graph theory 
based procedure is presented based on the following theorem (Ahuja et al., 1993): 

Theorem.A semi-matching M is optimal if and only if no cost-reducing path relative to M exists. 

In order to solve a location-allocation problem using graph theory methods a heuristic algorithm is 
presented below in four steps: 

1.  Generate an initial semi-matching, M. 

2.  While  There is a cost-reducing path, P,  

3.   Reduce the cost of M, usingP and consider the new semi-matching as M.  

4.      Else Suppose M as the optimal answer. 

Having a nearly optimal initial assignment is an important issue to get to the best possible answer after 
few iterations, so it would be helpful to use a heuristic method to find a near optimal initial solution. 

3.1. Finding an Initial Semi-Matching: 

Considering i demand nodes and j candidate facility locations in a capacitated location-allocation 
problem, a 6 step algorithm to generate an initial semi- matching, M is as follows: 

1. Find Fi = Min {F1, …,Fm} and consider the Fi vertex, which has the lowest opening cost, as the 
opened facility. If there is a tie choose the one with maximum capacity. 

2. Find dij, the minimum value in the ith row of the incidence matrix of graph G. 
3. Put Fi= Fi – dij and set { }   , |k k iP D D F k i= ≤ ≠ . 
4. If P ≠ ∅  go to step 3 otherwise omit Fj from the network and go to step 1.  
5. Do this till there is no unassigned demand node.  
6. Compute the cost of this initial semi-matching. 
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3.2. Improve the Answer 

Now after finding the initial solution, we use the concept of iteratively find and remove cost reducing 
paths to improve our solution.The method for finding cost-reducing paths is to apply a depth-first 
search (DFS) algorithm to grow a forest of alternating paths where each tree root is chosen to be an 
unused F -vertex with lowest opening cost for example F1. By switching matched and non-matched 
edges along the alternating path, if the new solution is feasible due to capacity constraints and if it leads 
to a better objective function, it would be accepted as the new best answer of the problem and the 
alternating path is considered as a cost reducing path. If such an answer is not found, we can say that 
there exists no cost reducing path from F1. Hence, we move to another unused vertex in F and 
construct a new alternating search tree from the vertex. If all vertices of Vare visited then the algorithm 
terminates. If no cost-reducing path exists then the optimal semi matching is found. 

3.3. Large Size Problems 

The above mentioned procedure can be used to solve small size problems. In order to solve medium 
and large size problems a Genetic Algorithm (GA) is utilized in this paper.  In order to apply GA to 
aforementioned problem, the representation scheme for the chromosome is an-bit string where 
nrepresents the number of demand nodes. A non-zero value for the ithbit implies that a facility is 
allocated to that demand node. If a facility is not present in the string, it implies that this facility was 
not openeddue to non-feasibility reasons (allocation of zero customers). Let us consider a network 
comprising of 10 demand nodes and 5 logistics facilities. The representation of an individual 
chromosome (solution) is illustrated as Fig.3. 

Demand Nodes 1 2 3 4 5 6 7 8 9 10  

Fig. 3. Solution Representation of Location Allocation problem 

Using case Fig.4 (a), we can say that facility 1 is allocated to demand nodes (1,2,3), facility 2 to 
demand nodes (4,5,6) and so on. By analyzing results for Fig.4 (b), we see that facility 1 is allocated to 
demand nodes (1,5,10), facility 3 to (4,6,8). However, in case (b) the logistic facility 5 is absent which 
means it was not opened for the reasons of zero allocation of demand nodes. 

      a) 

Demand Nodes 1 2 3 4 5 6 7 8 9 10  

Facilities 1 1 4 2 3 2 3 4 5 5  

b) 

Demand Nodes 1 2 3 4 5 6 7 8 9 10  

Facilities 1 4 4 3 1 3 3 3 2 1  

 

Fig.4. Examples of Solution Representation  

The pseudo code for implementing GA is presented as follows (Gen, 2000):  
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1. Set iteration counter t = 0.  

2. Generate the initial population, P(t)using the heuristic method described in Section 4.1.  

3. Evaluate P(t) using the objective function.  

4. While the termination condition is not met, do 

4.1. Set t= t+ 1  

4.2. Select pairs P1 and P2 from the feasible best ranked populations.  

4.3. Replenish population by applying genetic operators to P1 and P2 

4.3.1. Apply crossover operator to integrate P1 and P2 using single point crossover.  

4.3.2. Apply mutation operator to the population with the best fitness.  

4.3.3. Check the feasibility of the new child and evaluate the fitness of the feasible one 
using the objective function  

5. Stop. 

4. Numerical Result 

4.1. Small Size Example 

To illustrate our proposed framework, we present a numerical example. Consider a food processing 
company which is evaluating five potential plant location sites (F1 to F5) in five different cities. The 
production plants have to serve five distribution centers (D1 to D5). The investors need to determine 
which location site to open and how much transport from each location to each distribution center 
should be done. The resource data are tabulated in Table1 and Table 2. Because of the characteristics of 
the company and perishability of products it is important to deliver demands as soon as possible, so the 
distance between each candidate site and distribution center is tabulated in scale of time unit. Fig.5 
shows the solution progress using the heuristic method described in Section 4.1. 

Table 1  
Data about the time between candidate locations and demand nodes 

 Demand Nodes 
Candidate Locations D1 D2 D3 D4 D5 

F1 5 14 19 4 9 
F2 7 16 21 6 12 
F3 9 8 12 5 12 
F4 5 3 10 6 2 
F5 10 17 23 13 14 

Monthly Demand 4200 4500 3350 900 2500 
 

Table 2  
Data about the production capacity and opening cost of candidate locations 
Candidate Locations F1 F2 F3 F4 F5 
Production Capacity 5200 5000 5800 3250 5650 
Fixed Cost 1450 2100 1720 2580 1450 
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a) Initial solution with cost 6781 $ b) Second iteration with cost 7894 $ 

  
c) Second iteration : the solution is infeasible d) Best solution with cost 6772 $ 

 

Fig.5.Step By StepSolution Progress of the Example 

4.2. Medium and large Size problems 

In this section, we evaluate the proposed algorithms in terms of solution quality and the required 
computation time. The programming model which is presented in Section 1 is implemented in GAMS 
and the associated results are compared with those of our graph theory based heuristic and meta-
heuristic approach. Many problems with different parameters and values are considered and solved. 
The required input data of the test problems are randomly generated and all of the experiments are 
performed on a Pentium 4 with a Core i7 CPU processor. In order to show the proper performance of 
GA, different small sized problems are solved by GAMS software. As it is tabulated in Table 3, the 
results indicate that optimal values from GAMS and the proposed GA are the same in small sized 
problems. However the CPU times of the GA are considerably less than GAMS. 

Table 3  
Obtained Results of Small sized Test Problems from GAMS and GA 
Problem Size 

(J×D) 
GAMS GA GAP (%) 

OFV ($) CPU Time (Sec.) OFV ($) CPU Time (Sec.) 
3×5 7130 1.438 7130 0.011 0 
4×5 5176 2.406 5176 0.021 0 
5×5 6760 17.656 6760 0.01 0 
5×7 15448 4.5 15448 0.17 0 
6×8 9200 17.985 9200 0.21 0 

 

Moreover, 12 instances are considered for medium and large sized problems. The results are shown in 
Table 4 in terms of CPU time and obtained objective value. To improve the quality of the presented GA 
in medium and large sized problems, there are three parameters that should be tuned before the 
algorithm is used. These three parameters, which are related to the implementation of GA, are 
crossover probability, mutation probability and the population size. For computations of Table 3 and 
Table 4 these parameters are considered to be 0.8, 0.1 and 100, respectively. It should be noted that in 
each run of the algorithm the initial population is generated using the heuristic method of Section 3.1. 
In order to find the best set of parameters, a sensitivity analysis is done. In the first step the mutation 
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rate and the population size are set to be 0.1 and 100, respectively and the crossover rate is varied 
between three levels. The obtained results are shown in Figure 6, where we make use of a common 
performance criterion, named relative percentage deviation (RPD) as the vertical axis. RPD is 
calculated as follows: 

lg 100sol sol

sol

A MinRPD
Min
−

= ×  

where the Algsol is the obtained objective function for each problem by combining the parameters and 
Minsol is the minimum objective function value in all considered combinations. It is obvious from 
Figure 6 that the best crossover probability is 0.8. In addition the same process is done for the mutation 
rate and population size. For mutation rate two levels is considered and for population size four 
different levels are compared with the assumption of other parameters to be fixed. The obtained results 
are shown in Fig. 7 and Fig. 8, respectively. From these three charts it could be concluded that the best 
set of GA parameters are 0.8, 0.1 and 100, which were considered as our algorithm parameters in 
computations of Table 2 and 3. Besides, it follows from the charts that calculated RPD does not exceed 
2.76% for each set of selected parameters, so it could be concluded that the proposed genetic algorithm 
is somehow robust to the parameter changing.        

Table 4  
Obtained Results of Medium and Large Sized Test Problems from the proposed GA 

Problem Size (J×D) OFV ($) CPU Time (Sec.) Problem Size (J×D) OFV ($) CPU Time (Sec.) 
9×15 31493 25.5 15×30 218700 162.9 
10×13 35739 34.95 20×30 127890 128.1 
10×15 40011 16.3 20×45 73640 30.82 
10×18 176500 77.4 30×40 150230 47.62 
11×21 185600 33.5 30×55 83680 56.12 
15×20 71002 74.75 50×70 210980 69.25 

 

Fig.6. RPD Diagram with Respect to Combinations of Fixed 
Mutation Rates and Pop size and Different Crossover Rates 

Fig.7. RPD Diagram with Respect to Combinations of Fixed 
Crossover Rates and Pop size and Different Mutation Rates

Fig.8. RPD Diagram Regarding the Population size 



M. Rabbani and H. Yousefnejad / International Journal of Industrial Engineering Computations 4 (2013) 
 

213

5. Conclusion 

This paper addressed capacitated location allocation problem,which can be categorized into two sub-
problems. Firstly, the location problem, that is which logistics facilities should be opened and where, 
and secondly, the allocation problem, that is how to perform customer allocations to logistics depots to 
ensure timely service for customers. The problem is studied under the assumption of having opening 
costs for facilities and only one criterion (time) is considered. As the solution methodology a graph 
theory based algorithm is presented.For large-scale problems, a genetic algorithm is proposed, then. 
Finally, implementation of the proposed model in some real casesis reported and sensitivity analysis is 
done to show its applicability in real world circumstances.To extend current direction of this paper, it 
can be practical to consider the case that a demand node can be served by more than one facility. In 
addition, hybrid meta-heuristic methods can be applied and the results can be compared with those 
obtained from this study.  
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