
 

* Corresponding author.  
E-mail: vandana.vandana1983@gmail.com  (V. Gupta)  
 
© 2014 Growing Science Ltd. All rights reserved. 
doi: 10.5267/j.ijiec.2014.3.002 
 

 

 
 

International Journal of Industrial Engineering Computations 5 (2014) 459–474 
 

 

Contents lists available at GrowingScience 
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 

 
 
Supply chain production model with preservation technology under fuzzy environment 

 

 
S.R. Singha and Vandana Guptab*  
 
 
 
 
 
aDepartment of Mathematics, D.N. (P.G) College, Meerut 250001, Uttar Pradesh, India 
bResearch scholar, Banasthali University, India 
C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received September  2 2013 
Received in Revised Format  
November 17 2013 
Accepted March  20 2014 
Available online  
March 25  2014 

 In this paper, an attempt is made to characterize the preservation technology for deteriorating 
items to reduce the deterioration rate. This model assumes a single producer and single supplier 
and formulates a production model with a time varying rate of deterioration rate.  Here 
production and demand are treated as a fuzzy variables and total cost is minimized for both the 
crisp and fuzzy model. Shortage is allowed on the supplier’s part, which is partially backlogged. 
A solution procedure is presented to determine an optimal replenishment cycle and total cost per 
unit time, which is a convex function of preservation technology cost. Results have been 
validated with relevant example. In a way, the proposed model provides a unique theory to 
reduce the deterioration rate for the production model. 
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1. Introduction  
 
 

Deteriorating inventory were studied in the past decades (Ghare & Schrader, 1963; Covert & Philip, 
1973; Dave & Patel, 1981; Kang & Kim, 1983; Goyal & Giri, 2001;  Bhunia et al., 2009; Chang et al. 
2010; Singh & Singh, 2011) and the focus was usually on constant or variable deterioration rate and 
quantity discount. Investing on preservation technology (PT) for reducing deterioration rate has 
received little attention in the past years. The consideration of PT is important due to rapid social 
changes and the fact that PT can reduce the deterioration rate, significantly. Moreover, sales, inventory 
and order quantities are very sensitive to the rate of deterioration, especially for fast deteriorating 
products. The higher rate of deterioration would result in a higher total annual relevant cost and a lower 
demand rate (Yang & Wee, 2006; Johnny et al., 2007). Ouyang et al. (2006) found that if the retailer 
can reduce effectively the deteriorating rate of items by improving the storage facility then the total 
annual relevant inventory cost could be reduced. Many enterprises invest on equipment to reduce the 
deterioration rate and extend the product expiration date. For example, refrigeration equipment is used 
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to reduce the deterioration rate of fruits, flowers and sea foods in the supermarket. Murr and Morris 
(1975) showed that a lower temperature could increase the storage life and decrease decay. Wee et al. 
(2010) presented a model using PT. Huang et al. (2011) discussed the comments on PT investment for 
deteriorating inventory. Dye and Hsieh (2012) developed an optimal replenishment policy for 
deteriorating items with effective investment in PT. Dye (2013) investigated on the effect of PT 
investment on a non-instantaneous deteriorating inventory model. Hsieh and Dye (2013) developed a 
production inventory model incorporating the effect of PT investment when demand is fluctuating with 
time.  
 
Generally, some customers would like to wait for backlogging during the shortage period. However, 
the willingness is diminished with the length of the waiting time for the next replenishment. The longer 
the waiting time is, the smaller the backlogging rate is. The opportunity cost due to lost sales should be 
considered. Papachristos and Skouri (2000) developed an EOQ inventory model with time-dependent 
partial backlogging. They assumed the rate of backlogged demand increases exponentially while the 
waiting time for the next replenishment decreases. Teng et al. (2003) extended the backlogged demand 
to any decreasing function of the waiting time up to the next replenishment. The related analysis on 
inventory systems with partial backlogging have been performed by Teng and Yang (2004), San José et 
al. (2006), Chang and Lin (2010), etc.  
 
Usually researchers consider different parameters of an inventory model either as constant, time-
dependent or probabilistic nature for the development of the economic order quantity model. However, 
in the real life situations, these parameters may have little deviations from the exact value, which may 
not follow any probability distribution. In these situations, if these parameters are treated as fuzzy 
parameters, then it will be more realistic. These types of problems are de-fuzzified by using a suitable 
fuzzy technique and then the solution procedure can be obtained in the usual manner. Several authors, 
namely Chang et al. (2010), Lin and Yao (2000), Singh and Singh (2011), Ruoning and Xiaoyan (2010) 
and Singh et al. (2011) developed inventory models in fuzzy sense by considering different parameters 
in fuzzy sense. Yadav et al. (2013) focused on retailer’s optimal policy under inflation in fuzzy 
environment with trade credit. Urvashi and Singh (2013) discussed a model of inventory control with 
fuzzy inflation and volume flexibility under random planning horizon. Dutta and Kumar (2013) 
discussed about the fuzzy inventory models for deteriorating items with shortages and fully backlogged 
condition. 
 
In this research, an effort is accomplished to formulate a supply chain production model for 
deteriorating items with fuzzy demand, fuzzy production by allowing preservation technology cost.  
Under real life circumstances, these parameters in the production model are uncertain and imprecise. In 
this situation, a suitable way to model these imprecise data is to use fuzzy sets and to formulate a 
production model in a fuzzy environment. We use the centroid method for defuzzifying fuzzy total 
average cost. For the proposed model, producer and supplier use the preservation technology. The 
optimal solution of the proposed model not only exists but also is unique. To illustrate the theory of the 
proposed model, a numerical example is provided and sensitivity analysis with respect to parameters of 
the system is carried out in both crisp and fuzzy sense.  
 
2. Assumptions and Notation 
 
In developing the mathematical models of the inventory system for this study, the following common 
assumptions were used.  
 

1) This study considered single producer and single supplier. 
2) Multiple deliveries per order are considered. 
3) Production rate is finite and of constant rate. 
4) Demand rate is constant. 
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5) Reduced deterioration rate, a function of ζ such that m(ζ) = k (1- e-aζ ) , a ≥ 0 , where a is the 
simulation coefficient representing the percentage increase in m(ζ) per dollar increase in ζ , k is 
the original deterioration rate, k > 0 and ζ is the Preservation technology cost for reducing 
deterioration rate in order to preserve the products, ζ ≥ 0. 

6) For producer and supplier PT cost is ζ and η, respectively. 
7) Shortages are allowed on the supplier’s part. Unsatisfied demand is partially backlogged. The 

fraction of shortages backordered is a differentiable and decreasing function of time t, denoted 
by  δ (t),where t is the waiting time up to the next replenishment, and 0 ≤ δ(t) ≤ 1  with  δ(0)=1. 
Note that if δ(t) =1 (or 0) for all t, then shortages are completely backlogged (or lost). 

 
The following common notations were used. 
 
T the length of the inventory cycle 
d the demand rate 
Ap the ordering cost per order for producer 
Cp the unit purchasing cost for producer 
hp the unit  holding cost per order 
Ip1(t) the level of inventory at time t for producer during  0< t < T1 
Ip2(t) the level of inventory at time t for producer during 0< t < T2  
Imp the maximum inventory for Producer 
T1 the length of production time for producer (a decision variable) 
T2 the length of non-production time 
p the production rate  
Is1(t) the level of inventory at time t for supplier during 0< t < T3 
Is2(t) the level of inventory at time t for supplier during 0< t < T4 
T3 the length of inventory cycle for supplier (a decision variable) 
T4 the length of shortage time for supplier 
Ims the level of maximum inventory for supplier 
hs the unit  holding cost per order for supplier 
As the set up cost per order for Supplier 
Cs the unit purchasing cost for the supplier 
Cs1 the backlogging cost per unit 
Cs2 the lost sale cost per unit 
  the backlogging rate 
n the number of cycles 
k the original deterioration rate 
 ζ the PT cost for producer 
η the PT cost for supplier 
TC  the integrated cost of producer and supplier 
   
3.  Model development for producer 
 
The inventory model is shown in Fig. 1. The planning horizon T is divided by 2 parts T1 and T2, where 
T1 is the production time and T2 is the non-production time. During the time interval [0, T1], the 
inventory level decreases due to demand and deterioration and increases due to the production. During 
the time interval [0, T2], there is no production, the inventory decreases due to deterioration rate and 
demand. This figure also shows that if we use the PT then our production is more and we can use our 
stock for a long time period.  
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Inventory level 
 
 
           Imp1 
                     Imp2 
             Inventory level with PT 
 
 
 
     Ip1(t)       Ip2(t) 
 
                                                                                                    Inventory level without PT 
 
 
 
                                                                                
                 
        0  T1              T2           Time 
 
  Fig. 1.   The graphic representation of inventory model for producer 
 
There are the following differential equations for the inventory level of producer. 
 

'
1 1( ) [ ( )] ( ),p pI t p d k m I t             10 t T   (1) 

2

'
2( ) [ ( )] ( )p pI t d k m I t    ,            20 t T   (2) 

 
We have boundary conditions 1 (0) 0pI  and

2 2( ) 0pI T  , the solution of the above differential equations 
are as follows, 
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p dI t e
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By the boundary condition Ip1 (T1) = Ip2 (0), we have 
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(5) 

2
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( ( ))

2
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d
 

     
 

 
 

(6) 

By using the boundary condition 2 (0)mp pI I , we can find out the maximum inventory level with PT 
and without PT, which is as follows, 
 

2[ ( )]
1 1

( )
k m T

mp
dI e

k m



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, 
(7) 
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and 
 

2
2 1 .kT

mp
dI e
k
     

(8) 

 
The total relevant cost involves the following four factors, 
 
(a). Holding cost: The present value of the holding cost per unit time is as follows, 
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(9) 

(b). Purchasing cost: The purchasing cost includes loss due to deterioration as well as the cost of the 
item. The present value of the purchasing cost per unit time is as follows, 
 

1
p

p

c
IC PT

T
  

(10) 

 
 (c). Ordering cost: The present value of the ordering cost per unit time is as follows, 
 

p
p

A
SC

T
  

(11) 

  
(d). Preservation Technology cost per unit time is 
 

pPC
T


  (12) 

 
Hence, the present value of the total relevant inventory cost per unit time is as follows, 
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(13) 

4. Model development for supplier 
 
The inventory model is shown in Fig.2. The planning horizon T/n is divided in 2 parts of T3 and T4, 
where T4 is the shortage time. Supplier’s cycle starts with the maximum inventory Ims at t = 0. During 
the time interval [0, T3], the inventory level decreases due to demand and deterioration with PT. During 
the time interval [0, T4], shortage occurs, which is partial backlogged. The inventory level at time t 
during the time interval [0, T3], and [0, T4], is governed by the following differential equations, 
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1 1'( ) [ ( )] ( )s sI t d k m I t    ,       30 t T   (14) 

2 '( )sI t d                                                                                    40 t T   (15) 
 

Inventory level 
           I(t) 
   
             Ims 
 
 
 
  

 
Inventory level with PT 

 
 Inventory level without PT 

 
 
                          T/n 

    0                     
  T3                Lost Sale 

     Time               T4 
  Fig. 2.   The graphic representation of inventory model for supplier 

 
With the boundary condition 1 3( ) 0sI T  and 2 (0) 0,sI   the solution of the above differential equations 
are as follows, 
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dI t e

k m
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
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(16) 

2 ( )sI t dt   (17) 
         
By using the condition (0)ms sI I , we have maximum inventory for the supplier is follows, 
 

3[ ( )] 1 .
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k m T
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(18) 

 
The total relevant cost involves the following six factors as follows, 
  
(a). Holding cost: The present value of the holding cost per unit time is 
 

3
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(19) 

 
(b). Purchasing cost: The present value of the purchasing cost per unit time is 
 

s
s Mb

nCIC I
T


3[ ( )] 1
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T k m
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(20) 

 
(c). Ordering cost: The present value of the ordering cost per unit time is as follows, 
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s
b

nASC
T

  (21) 

 
(d). Preservation Technology cost  
 

s
nPC
T


  (22) 

 
(e). Shortage cost: The present value of the shortage cost in the entire time horizon is as follows, 
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4
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(23) 

 
(f). Lost sale cost: The present value of the lost sale cost occurs during the time period 0 to T4. During 
this time period, the complete shortage is 4dT  and the partial backlog is 4d T .  Lost sales are the 
difference between the complete shortage and the partial backlog. Thus, the present worth lost sale cost 
per unit time is as follows, 
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(24) 

Hence the present value of the total relevant inventory cost per unit time is  
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There are two decision variables in the present value of the total inventory cost TC. The first part is 
associated with the production time period of producer, T1 and the second part is associated with the 
time period of supplier T3. We can find out the value of T2 and T4 with the help of Eq. (5), Eq. (6) and 
the relation T=T/n –T3. 
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5. Fuzzy model for producer and supplier 
 
In a real situation and in a competitive market situation both the production rate and the demand rate 
are highly uncertain in nature. To deal with such a type of uncertainties in the super market, we 
consider these parameters in fuzzy form. Here p and d are not known precisely and p and d are defined 
by triangular fuzzy numbers such that  
 
 p  = 1 0 2( , , )p p p , and d  = 1 0 2( , , )d d d , 
 
where 0 1 0 0 2( )p p p     and 0 3 0 0 4( )d d d     are based on subjective judgments. We 
apply arithmetic operators based on fuzzy quantities and then defuzzify the same to convert them into 
crisp output. The membership functions for p and d is defined as follow, 
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Here, 1 0 2 3 0 40 ,0 ,0 ,0p d          and 0p , 0d  are given fixed numbers. 1 2 3 4, , ,     are 

determined by the decision maker based on the uncertainty of the problem. Defuzzification of  and dp   
by the centroid method is given as follows, 
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We have 
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Let G(p, d) = y, this implies that 
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The membership of the fuzzy cost function given by the extension principle is 
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Defuzzification for the fuzzy total cost is thus given by centroid method is 
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, 

where      1, 3 1, 3 1, 3,  g  and qf T T T T T T  are given by Eq. (28), Eq. (29) and Eq. (30), respectively. We 
can minimize the total average cost per unit time for the Optimal value of T1 (say T1

*) and T3 (say T3
*)   

as defined above and the minimum total cost is given by 1 3( , )TCM T T   .  
 

6.  Solution Procedure 
 
To derive the optimal solution, the following classical optimization technique is used. 
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Step 1. Take the partial derivatives of TC (T1, T3) with respect to T1 and T3 and equate the results to 
zero to find out the optimal value of T1 and T3. The necessary conditions for optimality are 

1

( ) 0TC
T



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  , 

3

( ) 0T C
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
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
 

 

Step 2. The convexity of the total cost is analyzed with the help of following conditions 
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2 2
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



. 

Step 3. With T1
* and T3

* found in step 2, derive TC*( T1
*,T3

*). 
 
7. Numerical Example 
 
7.1. Numerical illustration for crisp model 
  
A numerical example is considered to illustrate the model. The following values of parameters are used 
in this example. 
 
P = 360 unit, n=2, d=350 unit, pA = $0.20,  pC = $0.12,  ph = $0.15, sA = $0.50, sC = $0.15, sh = $0.20,  

1sC = $0.40, 2sC = $0.30, δ = 0.061, r = 0.001,  = $200, k = 0.007,  η = $400, a= 0.001.  
 
The software Mathematica5.2 is used to derive the optimal solution. The optimal value of total cost is 
obtained as $92.678 and production time (T1

*) is 8.2854 days and (T3*) is 3.29462 days. With the help 
of Eq. (5) and Eq. (6), we can find out the non-production time period (T2

*) and shortage period (T4
*) 

and by using the condition of optimality we can analyze that TC is a strictly convex function, as shown 
below. 
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The three dimensional producer and supplier’s total cost graph is shown in Fig. 3. 
                

  Fig. 3.  The Producer and Supplier’s unit time total cost in crisp model 
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7.2 Numerical illustration for fuzzy model  
 
All the symbols in the fuzzy environment have the same numerical values as in the crisp environment 
with initial demand parameter and production with some uncertainty. The production rate and demand 
rate are considered as the triangular fuzzy numbers (300, 360, 400) and (310, 350, 410), respectively 
    

1 = 300  2 = 400  3 = 310  4 = 410. 
 

Then optimal value of the total cost is $102.973, production time (T1
*) is 7.94398 days and supplier’s 

time (T3
*) is 3.16495 days. With the help of Eq. (5) and Eq. (6) we can find out the non-production 

time period (T2
*) and shortage period (T4

*). Total cost is more in the fuzzy environment. With the help 
of this data we can analyze that TC is a strictly convex function as shown as follows, 
  

22 2 2 2

2 2 2
1 3 1 3 1
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          

 

 
The three dimensional producer and supplier’s total cost graph in the fuzzy environment is shown in 
Fig. 4. 
  

 Fig. 4.  The Producer and Supplier’s unit time total cost in fuzzy model 
 

 
8. Sensitivity analysis 
 
Sensitivity analysis is carried out when the parameters a, ζ, η, n and r are changed. Figs. 5-9 show the 
changes in the total cost for variables a, n, r , ζ and k, respectively. Fig. 5(a) and 5(b) show the changes 
in the total cost, while changing the value of a in the crisp and fuzzy model, respectively. since m(ζ)= 
k(1-e-aζ), where k is the original deterioration rate, as a increases then m(ζ) is a increasing function 
therefore the reduced deterioration rate (k-m(ζ)) is a decreasing function then total cost decreases. This 
gives a conclusion that with the PT we can reduce the deterioration rate as well as the total cost. Fig. 
6(a) and 6(b) show that as ζ (PT cost of producer) increases then the total cost decreases. Since we have 
less deterioration rate we have more sales and more profit. Therefore, this process is more profitable for 
producer. 
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 Fig. 5(a) The effect of parameter a on the total 
cost in the crisp model 

Fig. 5(b) The effect of parameter a on the total 
cost in the fuzzy model 

 

Fig.6.(a) The effect of parameter ζ on the total 
cost in the crisp model 

Fig.6.(b) The effect of parameter ζ on total cost in 
the fuzzy model 

 
Fig. 7(a) and 7(b) show that as η (PT cost of supplier) increases, the total cost decreases. As we have 
less deterioration rate then more sales and more profit. Therefore, this process is more profitable for 
supplier. 
 

Fig 7.(a) The effect of parameter η on the total 
cost in the crisp model 

Fig 7.(b) The effect of parameter η on the total 
cost in the fuzzy model 

 

Fig. 8(a) and Fig. 8(b) show the effect of n (number of deliveries) on the total cost of the model in the 
crisp and fuzzy model. As we increase the n then total cost decreases up to a point and then it again 
increases. Therefore, we have to take an optimal value of the number of cycles to minimize the total 
cost. 
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 Fig 8.(a) The effect of parameter n on the total 
cost in the crisp model 

Fig 8.(b) The effect of parameter n on the total 
cost in the fuzzy model  

 

According to Fig. 9(a) and 9(b), as r (inflation rate) increases the total cost increases in crisp and fuzzy 
model both. 
 

  
Fig. 9. (a) The effect of parameter r on the total 
cost in the crisp model 

 
Fig. 9. (b) The effect of parameter r on the total 
cost in the fuzzy model 

 
The following inferences can be observed from the sensitivity analysis based on Table 1. 
 

1) The total cost per unit time is less sensitive on the changes in set up cost parameter. 

2) The holding cost and purchasing cost has stronger effect on the optimal value of total cost than 
the other parameters. 

3) In the fuzzy sense, optimal production time and supplier’s time period is lower than the time 
period obtained in the crisp model. 

4) Total cost obtained in the fuzzy sense is higher than the crisp total cost. 
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Table 1 
Sensitivty analysis of the proposed model 
Parameters Percentage of under-estimation and over-estimation parameters 

-50 -20 0 +20 +50 
hp T1 8.39818 8.33003 8.2854 8.24164 8.17714 

T3 3.33672 3.31126 3.29462 3.27824 3.25414 
TC 163.104 120.853 92.678 64.4959 22.2102 

cp T1 8.285635 8.2855 8.2854 8.28543 8.28534 
T3 3.2946 3.2946 3.29462 3.2946 3.29457 
TC 71.2539 84.1083 92.678 101.248 114.102 

Ap T1 8.28507 8.28532 8.2854 8.28565 8.28590 
T3 3.29447 3.29456 3.29462 3.29468 3.29478 
TC 92.666 92.6732 92.678 92.6828 92.69 

hs T1 10.6858 8.96774 8.2854 7.78765 7.24681 
T3 4.80537 3.74045 3.29462 2.95779 2.57807 
TC 33.2215 72.3353 92.678 109.935 131.577 

cs T1 8.32514 8.3039 8.2854 8.26368 8.22452 
T3 3.21619 3.26421 3.29462 3.32375 3.36501 
TC 113.308 101.001 92.678 84.2597 71.452 

As T1 8.2834 8.28466 8.2854 8.28633 8.28754 
T3 3.29384 3.29431 3.29462 3.29493 3.2954 
TC 92.6181 92.6541 92.678 92.7019 92.7378 

cs1 T1 8.30627 8.29371 8.2854 8.2774 8.26549 
T3 3.28856 3.29222 3.29462 3.29699 3.30049 
TC 92.2668 92.5152 92.678 92.8386 93.0753 

cs2 T1 9.13466 8.51449 8.2854 8.12562 7.95948 
T3 3.06456 3.22907 3.29462 3.34207 3.39294 
TC 77.1776 88.2402 92.678 95.9005 99.3641 

 
9. Concluding Remarks 
 
In this paper, we have investigated a model where producer and supplier use the PT to reduce the 
deterioration rate. This model is analyzed under two circumstances of the crisp and the fuzzy forms. 
Here, production and demand is treated as a fuzzy variable. Producer and supplier have different PT 
cost, which depends on the type of technology used. A solution procedure is also derived to optimize 
the total cost of producer and supplier. The main emphasis of this paper is on cost reduction by making 
effective investment in PT. Sensitivity analysis shows that while PT applies in the model, then the total 
cost is reduced due to the decrement in the deterioration rate. These changes can also be seen in the 
fuzzy sense but total cost is slightly higher than the crisp model. Effect of cost parameters on the total 
cost is also analyzed. Finally, the proposed model can be extended in several ways. For example, we 
could extent the model to allow for multi supplier. 
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