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 This paper considers the capacity determination in a closed-loop supply chain network when a 
queueing system is established in the reverse flow. Since the queueing system imposes costs on 
the model, the decision maker faces the challenge of determining the capacity of facilities in such 
a way that a compromise between the queueing costs and the fixed costs of opening new facilities 
could be obtained. We develop a De Novo programming approach to determine the capacity of 
recovery facilities in the reverse flow. To this aim, a mixed integer nonlinear programming 
(MINLP) model is integrated with the De Novo programming and the robust counterpart of this 
model is proposed to cope with the uncertainty of the parameters. To solve the model, an 
interactive fuzzy programming approach is combined with the hard worst case robust 
programming. Numerical results show the performance of the developed model in determining 
the capacity of facilities. 
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1. Introduction  
 
 

In recent years, closed-loop supply chain networks design has widely attracted researchers’ attention 
due to the advantages of jointly managing the reverse and forward supply chains. Separate design of 
forward and reverse supply chains results in sub-optimality (Fleischmann et al., 2001; Pishvaee et al., 
2010), so forward and reverse supply chains need to be managed jointly. Supply chain networks design 
is a long-term decision, so parameters such as capacity, especially in the reverse networks should be 
determined in such a way that supply chain network could act responsively for a long time. 
 
According to the above-mentioned descriptions, capacity determination of the recovery centers in 
closed-loop supply chains (CLSCs) design under uncertainty is considered as a strategic decision, since 
any decision made in line with this policy will directly influence on the profitability of supply chain. 
Decision makers (DMs) face the challenge of either implementing a large-scale investment in costly 
capacity, to benefit from economies of scale, or a flexible low-scale with frequent expansions, which is 
less cost effective (Georgiadis & Athanasiou, 2013; Francas & Minner, 2009). The significance of 
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these decisions increases when a queueing system with uncertain parameters is used in recovery centers 
(e.g. Vahdani et al., 2013). In such a situation, the DM encounters another challenge, which is to 
determine the capacity level of the recovery centers in such a way that decreases the queueing system 
costs.  
 
The major difference between this study and the previous researches on the capacity planning (e.g. 
Georgiadis & Athanasiou, 2013; Francas & Minner, 2009; Kamath & Roy, 2007; Georgiadis & 
Athanasiou, 2010; Vlachos et al., 2007) is the use of the De Novo programming to determine the 
capacity of recovery centers when a queueing system is used in these centers. In some of the real world 
problems, the products may wait in a queue to receive service. For example, in the steel scrap recycling 
chain, the steel scrap processing facility owing to its duty in processing incoming products from 
various suppliers is the major department of the reverse chain, so the products entering to this facility 
will wait in a queue (Vahdani et al., 2013). Queueing system costs in recovery centers are imposed on 
CLSC model, and under such circumstances, the DM faces the challenge of determining the capacity of 
recovery centers in such a way to compromise between the queueing system costs and the future 
capacity expansion costs. The above-mentioned descriptions motivated us to determine the capacity of 
recovery centers in presence of a queueing system and to utilize a method to directly determine the 
capacity while considering the queueing system and capacity expansion (or equivalently opening a new 
center) costs, simultaneously. To this aim, we used the De Novo programming approach, since it can 
consider the capacity as a variable in the CLSC model and directly determines it while minimizing the 
related costs (sec. 3.1).     
 
As mentioned earlier, this paper provides a framework to study the uncertain behavior of the 
parameters in a CLSC model accompanied with a queueing system and the De Novo programming 
approach. To handle the uncertainty in the parameters, we propose a hard worst case robust 
programming (HWRP). Hard worst case robust programming approach can best satisfy the DM 
requirements in capacity determination, and this is because of its risk-averse nature (sec. 3.3). The 
capacity determination of the recovery centers must be robust against the parameters’ fluctuations; 
otherwise, the fluctuations will be larger than necessary and will have costly impacts on the CLSC. In 
reverse flow of the CLSCs the quantity of returned products are considerably uncertain, so in spite of 
cost increment due to applying HWRP, the hard worst case robust optimization will be the best 
approach to handle the uncertainty of parameters (Pishvaee et al., 2011). 
 
Applying the De Novo programming approach will result in a bi-objective model, and to solve this bi-
objective CLSC model, we use an interactive fuzzy programming approach named TH method 
proposed originally by Torabi and Hassini (2008). We integrate the robust optimization and TH method 
to solve the multi-objective CLSC model. According to the above-mentioned descriptions, the 
contribution of this research is twofold; first, we tackle the capacity determination of the recovery 
centers in the reverse flow of a CLSC by use of a De Novo programming while considering the effects 
of a queueing system in these centers. Second, we use a hard worst case robust optimization to handle 
the uncertainty of parameters and integrate it with an interactive fuzzy programming approach to cope 
with the robustness of the bi-objective CLSC model. 
 
The remainder of this paper is organized as follows. In section 2, we review the literature related to this 
study. In section 3, the proposed model and its robust counterpart are introduced. The solution 
approach of the proposed bi-objective model is presented in section 4. In section 5, computational 
results are reported and finally we represent the conclusions and future researches in section 6. 

 
2. Literature review  
 
In the area of closed-loop supply chains, Fleischmann et al. (2001) proposed a generic mixed-integer 
model for closed-loop supply chain. They considered the forward flow together with the reverse flow 
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and used two previously published case studies to test the proposed model. Salema et al. (2007) 
generalized the Fleischmann et al. (2001) model. They developed a stochastic model for multi-product 
networks under uncertainty in demand and returns and solved the model using a scenario-based 
approach. Ko and Evans (2007) presented an MINLP model to design a dynamic integrated logistic 
network for 3PLs. They proposed a GA-based heuristic to solve the model. Lee and Dong (2007) 
developed a mixed-integer linear programming (MILP) model for integrated forward and reverse 
logistic networks design for end-of-lease computers products recovery. They considered the hybrid 
processing facilities in the model and solved the problem by tabu search. Pishvaee et al. (2009) 
proposed a stochastic mixed-integer linear programming model for integrated forward/reverse logistic 
network design. They developed the stochastic counterpart of a deterministic model and solved it by a 
scenario-based approach. Soleimani et al. (2013) proposed an MILP model with uncertain parameters 
to cope with a multi-period CLSC network. They used different scenarios to solve the stochastic model 
and compared the resulted solutions of scenarios. They utilized three criteria to compare the solutions 
of different scenarios and evaluated the performance of them for different scenarios. Pishvaee et al. 
(2011) presented an MILP model for closed-loop supply chains and proposed the robust counterpart of 
the proposed model. They showed that the robust model had better performance in resulting more 
feasible and better objective function values rather than the deterministic model. None of the mentioned 
studies in the area of CLSCs has considered the effects of queueing systems in the reverse flow. 
 
As mentioned before, this paper is the first study, which considers the De Novo programming (Zeleny, 
1981) to determine the capacity of recovery centers in a CLSC in such a way that queueing system 
costs in these centers are minimized. In the scope of capacity planning, Li et al. (2009) presented an 
MILP model with dynamic characteristics to solve a complicated integrated capacity allocation 
problem for a complicated supply chain. To solve the model they proposed a decomposition heuristic 
algorithm based on Lagrangian relaxation and to improve the solutions, they proposed an integrated 
heuristic algorithm. Vlachos et al. (2007) studied capacity planning policies to propose efficient 
capacity expansions for remanufacturing and collection centers in reverse supply chain. They proposed 
a simulation model based on the system dynamic for remanufacturing and collection capacity planning. 
As opposed to studies in the area of capacity planning, this paper considers a queueing system in each 
recovery centers in the reverse channel of CLSCs and directly determines the capacity of these centers 
using the De Novo programming.  
 
There are few studies considering the effects of queueing systems in a CLSC. Among them, Lieckens 
et al. (2007) extended an MILP model in a reverse logistic context in which queueing relationships are 
considered to incorporate a product’s cycle time and inventory holding costs. To solve the nonlinear 
model, they proposed an algorithm based on differential evolution technique. This study takes the 
queueing effects into account by considering them in the objective function. Vahdani et al. (2013) 
proposed a reliable CLSC model for iron and steel industry in which the queueing relationships are 
considered as a constraint to control the queue length in steel scrap centers. To solve the model, they 
proposed a hybrid solution methodology. This study utilizes the Lieckens et al. (2007) approach, and 
considers the effects of queueing systems in the objective function. These studies (i.e. Lieckens et al., 
2007; Vahdani et al., 2013) do not address the managerial insights regarding the relationships between 
queueing systems and capacity determination. This study tries to consider the managerial insights in the 
CLSC mathematical modeling. 

 
3. Problem definition 
 
A reverse logistics network establishes a relationship between the market that releases used products 
and the market for ‘‘new’’ products. When these two markets coincide, we talk about a closed loop 
network, otherwise it is an open loop (Salema et al., 2007). In this paper, a CLSC model is developed 
(Pishvaee et al., 2009). As illustrated in Fig. 1, in the forward flow of the developed model, new 
products are transferred to hybrid distribution/collection centers, and they are shipped to customer 
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zones. In the reverse network, returned products are collected in hybrid distribution/collection centers 
and they are transported to production/recovery or disposal centers after inspecting.  
 
The quality of returned products determines the center to which they should be transported, as 
recoverable products are shipped to production/recovery centers and scraped products are shipped to 
disposal centers. As mentioned, the processing facilities are considered to be hybrid due to the 
advantages such as cost saving and pollution reduction resulted from sharing infrastructures and 
material handling equipment. Due to the uncertain behavior of parameters such as quantity of returned 
products in the reverse channel of the respective CLSC, queues of returned products may be formed in 
the recovery centers. To overcome this challenge systematically, a queueing system is considered in 
recovery centers. Queueing system costs in recovery centers are imposed on closed-loop supply chain 
network. In such conditions, if a high-volume capacity investment is planned, the queueing costs will 
decrease but the fixed cost of opening facilities will increase. Alternatively, if a low-volume capacity 
investment is planned, the queueing costs will increase due to low service rate, but fixed costs of 
opening will decrease. Therefore, we integrate the De Novo programming to determine the exact 
amount of capacity, because this is an approach, which can deal with determining the quantity of 
resources together with the gained profit. 
 
 

 
Fig. 1. Closed-loop supply chain with queueing systems in recovery centers 

 
3.1. De Novo Programming 
 
The De Novo programming approach first introduced by Zeleny (1981) is formulated as follows: 
 
	ݔܥ	ݔܽ݉
.ݏ ݔܣ			.ݐ ൑ ܾ	
ܾ݌										 ൑  ܤ
 ାܴ	߳	ݔ									

(1) 
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where ܥ	߳	ܴ௤ൈ௡ and ܣ	߳	ܴ௠ൈ௡ are matrices of dimensions ݍ ൈ ݊ and ݉ ൈ ݊ respectively; and ܾ	߳	ܴ௠ is 
the m-dimensional unknown resource vector, ݌	߳	ܴ௠ is the vector of unit prices of m resources, and B 
is the given total available budget. According to Zeleny (1990), problem (1) can be transformed into 
problem (2) as follows: 
 
ܼ	ݔܽ݉ ൌ 	ݔܥ	
.ݏ ݔܸ		.ݐ ൑ 	ܤ
 ାܴ	߳	ݔ											

(2) 

 
where ܼ ൌ ൫ݖଵ, … , ܸ ܴ௤ and	௤൯߳ݖ ൌ ሺ ଵܸ, … , ௡ܸሻ ൌ ௞ݖ ௡. Letܴ	߳	ܣ݌

∗, ݇ ൌ 1,… ,  be the optimal value of ,ݍ
kth objective of problem (2) and ܼ∗ ൌ ሺݖଵ

∗, … ,  ௤∗ሻ be the q-objective value for the ideal system withݖ
respect to B. Zeleny (1981) proposed a metaoptimum problem, which is constructed as follows: 
 
	ݔܸ		݊݅݉
.ݏ ݔܥ		.ݐ ൒ ܼ∗		
 ାܴ	߳	ݔ									

(3) 

 
Solving problem (3), one can obtain ܤ ,∗ݔ∗ and ܾ∗. Here, without loss of generality, we combine the 
problem (1) and (3) and present problem (4) to obtain a bi-objective model and to minimize the 
utilization costs of resources. 
 
ܼ	ݔܽ݉ ൌ 	ݔܥ	
݉݅݊	ܹ ൌ 	ܾ݌
.ݏ ݔܣ			.ݐ ൑ ܾ			
 	ାܴ	߳	ݔ

(4) 

 
As Problem (4) shows, De Novo programming considers the resources vector as variable and directly 
determines them. In the capacitated CLSC models, each facility has a limited capacity, which can 
denote the resource vector in the De Novo programming. Therefore, due to the capability of De Novo 
Programming to take into account the capacities of recovery centers in the objective function and to 
determine them by considering the managerial insights in minimizing the costs and maximizing the 
profit of the CLSC simultaneously, this method can be efficient for modeling our CLSC network.   
 
To propose the mathematical model, assumptions and simplifications in the proposed mathematical 
model are postulated as follows, 
 

 All of the returned products must be collected from the customer zones. 
 The returned products flow may wait in a queue in recovery centers.  
 Shortage in demand satisfaction is not allowed.  
 Queueing system in each recovery center is considered to be M/M/1, because each recovery 

center is defined as a unique server and for convenience, the arrival and service rate of the 
queueing system is assumed to be exponentially distributed. 

 Multiple sourcing is allowed through the entire network. 
 

3.2. Model Formulation 
 
The sets, parameters, and decision variables used to formulate the proposed De Novo-based closed-
loop supply chain with queueing systems (DNCLSCQ) model are as follows. 
 

 



  

       

216

Sets 
I Index of potential production/recovery center ݅ ∈ ܫ
J Index of potential hybrid distribution/collection center  ݆ ∈  ܬ
K Fixed locations of customer zones ݇ ∈ ܭ
L Index of the existing products ݈ ∈  ܮ
M Index of potential disposal center ݉ ∈  ܯ
 

Parameters 
 
݀௟௞    Demand of customer zone k for product l 

 ௟௞        Rate of return of used product l from customer zone kݎ

 ௟          Average disposal fraction of product lݏ

௜݂          Fixed cost of opening production/recovery center i 
݃௝         Fixed cost of opening hybrid distribution/collection center j 

݄௠        Fixed cost of opening disposal center m 

          Mean reprocessing rate at production/recovery center i	௜ߤ

߰௟௜	      Unit holding cost per year for product l at production/recovery center i   

        Unit Price of product l at customer zone k	௟௞ߨ

          Utilization cost of recovery center i per unit of product l		௟௜ߦ
ܿ௟௜௝        Shipping cost per unit of product l from production/recovery center i to hybrid 

distribution/collection center j 
ܽ௟௝௞      Unit transportation cost for product l from hybrid distribution/collection center j 

to customer zone k 
ܾ௟௞௝	      Unit transportation cost for returned product l from customer zone k to hybrid 

distribution/collection center j 
݁௟௝௜       Unit transportation cost for recoverable product l from hybrid 

distribution/collection center j to production/ recovery center i 
 ௟௝௠      Unit transportation cost for scrapped product l from hybrid distribution/collection݌

center j to disposal center m 
 ௟௜         Manufacturing cost per unit of product l at production/recovery center iߜ
߮௟௝        Processing cost per unit of product l at hybrid distribution/collection center j 

       Unit disposal cost of product l at disposal center m	௟௠ߪ

 ௟௞   Shortage cost of product l per non-satisfied demand of customer zone kܿݏ

 ௜       Capacity of production for production/recovery center iݓܿ

        ௝ݕܿ
Capacity of handling products in forward flow at hybrid distribution/collection 
center j 

 ௠      Capacity of handling scrapped products at disposal center mݖܿ

      ௝ݎݕܿ
Capacity of handling returned products in reverse flow at distribution/collection 
center j 

 ௜   Capacity upper bound of production/recovery center iݑݎݓܿ

  
Decision Variables 

 
௟ܺ௜௝       Quantity of product l shipped from production/recovery center i to hybrid 

distribution/collection center j 
௟ܷ௝௞      Quantity of product l shipped from hybrid distribution/collection center j to 

customer zone k 
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ܳ௟௞௝      Quantity of returned product l shipped from customer zone k to hybrid 
distribution/collection center j 

௟ܸ௝௜	      Quantity of recoverable product l shipped from hybrid distribution/collection center 
j to production/recovery center i 

௟ܶ௝௠      Quantity of scrapped product l shipped from hybrid distribution/collection center j 
to disposal center m 

					Wi= ቄ
1    	if a production/recovery center is opened at location i                    
0    	otherwise    						                                                                                 

 

 

					Yj= ቄ
1  	 		if a hybrid distribution/collection center is opened at location j                
0   	 	otherwise				                                                                                                 

 

 

					Om= ቄ1 		 if a disposal center is opened at location m                                                   
0 			otherwise    		                                                                                                  

 

 

=௟௝௞ߞ					 ቄ1 			if customer zone k	is	supplied	by	distribution center	for product l             
0					otherwise																																																																																																																		

 

 
 ௜        Capacity of recovery for production/recovery center iݎݓܿ

 
The queueing system performance measures for each production/recovery center i, are as follows: 
 

E(WTi)     Expected time spent at production/recovery center i 
E(Ni)        Expected number of products at production/recovery center i 

 
Mathematical Model 

 
In terms of the above notations, the DNCLSCQ model is formulated as follows. 

 

ଵܼ	ݔܽܯ ൌ෍෍෍ ௟ܷ௝௞ߞ௟௝௞ߨ௟௞
௝ఢ௃௞ఢ௄௟ఢ௅

െ ቎෍ ௜݂ ௜ܹ

௜ఢூ

൅෍݃௝
௝ఢ௃

௝ܻ ൅ ෍ ݄௠
௠ఢெ

ܱ௠ 

൅෍෍෍൫ߜ௟௜ ൅ ܿ௟௜௝൯ ௟ܺ௜௝

௝ఢ௃௜ఢூ௟ఢ௅

൅෍෍෍൫߮௟௝ ൅ ܽ௟௝௞൯ ௟ܷ௝௞ߞ௟௝௞
௞ఢ௄௝ఢ௃௟ఢ௅

൅෍෍෍൫߮௟௝ ൅ ܾ௟௞௝൯ܳ௟௞௝
௝ఢ௃௞ఢ௄௟ఢ௅

 

൅෍෍෍൫ߦ௟௜ ൅ ݁௟௝௜൯ ௟ܸ௝௜

௜ఢூ௝ఢ௃௟ఢ௅

൅෍෍ ෍൫ߪ௟௠ ൅ ௟௝௠൯݌ ௟ܶ௝௠

௠ఢெ௝ఢ௃௟ఢ௅

 

	൅෍෍ܿݏ௟௞ ቌ݀௟௞ െ෍෍ ௟ܷ௝௞

௝ఢ௃

௟௝௞ߞ
௟ఢ௅

ቍ െ෍෍߰௟௜
௜ఢூ௟ఢ௅

ሺܧ ௜ܰሻ
௞ఢ௄௟ఢ௅

቏ 

 

(5) 

ଶܼ	݊݅ܯ ൌ෍෍ܿݎݓ௜ ௜ܹ

௜ఢூ

௟௜ߦ
௟ఢ௅

 (6) 

.ݏ 	.ݐ

෍ ௟ܷ௝௞

௝ఢ௃

௟௝௞ߞ ൑ ݀௟௞		 ∀ ݇ ߳ ܭ , ݈ ߳ 	ܮ (7)
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෍ߞ௟௝௞
௝ఢ௃

ൌ 1												 ∀ ݇ ߳ ܭ , ݈ ߳ 	ܮ (8)  

෍ܳ௟௞௝
௝ఢ௃

൒ ௟௞෍ݎ ௟ܷ௝௞

௝ఢ௃

			௟௝௞ߞ ∀ ݇ ߳ ܭ , ݈ ߳ ܮ 	 (9)  

෍ ௟ܺ௜௝ െ෍ ௟ܷ௝௞ߞ௟௝௞ ൌ 0						
௞ఢ௄௜ఢூ

	 ∀ ݆ ߳ ܬ , ݈ ߳ 	ܮ (10)  

෍ ௟ܸ௝௜

௜ఢூ

െ ሺ1 െ ௟ሻ෍ܳ௟௞௝ݏ ൌ 0					
௞ఢ௄

	 ∀ ݆ ߳ ܬ , ݈ ߳ 	ܮ (11)  

෍ ௟ܶ௝௠ െ ௟෍ܳ௟௞௝ݏ ൌ 0			
௞ఢ௄௠ఢெ

	 ∀ ݆ ߳ ܬ , ݈ ߳ 	ܮ (12)  

෍ ௟ܸ௝௜

௝ఢ௃

െ෍ ௟ܺ௜௝

௝ఢ௃

൑ 0			 ∀ ݅ ߳ ܫ , ݈ ߳ 	ܮ (13)  

෍ ௟ܺ௜௝ ൑
௝ఢ௃

௜ݓܿ ௜ܹ		 ∀ ݅ ߳ ܫ , ݈ ߳ 	ܮ (14)  

෍ ௟ܺ௜௝ ൑
௜	ఢ	ூ

௝ݕܿ ௝ܻ			 ∀ ݆ ߳ ܬ , ݈ ߳ 	ܮ (15)  

෍ܳ௟௞௝ ൑ ௝ݎݕܿ ௝ܻ

௞ఢ௄

		 ∀ ݆ ߳ ܬ , ݈ ߳ 	ܮ (16)  

෍ ௟ܸ௝௜

௝ఢ௃

൏ ௜ݎݓܿ ௜ܹ		 ∀ ݅ ߳ ܫ , ݈ ߳ 	ܮ (17)  

෍ ௟ܶ௝௠ ൑ 							௠ܱ௠ݖܿ
௝ఢ௃

	 ∀ ݉ ߳ ܯ , ݈ ߳ 	ܮ (18)  

௜ݎݓܿ ൑ 				௜ݑݎݓܿ
∀ ݅ ߳ 	ܫ (19)  

௜ܹ , ௝ܻ , ܼ௠, ݎ݁݃݁ݐ݊݅	ݏ݅	௜ݎݓܿ	&ሼ0,1ሽ	߳	௟௝௞ߞ
∀ ݅ ߳ ,ܫ ∀ ݆ ߳ ,ܬ ∀ ݉ ,	ܯ	߳ 	ܮ	߳	݈		∀ (20)  

௟ܺ௜௝, ௟ܷ௝௞, ܳ௟௞௝, ௟ܸ௝௜, ௟ܶ௝௠	 ൒ 0									 ∀ ݅ ߳ ,ܫ ∀ ݆ ߳ ,ܬ ∀ ,	ܯ	߳	݉ 	ܮ	߳	݈		∀ (21)  

 
Objective function (5) maximizes the total profit including the total income minus the total costs, which 
include the processing and transportation costs as well as the shortage cost of non-satisfied demand of 
customers and costs related to the queueing system. Objective function (6) minimizes the utilization 
costs of recovery centers. Objective functions (5) and (6) are based on the principle of the De Novo 
approach and an extension of problem (4). Constraint (7) denotes that shortage in customer demand 
satisfaction is allowed. Constraint (8) represents the unique assignment of a distribution centers to a 
customer. Constraint (9) assures that the returned products from all customers are collected. Constraints 
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(10-13)  assures the flow balance at production/recovery and hybrid distribution/collection centers in 
forward and reverse flows. Eqs. (14-18) are capacity constraints on facilities. Constraint (19) assures 
that the amount of capacity for each recovery center does not exceed its predefined upper bound. 
Finally, Constraints (20) and (21) enforce the binary, non-negativity and integrity restrictions on 
corresponding decision variables. 
 
According to Little’s law in the queueing systems (ܧሺ ௜ܰሻ ൌ ሺܧ௜ߣ ௜ܹሻ), we can reformulate the total 
expected yearly inventory costs considering the M/M/1queueing relationships as: 
 

෍෍߰௟௜
௜ఢூ௟ఢ௅

ሺܧ ௜ܰሻ ൌ ෍෍߰௟௜
௜ఢூ௟ఢ௅

ሺߣ௜ܧሺ ௜ܹሻ ሻ ൌ෍෍߰௟௜
௜ఢூ௟ఢ௅

ሺ
௜ߣ

௜ߤ െ ௜ߣ
ሻ (22) 

 
However, the arrival rate of the queueing systems equals the amount of returned products shipped from 
hybrid distribution/collection centers to production/recovery centers. The service rate of the queue 
equals the capacity of recovery center if opened. According to the above descriptions, equation (22) 
results in Eq. (23):     
 

෍෍߰௟௜
௜ఢூ௟ఢ௅

൬
௜ߣ

௜ߤ െ ௜ߣ
൰ ൌ෍෍߰௟௜

௜ఢூ௟ఢ௅

ሺ
∑ ௟ܸ௝௜௝ఢ௃

௜ݎݓܿ ௜ܹ െ ∑ ௟ܸ௝௜௝ఢ௃
ሻ (23) 

 
An important point about the DNCLSCQ model is that, the model complexity resulted from queueing 
relationships nonlinearity can be reduced. Let lin and linU be auxiliary variables, which are defined as 
follows: 

 

݈݅݊ ൌ ;ܹ.ݎݓܿ 											݈ܷ݅݊ ൌ ܷ.  (24) ߞ

 
Now, for each of these auxiliary variables a constraint set is added to the model for example the added 
constraint set for lin is as follows: 
 
݈݅݊௜ ൑ ܯ ௜ܹ 
	݈݅݊௜ ൒ ሺܯ ௜ܹ െ 1ሻ ൅  ௜ݎݓܿ
݈݅݊௜ ൑  ௜ݎݓܿ

(25) 

 
where M is a predefined sufficient large number, cwr is the capacity of recovery centers and W is a 
binary decision variable. Complexity of the DNCLSCQ model is reduced by adding constraints (25) to 
the model; however, the model is still nonlinear and will result in local optimal solutions if solved by 
optimization software (e.g. Lingo). To justify the local optimum solution of the DNCLSCQ model and 
accept it as global solution, we use the Lemma 1. 

 
Lemma 1. If ̅ݔ is the local optimal solution of objective function (5) in the DNCLSCQ model,̅ݔ is also a 
global optimal solution for objective function (5). 
 
Proof. At first, we prove that objective function (5) is convex. For convenience, we use the compact 
form of nonlinear part of objective function (5) as follows: 
 

ଵܼ	ݔܽ݉ ൌ ሺܿ́ െ ܿሻݔ െ ܿ.
ݔ

ݕݔ െ ݔ
 

.ݏ ݔܣ		.ݐ ൒ ݀ 
ݔܪ								 ൌ 0 
ݔܶ								 ൏  ݕݔ
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ݔܯ								 ൑  ݕܦ
,ݔ								  ାܴ	߳	ݕ
 
where A, H, M, N and T are coefficient matrices of the constraints. Vectors c, ܿ́ and d correspond to 
variable costs, prices and demands, respectively. Vectors x and y correspond to continues and binary 
variables, as mentioned before (Eq. 25), xy is replaced with variable lin. Let ׏ሺܼଵሻ ൌ

ሺ߲ܼଵ ௜ݔ߲
ൗ , ߲ܼଵ ௝൘ݔ߲ ሻ and ܪሺ݅, ݆ሻ ൌ ሾ߲

ଶܼଵ
௝ݔ௜߲ݔ߲
൘ ሿ be the partial derivative and Hessian matrix of 

ܼଵwith respect to ݔ௜ and ݔ௝ (Bazara et al., 2006). So ׏ሺܼଵሻ and ܪሺ݅, ݆ሻare as follows: 
 

ሺܼଶሻ׏ ൌ

ۏ
ێ
ێ
ሺܿ́ۍ െ ܿሻ ൅

ܿଶݔ
ሺ݈݅݊ െ ሻଶݔ
ݔܿ

ሺ݈݅݊ െ ሻଶݔ ے
ۑ
ۑ
ې
 (26a)

 

ܪ ൌ

ۏ
ێ
ێ
ێ
ۍ

ܿଶ݈݅݊
ሺ݈݅݊ െ ሻଶݔ

െܿଶݔ
ሺ݈݅݊ െ ሻଶݔ

ܿሺ݈݅݊ െ ሻݔ ൅ ݔ2
ሺ݈݅݊ െ ሻଷݔ

െ2ܿݔ
ሺ݈݅݊ െ ےሻଷݔ

ۑ
ۑ
ۑ
ې
 (26b)

 
As proved in Appendix A, hessian matrix (26b) is positive semidefinite. According to Bazara et al. 
(2006), ܼଵis convex. Every convex function is strictly quasi-convex (Bazara et al., 2006), so according 
to lemma 1 objective function ܼଵ is also strictly quasi-convex. Bazara et al. (2006) showed that if ̅ݔ is a 
local optimal solution for a strictly quasi-convex function, ̅ݔ is also a global optimal solution.  
 
3.3. Robust counterpart of the DNCLSCQ model 
 
In this section, we propose a hard worst case robust programming (HWRP) to handle the uncertainty of 
parameters. HWRP (see Pishvaee et al., 2011; Ben-Tal et al., 2009; Ben-Tal & Nemirovski, 1998) is a 
risk-averse method of robust programming, which immunizes the solution from being infeasible for all 
possible values of uncertain parameters. HWRP is a high conservative approach, but this approach is 
the best method to cope with the uncertainty of parameters, which could significantly influence on 
closed-loop supply chains. There are two reasons why to use this approach in this paper; first, the 
capacity expansions or equivalently opening a facility due to parameters’ fluctuations is a cost-
consuming decision, so we use the HWRP to guarantee the feasibility of the solution for all values of 
uncertain parameters. Second, the HWRP approach does not need any information about the probability 
distribution of the parameters (Ben-Tal et al., 2009). 
 
To propose the robust counterpart of the DNCLSCQ model, transportation costs between facilities, 
price of products, utilization cost of recovery centers, processing costs at facilities, demands, and return 
rates are considered as uncertain parameters. Ben-Tal et al. (2009, 2005) used specific closed bounded 
boxes called ܷ௕௢௫ in which uncertain parameters vary. The general form of a ܷ௕௢௫ is as follows: 

 
ܷ௕௢௫ ൌ ሼܿ	߳	ܴ௡:	|ܿ௧ െ ܿ௧̅| ൑ ,௧ܩߩ ݐ ൌ 1,… , ݊		ሽ 

 
where ܿ௧ is the tth parameter of n-dimensional vector c, and ܿ௧̅ is the nominal value of ܿ௧.The positive 
numbers ܩ௧ are “uncertainty scale” and ߩ ൐ 0	is “uncertainty level”. A particular case of interest is 
௧ܩ ൌ ܿ௧̅, where relative deviation of ܿ௧ from the nominal data in its corresponding box is up to ߩ. 
According to the above-mentioned descriptions, the robust counterpart of the DNCLSCQ model is as 
follows: 
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ܴ	ݔܽ݉ ଵܲ 
݉݅݊	ܴ ଶܲ 

 
.ݏ  .ݐ

ቌ෍෍෍ሺ݈݅݊ ௟ܷ௝௞ߨത௟௞ െ ௟௞ߟ
గ ሻ

௝ఢ௃௞ఢ௄௟ఢ௅

െ ቎෍ ௜݂ ௜ܹ

௜ఢூ

൅෍݃௝
௝ఢ௃

௝ܻ ൅ ෍ ݄௠
௠ఢெ

ܱ௠

൅෍෍෍൫ߜ௟̅௜ ൅ ܿ௟̅௜௝൯ ௟ܺ௜௝

௝ఢ௃௜ఢூ௟ఢ௅

൅ ൫ߟ௟௜
ఋ ൅ ௟௜௝ߟ

௖ ൯ ൅෍෍෍൫ ത߮௟௝ ൅ തܽ௟௝௞൯݈݅݊ ௟ܷ௝௞

௞ఢ௄௝ఢ௃௟ఢ௅

൅ ൫ߟ௟௝
ఝ ൅ ௟௝௞ߟ

௔ ൯ 

൅෍෍෍൫ ത߮௟௝ ൅ തܾ
௟௞௝൯ܳ௟௞௝

௝ఢ௃௞ఢ௄௟ఢ௅

൅ ൫ߟ௟௝
ఝ ൅ ௟௞௝ߟ

௕ ൯	

൅෍෍෍൫ߦ௟̅௜ ൅ ݁̅௟௝௜൯ ௟ܸ௝௜

௜ఢூ௝ఢ௃௟ఢ௅

൅ ቀߟ௟௜
క ൅ ௟௝௜ߟ

௘ ቁ ൅෍෍ ෍൫ߪത௟௠ ൅ ௟௝௠൯̅݌ ௟ܶ௝௠

௠ఢெ௝ఢ௃௟ఢ௅

൅ ൫ߟ௟௠
ఙ ൅ ௟௝௠ߟ

௣ ൯ 

൅෍෍ܿݏ௟௞ ቌ݀̅௟௞ ൅ ௟௞ܩௗߩ
ௗ െ෍෍݈݅݊ ௟ܷ௝௞

௝ఢ௃௟ఢ௅

ቍ ൅෍෍߰௟௜
௜ఢூ௟ఢ௅

ሺ
∑ ௟ܸ௝௜௝ఢ௃

݈݅݊௜ െ ∑ ௟ܸ௝௜௝ఢ௃
ሻ

௞ఢ௄௟ఢ௅

቏ቍ ൒ ܴ ଵܲ	

 

൭෍෍݈݅݊௜
௜ఢூ

௟̅௜ߦ ൅ ௟௜ߟ
క

௟ఢ௅

൱ ൑ ܴ ଶܲ (27) 

௟௞ܩగߩ
గ ݈݅݊ ௟ܷ௝௞ ൑ ௟௞ߟ

గ ,ܮ	߳	݈	∀								 ,ܬ	߳	݆	∀ 	ܭ	߳	݇	∀

௟௞ܩగߩ		
గ ݈݅݊ ௟ܷ௝௞ ൒ െߟ௟௞

గ ,ܮ	߳	݈	∀								 ,ܬ	߳	݆	∀ 	ܭ	߳	݇	∀

௟௜ܩఋߩ
ఋ

௟ܺ௜௝ ൑ ௟௜ߟ
ఋ ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 											ܫ	߳	݅	∀

௟௜ܩఋߩ
ఋ

௟ܺ௜௝ ൒ െߟ௟௜
ఋ ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 							ܫ	߳	݅	∀

௟௜௝ܩ௖ߩ
௖

௟ܺ௜௝ ൑ ௟௜௝ߟ
௖ ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 								ܫ	߳	݅	∀

௟௜௝ܩ௖ߩ
௖

௟ܺ௜௝ ൒ െߟ௟௜௝
௖ ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 					ܫ	߳	݅	∀

௟௝ܩఝߩ
ఝ݈݅݊ ௟ܷ௝௞ ൑ ௟௝ߟ

ఝ										∀	݈	߳	ܮ, ,ܬ	߳	݆	∀ 	ܭ	߳	݇	∀

௟௝ܩఝߩ
ఝ݈݅݊ ௟ܷ௝௞ ൒ െߟ௟௝

ఝ										∀	݈	߳	ܮ, ,ܬ	߳	݆	∀ 	ܭ	߳	݇	∀

௟௝௞ܩ௔ߩ
௔ ݈݅݊ ௟ܷ௝௞ ൑ ௟௝௞ߟ

௔ ,ܮ	߳	݈	∀											 ,ܬ	߳	݆	∀ 		ܭ	߳	݇	∀

௟௝௞ܩ௔ߩ
௔ ݈݅݊ ௟ܷ௝௞ ൒ െߟ௟௝௞

௔ ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 	ܭ	߳	݇	∀

௟௝ܩఝߩ
ఝܳ௟௞௝ ൑ ௟௝ߟ

ఝ										∀	݈	߳	ܮ, ,ܬ	߳	݆	∀ 								ܭ	߳	݇	∀

௟௝ܩఝߩ
ఝܳ௟௞௝ ൒ െߟ௟௝

ఝ										∀	݈	߳	ܮ, ,ܬ	߳	݆	∀ 				ܭ	߳	݇	∀

௟௞௝ܩ௕ߩ
௕ ܳ௟௞௝ ൑ ௟௞௝ߟ

௕ ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 				ܭ	߳	݇	∀

௟௞௝ܩ௕ߩ
௕ ܳ௟௞௝ ൒ െߟ௟௞௝

௕ ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 	ܭ	߳	݇	∀

௟௜ܩకߩ
క

௟ܸ௝௜ ൑ ௟௜ߟ
క ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 													ܫ	߳	݅	∀

௟௜ܩకߩ
క

௟ܸ௝௜ ൒ െߟ௟௜
క ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 																ܫ	߳	݅	∀

௟௝௜ܩ௘ߩ
௘

௟ܸ௝௜ ൑ ௟௝௜ߟ
௘ ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 										ܫ	߳	݅	∀
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௟௝௜ܩ௘ߩ
௘

௟ܸ௝௜ ൒ െߟ௟௝௜
௘ ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 						ܫ	߳	݅	∀

௟௠ܩఙߩ
ఙ

௟ܶ௝௠ ൑ ௟௠ߟ
ఙ ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 				ܯ	߳	݉	∀

௟௠ܩఙߩ
ఙ

௟ܶ௝௠ ൒ െߟ௟௠
ఙ ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 	ܯ	߳	݉	∀

௟௝௠ܩ௣ߩ
௣

௟ܶ௝௠ ൑ ௟௝௠ߟ
௣ ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 		ܯ	߳	݉	∀

௟௝௠ܩ௣ߩ
௣

௟ܶ௝௠ ൒ െߟ௟௝௠
௣ ,ܮ	߳	݈	∀										 ,ܬ	߳	݆	∀ 	ܯ	߳	݉	∀

௟௜ܩకߩ
క݈݅݊௜ ൑ ௟௜ߟ

క ,ܮ	߳	݈	∀										 																												ܫ	߳	݅	∀

௟௜ܩకߩ
క݈݅݊௜ ൒ െߟ௟௜

క ,ܮ	߳	݈	∀										 																								ܫ	߳	݅	∀

෍݈݅݊ ௟ܷ௝௞

௝ఢ௃

൒ ݀̅௟௞ ൅ ௟௞ܩௗߩ
ௗ ,	ܭ	߳	݇	∀								 								ܮ	߳	݈

෍ߞ௟௝௞
௝ఢ௃

ൌ ,	ܭ	߳	݇	∀											1 																															ܮ	߳	݈

෍ܳ௟௞௝
௝ఢ௃

൒ ሺ̅ݎ௟௞ ൅ ௟௞ܩ௥ߩ
௥ ሻ෍݈݅݊ ௟ܷ௝௞

௝ఢ௃

,	ܭ	߳	݇	∀										 	ܮ	߳	݈

෍ ௟ܺ௜௝ െ෍݈݅݊ ௟ܷ௝௞ ൌ ,	ܬ	߳	݆	∀											0 							ܮ	߳	݈
௞ఢ௄௜ఢூ

	

෍ ௟ܸ௝௜

௜ఢூ

െ ሺ1 െ ௟ሻ෍ܳ௟௞௝ݏ ൌ ,	ܬ	߳	݆	∀										0 										ܮ	߳	݈
௞ఢ௄

	

෍ ௟ܶ௝௠ െ ௟෍ܳ௟௞௝ݏ ൌ ,	ܬ	߳	݆	∀											0 												ܮ	߳	݈
௞ఢ௄௠ఢெ

	

෍ ௟ܸ௝௜

௝ఢ௃

െ෍ ௟ܺ௜௝

௝ఢ௃

൑ ,	ܫ	߳	݅	∀										0  															ܮ	߳	݈

෍ ௟ܺ௜௝ ൑
௝ఢ௃

௜ݓܿ ௜ܹ													∀	݅	߳	ܫ	, 																							ܮ	߳	݈

	෍ ௟ܺ௜௝ ൑
௜	ఢ	ூ

௝ݕܿ ௝ܻ															∀	݆	߳	ܬ	, 																								ܮ	߳	݈

෍ܳ௟௞௝ ൑ ௝ݎݕܿ ௝ܻ

௞ఢ௄

,	ܬ	߳	݆	∀									 																								ܮ	߳	݈

෍ ௟ܸ௝௜

௝ఢ௃

൏ ݈݅݊௜										∀	݅	߳	ܫ	, 																														ܮ	߳	݈

	෍ ௟ܶ௝௠ ൑ ,	ܯ	߳	݉	∀								௠ܱ௠ݖܿ 																		ܮ	߳	݈
௝ఢ௃

			

݈݅݊௜ ൑ ܯ ௜ܹ										∀	݅	߳	ܫ	

݈݅݊௜ ൒ ሺܯ ௜ܹ െ 1ሻ ൅ 	ܫ	߳	݅	∀										௜ݎݓܿ

݈݅݊௜ ൑ 	ܫ	߳	݅	∀										௜ݎݓܿ
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݈݅݊ ௟ܷ௝௞ ൑ ݇	∀											௟௝௞ߞܯ ,ܭ	߳ ,ܬ	߳	݆	∀ ∀ ݈ ߳ ܮ

݈݅݊ ௟ܷ௝௞ ൒ ௟௝௞ߞ൫ܯ െ 1൯ ൅ ௟ܷ௝௞											∀	݇ ߳ ,ܭ ∀ ݆ ߳ ,ܬ ∀ ݈ ߳ ܮ

݈݅݊ ௟ܷ௝௞ ൑ ௟ܷ௝௞											∀	݇	߳	ܭ, ,ܬ	߳	݆	∀ ∀	݈ ߳ ܮ

௜ݎݓܿ ൑ 																																				ܫ	߳	݅	∀											௜ݑݎݓܿ

௜ܹ , ௝ܻ , ܼ௠, ,ܫ	߳	݅	∀											ݎ݁݃݁ݐ݊݅	ݏ݅	௜ݎݓܿ	&	ሼ0,1ሽ	߳	௟௝௞ߞ ,ܬ	߳	݆	∀ ,ܯ	߳	݉	∀ 	ܮ	߳	݈	∀

௟ܺ௜௝, ௟ܷ௝௞, ܳ௟௞௝, ௟ܸ௝௜ , ௟ܶ௝௠	, ݈݅݊௜, ݈݅݊ ௟ܷ௝௞, ௟௞ߟ
గ , ௟௜ߟ

ఋ , ௟௜௝ߟ
௖ , ௟௝ߟ

ఝ, ௟௝௞ߟ
௔ , ௟௞௝ߟ

௕ , ௟௜ߟ
క , ௟௝௜ߟ

௘ , ௟௠ߟ
ఙ , ௟௝௠ߟ

௣ ൒ 0	

,ܫ	߳	݅	∀ ,ܬ	߳	݆	∀ ,ܯ	߳	݉	∀ 	ܮ	߳	݈	∀

4. Solution approach  
 
To solve the multi-objective DNCLSCQ model, we integrate the robust programming and an 
interactive fuzzy programming approach named TH method first proposed by Torabi and Hassini 
(2008). They analytically proved that the proposed TH method had the best performance among fuzzy 
approaches LZL (Li et al., 2006), LH (Lai & Hwang, 1993) and MW (Selim & Ozkarahan, 2008). In 
this section, we use the following steps to combine TH method with robust programming to solve the 
multi-objective DNCLSCQ model: 
 
Step1. Formulate the robust counterpart of the DNCLSCQ model. 
 
Step2. Determine the positive ideal solution (PIS) for each objective function by solving them 
separately. The negative ideal solution (NIS) for each function is determined as follows (Torabi & 
Hassini, 2008): 
 
ܴ ଵܲ

ேூௌ ൌ minሼܴ ଵܲ ሺݔଵ
௉ூௌሻ, ܴ ଵܲሺݔଶ

௉ூௌሻሽ 
ܴ ଶܲ

ேூௌ ൌ maxሼܴ ଶܲ ሺݔଵ
௉ூௌሻ, ܴ ଵܲሺݔଶ

௉ூௌሻሽ 
 
where ݔ௛

௉ூௌand ܴ ௛ܲ denote the solution vector associated with the PIS of hth robust objective function 
and corresponding value of hth robust objective function, respectively. 
 
Step 3.Determine a linear membership function for each objective function as follows: 
 

ሻݔଵሺߤ	 ൌ

ە
ۖ
۔

ۖ
ۓ 1																݂݅			ܴ ଵܲ ൐ ܴ ଵܲ

௉ூௌ

ܴ ଵܲ െ ܴ ଵܲ
ேூௌ

ܴ ଵܲ
௉ூௌ െ ܴ ଵܲ

ேூௌ 						݂݅				ܴ ଵܲ
ேூௌ ൑ ܴ ଵܲ ൑ ܴ ଵܲ

௉ூௌ

0																݂݅				ܴ ଵܲ ൏ ܴ ଵܲ
ேூௌ

 (28)

ሻݔଶሺߤ ൌ

ە
ۖ
۔

ۖ
ۓ 1														݂݅				ܴ ଶܲ ൏ ܴ ଶܲ

௉ூௌ

ܴ ଶܲ
ேூௌ െ ܴ ଶܲ

ܴ ଶܲ
ேூௌ െ ܴ ଶܲ

௉ூௌ 					݂݅				ܴ ଶܲ
௉ூௌ ൑ ܴ ଶܲ ൑ ܴ ଶܲ

ேூௌ

0								 						݂݅				ܴ ଶܲ ൐ ܴ ଶܲ
ேூௌ

 (29)

 
Step 4. Convert the robust counterpart of the DNCLSCQ model into an equivalent single-objective 
MILP model using the following aggregation function proposed by Torabi and Hassini (2008):  

ݔܽ݉ ሻݔሺߣ ൌ ଴ߣߛ ൅ ሺ1 െ ௛ߠሻ෍ߛ
௛

 ሻݔ௛ሺߤ

.ݏ ଴ߣ			.ݐ ൑ ,	ሻݔ௛ሺߤ ݄ ൌ 1, 2 

(30) 
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,	ܺ	߳	ݔ	  ሾ0,1ሿ	߳	଴ߣ	݀݊ܽ	ߛ

 
where ܺ is the feasible region including all constraints of the robust counterpart of the DNCLSCQ 
model, ߤ௛ሺݔሻ and ߣ଴ ൌ ݉݅݊௛ሼߤ௛ሺݔሻሽ denote the satisfaction degree of hth objective function and the 
minimum satisfaction degree of objectives, respectively. Also, ߠ௛ and ߛ denote the relative importance 
of hth objective function and the coefficient of compensation, respectively (∑ ௛ߠ ൌ 1, ௛ߠ ൐ 0௛ ). 
Parameter ߛ controls the minimum satisfaction level of objectives as well as the compromise degree 
among the objectives implicitly, so the DM can reach balanced and unbalanced compromised solutions 
by adjusting the values of ߛ and ߠ௛. 
 
Step5.Given the values of ߛ ,ߩ and ߠ, solve the single-objective (30). If the DM is satisfied with the 
current solution, stop; otherwise change the value of some controllable parameters such as ߩ and ߛ 
(also ߠ, if necessary) and provide other compromised solutions, and go back to step 1. 
 
5. Computational results  
 

To illustrate the performance of the DNCLSCQ model and its robust counterpart, several numerical 
experiments are solved and the related results are reported in this section. To this aim, a test problem is 
considered under three different uncertainty levels (i.e., ߩ ൌ 0.1, 0.2, 0.3). Under each uncertainty 
level, five random realizations are uniformly generated in the corresponding uncertainty set (i.e., ~ 
[nominal value	െܩ•ߩ•, nominal value	൅ܩ•ߩ•] to evaluate the solutions obtained by the proposed 
deterministic and robust DNCLSCQ model. 
 

Table 1 
The sources of random generation of the nominal data 
Parameters   Values Parameter Values 
݂   ~ Uniform (85000, 120000) ݖܿ ~ Uniform (1200, 1500)
݃   ~ Uniform (21000, 35000) ߨ ~ Uniform (150, 200)
݄   ~ Uniform (17000, 25000) ݀ ~ Uniform (400, 800)
Uniform (85000, 100000) ~   ݓܿ ݎ ~ Uniform (0.4, 0.55)
Uniform (80000, 110000) ~   ݕܿ ݏ ~ Uniform (0.1, 0.3)
Uniform (40000, 55000) ~   ݎݕܿ ܿ, ߮, ܽ, ܾ, ,ߦ ݁, ,ߪ ,݌ ,ܶܵܥ ߜ ~ Uniform (20, 35)

 
Nominal data are randomly generated using random distributions specified in Table 1. The uncertainty 
levels for uncertain parameters are assumed to be the same (i.e., ߩగ ൌ ௖ߩ ൌ ఝߩ ൌ ௔ߩ ൌ ௕ߩ ൌ కߩ ൌ
௘ߩ ൌ ఙߩ ൌ ௣ߩ ൌ ௥ߩ ൌ ௗߩ ൌ ஼ௌ்ߩ ൌ ߩ) ఋ) and for the deterministic modelߩ ൌ 0). To assess both 
deterministic and robust models, two measures are utilized: mean and standard deviation of objective 
functions under realizations. The results under realizations and on the basis of ߠ ൌ 0.5 and ߛ ൌ 0.9 are 
shown in Table 2. It is noteworthy that the models are solved in Lingo 11 optimization software. As 
Table 2 shows, the robust model results in solutions with lower standard deviations for all values of 
uncertainty levels. Due to the risk-averse nature of hard worst case robust programming (HWRP), the 
HWRP approach provides maximum safety or immunity against uncertainty. This conservative 
approach imposes costs on the model, which decreases the amount of profit, so the solutions of this 
approach have lower quality when compared with the deterministic model. As mentioned in section 
3.3, when small fluctuations in uncertain parameters will impose high costs on the model, HWRP 
approach is applied. Sensitivity analysis is conducted on the rate of return and basis of ߠ ൌ 0.5 and ߛ ൌ
0.9 to assess the behavior of the queueing system variables (i.e., arrival and service rates) under 
uncertainty and the results are depicted in Figs. 1 and 2. 
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Table 2 
Summary of test results under realizations (ߠ ൌ ߛ ,0.5 ൌ 0.9) 

test problem 
|I|*|J|*|K|*|L|*|M| 

Uncertainty 
level (ρ) 

Mean of objective values under realizations   
Standard deviation of objective values 

under realizations 
Deterministic [(RP1;μ1), 

(RP2;μ2)] 
  

Robust [(RP1;μ1), 
(RP2;μ2)] 

  
Deterministic 

[RP1;RP2] 
  

Robust [RP1; 
RP2] 

5*3*10*3*2 

0.1 
[(139112146; 1), 

(149948.3; 1)] 
  

[(120341435; 0.999), 
(151456.23; 1)] 

  
[3619765.12; 
151098.38] 

  
[1778965.84; 
101219.51] 

0.2 
[(130924379; 1), 
(152348.92; 1)] 

  
[(111561253; 1), 
(153134.58; 1)] 

  
[4002897.95; 
160098.87] 

  
[1934521.3; 
125346.64] 

0.3 
[(128435103; 1), 

(158976.21; 0.999)] 
  

[(99987629; 1), 
(161253.87; 0.999)] 

  
[5148812.43; 
182361.65] 

  
[2201129.78; 
139127.54] 

 
Fig. 1 shows that with increase in the amount of mean rate of return the total arrival rate of the 
queueing system is increased; this implies that, either the number of servers or the service rate in the 
queueing system should be increased. 

 

 

Fig. 2. Total arrival rate vs. mean rate of return 

The DNCLSCQ model decides how to determine the capacity of recovery centers in order to control 
consistency of the queueing system, appropriately. As depicted in Fig. 2, with increase of the rate of 
return, the total capacity of recovery centers is increased, which means that the DNCLSCQ model 
allocates more capacity to the recovery centers or establishes new recovery centers to control the 
consistency of the queueing system. 

 

 

Fig. 3. Total capacity of recovery centers vs. mean rate of return 
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6. Conclusions and future researchers  
 
To respond the need for capacity determination, this paper has proposed a De Novo-based closed-loop 
supply chain model, which considers the effects of establishing a queueing system in each recovery 
center. Due to the uncertain nature of the parameters in reverse channel of the closed-loop supply chain 
as well as the responsiveness of recovery centers to handle the input products from various suppliers, 
incoming products to these centers may wait in a queue to receive service. A queueing system will 
impose costs (e.g. handling) on the supply chain. From the managerial point of view, a balance between 
the queueing system costs and fixed costs due to the capacity expansions should be established. De 
Novo programming has determined the capacity of recovery centers in such a way that maximum profit 
together with the minimum queueing and fixed costs could be obtained. We also developed the robust 
counterpart of this model to cope with the uncertainty of the parameters. To solve the proposed 
nonlinear bi-objective model, the convexity of the nonlinear objective function was first proved in 
order to accept the local solution of the nonlinear model as global one, and then to cope with the bi-
objective model an interactive fuzzy programming approach named TH method has been integrated 
with robust programming. Numerical results from a test problem have shown that the robust model had 
better performance in determining the capacity of recovery centers when compared with the 
deterministic model. To the best of our knowledge, this paper is one the primary works utilizing the De 
Novo programming approach in the literature of closed-loop supply chains, so there are several 
possible future research directions in this area. For example, integrating the economic and social 
aspects into the model, and utilizing more flexible robust programming may be attractive for the 
researchers. 
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Appendix A 
 
According to Bazara et al. (2006), we perform elementary Gauss-Jordan operations using the rows of 
hessian matrix (26b) to reduce it to the following matrix:  
 

ܪ ൌ

ۏ
ێ
ێ
ێ
ۍ

ܿଶ݈݅݊
ሺ݈݅݊ െ ሻଶݔ

0

0
െ2ܿݔ

ሺ݈݅݊ െ ሻଷݔ
൅
ܿଷݔሺ݈݅݊ െ ሻݔ ൅ ଶܿଶݔ2

ܿଶ݈݅݊ሺ݈݅݊ െ ሻସݔ ے
ۑ
ۑ
ۑ
ې

 (A.1) 

 
Since ܪଵଵ ൒ 0, if we prove that ܪଶଶ ൒ 0, matrix H will be positive semidefinite (Bazara et.al., 2006). 
 
െ2ܿݔ

ሺ݈݅݊ െ ሻଷݔ
൅
ܿଷݔሺ݈݅݊ െ ሻݔ ൅ ଶܿଶݔ2

ܿଶ݈݅݊ሺ݈݅݊ െ ሻସݔ
ൌ
െ2ܿଷ݈݊݅ݔଶ ൅ 2ܿଷݔଶ݈݅݊ ൅ ܿଷ݈݊݅ݔ െ ܿଷݔଶ ൅ 2ܿଶݔଶ

ܿଶ݈݅݊ሺ݈݅݊ െ ሻସݔ
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Considering ݈݅݊ െ ݔ ൐ 0 we have: 
 
ܿଶݔሺܿሺ݈݅݊ ൅ ሻ݈݊݅ݔ2 ൅ ݔ2 െ ܿሺݔ ൅ 2݈݅݊ଶሻሻ

ܿଶ݈݅݊ሺ݈݅݊ െ ሻସݔ
൒
ܿଶݔሺܿሺݔ ൅ ଶሻݔ2 ൅ ݔ2 െ ܿሺݔ ൅ ଶሻሻݔ2

ܿଶ݈݅݊ሺ݈݅݊ െ ሻସݔ
 

൒
ܿଶݔሺ2ݔሻ

ܿଶ݈݅݊ሺ݈݅݊ െ ሻସݔ
൒ 0 

 
so ܪଶଶ ൒ 0 and subsequently H is positive semidefinite.  
 


