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 In this paper, we consider the inventory model for perishable items with quadratic trapezoidal 
type demand rate, that is, the demand rate is a piecewise quadratic function under constant 
deterioration rate. The model consider allows for shortages and the demand is partially 
backlogged. The model is solved analytically by minimizing the total inventory cost. The result 
is illustrated with numerical example. Finally, we discuss sensitivity analysis for the model. 
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1. Introduction  
 
 

Deteriorating items are very common issue in our daily life circumstances. In recent years, many 
researchers have studied inventory models for deteriorating items, however, academia has not reached a 
consensus on the definition of the deteriorating items. According to Wee (1993), deteriorating items 
refers to the items that become decayed, damaged, evaporative, expired, invalid, devaluation and so on 
through time. According to the definition, deteriorating items can be classified into two categories. The 
first category refers to the items that become decayed, damaged, evaporative, or expired through time, 
like meat, vegetables, fruit, medicine, flowers and so on; the other category refers to the items that lose 
part or total value through time because of new technology or the introduction of alternatives, like 
computer chips, mobile phones, fashion and seasonal goods and so on. The inventory problem of 
deteriorating items was first studied by Whitin (1957), he studied fashion items deteriorating at the end 
of the storage period. Then, Ghare and Schrader (1963) concluded in their study that the consumption of 
the deteriorating items was closely relative to a negative exponential function of time. Various authors 
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such as Deng et al. (2007), Cheng and Wang (2009), Cheng et al. (2011) and Hung (2011) studied 
inventory models for deteriorating items in various aspects. 
In world business market, demand has been always one of the most key factors in the decisions relating 
to the inventory and production activities. There are mainly two categories demands in the present 
studies, one is deterministic demand and the other is stochastic demand. Various formations of 
consumption tendency have been studied, such as constant demand (Padmanabhan & Vrat, 1990; Chung 
& Lin, 2001; Benkherouf et al., 2003; Chu et al., 2004), level-dependent demand (Giri & Choudhuri, 
1998; Chung et al., 2000; Bhattacharya, 2005; Wu et al., 2006), price dependent demand (Wee & Law, 
1999; Abad, 1996, 2001), time dependent demand (Resh et al., 1976; Henery, 1979; Sachan, 1984; Dave, 
1989; Teng, 1996; Teng et al., 2002; Skouri & Papachristos, 2002; Panda et al., 2012; Sett et al., 2013; 
Mishra et al., 2013) and time and price dependent demand (Wee, 1995). Among them, ramp type demand 
is a special type of time dependent demand. Hill (1995), one of the pioneers, developed an inventory 
model with ramp type demand that begins with a linear increasing demand until to the turning point, 
denoted as  , proposed by previous researchers, then it becomes a constant demand. There has been a 
movement towards developing this type of inventory system for minimum cost and maximum profit 
problems. Several authors: Mandal and Pal (1998) focused on deteriorating items. Wu et al. (1999) were 
concerned with backlog rates relative to the waiting time. Wu and Ouyang (2000) tried to build an 
inventory system under two replenishment policies: starting with shortage or without shortage. Wu 
(2001) considered the deteriorated items satisfying Weibull distribution. Giri et al (2003) dealt with more 
generalized three parameter Weibull deterioration distribution. Deng (2005) extended the inventory 
model of Wu et al. (1999) for the situation where the in-stock period is shorter than  . Manna and 
Chaudhuri (2006) set up a model where the deterioration is dependent on time. Panda et al. (2007) 
constructed an inventory model with a comprehensive ramp type demand. Deng et al. (2007) contributed 
to the revision of Mandal and Pal (1998), and Wu and Ouyang (2000). Panda et al. (2008) examined the 
cyclic deterioration items. Wu et al. (2008) studied the maximum profit problem with the stock-
dependent selling rate. They developed two inventory models all related to the conversion of the ramp 
type demand, and then examined the optimal solution for each case. However, in a realistic product life 
cycle, demand is increasing with time during the growth phase. Then, after reaching its peak, the demand 
becomes stable for a finite time period called the maturity phase. Thereafter, the demand starts decreasing 
with time and eventually reaching zero or constant. 
 
In this work, we extend Hill’s ramp type demand rate to quadratic trapezoidal type demand rate. Such 
type of demand pattern is generally seen in the case of any fad or seasonal goods coming to market. The 
demand rate for such items increases quadratic-ally with the time up to certain time and then ultimately 
stabilizes and becomes constant, and finally the demand rate approximately decreases to a constant, and 
then begins the next replenishment cycle. We think that such type of demand rate is quite natural and 
useful in real world market situation. One can think that our work may provide a solid foundation for the 
future study of this kind of important inventory models with quadratic trapezoidal type demand rate. 
 

2. Assumption and notations 

The fundamental assumption and notations used in this paper are given as follows: 
(1) The demand rate, R(t), which is positive and consecutive, is assumed to be a quadratic trapezoidal 

type function of time, that is 
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Chose a1, b1, c1, a2, b2 and c2 such a way that 2
222 tctba   should not be negative for Tt 2 . where 

1  is the time point changing from the increasing quadratic demand to constant demand, and 2 is the 
time point changing from the constant demand to the decreasing demand. 
 
(2) Replenishment rate is infinite, thus replenishment is instantaneous. 
(3) I(t) is the inventory level at any time t, Tt 0 . 
(4) T is the fixed length of each ordering cycle. 
(5)   is the constant rate of deterioration, 10  . 
(6) t1 is the time when the inventory level reaches zero. 
(7) t1

* is an optimal point. 
(8) k0 is the fixed ordering cost per order. 
(9) k1 is the cost of each deteriorated item. 
(10) k2 is the inventory holding cost per unit per unit of time. 
(11)  k3 is the shortage cost per unit per unit of time. 
(12)  S is the maximum inventory level for the ordering cycle, such that S=I(0). 
(13)  Q is the ordering quantity per cycle. 
(14)  A1(t1) is the average total cost per unit time under the condition 11 t . 

(15)  A2(t1) is the average total cost per unit time, for 211   t . 

(16)  A3(t1) is the average total cost per unit time, for Tt  12 . 
 

3. Mathematical and theoretical results 
 
Here, we consider the deteriorating inventory model where demand rate is trapezoidal type quadratic 
function. Replenishment occurs at time t =0 when the inventory level attains its maximum. For ],0[ 1tt
, the inventory level reduces due to both demand and deterioration. At time t1, the inventory level reaches 
zero, then shortage is allowed to occur during the interval (t1, T), and all of the demand during the 
shortage period (t1, T) is completely backlogged. The total amount of backlogged items is replaced by 
the next replenishment. The rate of change of the inventory during the stock period [0, t1] and shortage 
period (t1, T) is governed by the following differential equations: 
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(2) 
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,  Ttt 1 , 

(3) 

with boundary condition I(0)=S and I(t1)=0. One can think about t1, t1 may occur within ],0[ 1  or 

],[ 21   or ],[ 2 T . Hence in this paper we are going to discuss all three possible cases. 
 
Case 1: 110  t  
 
The quadratic trapezoidal type market demand and constant rate of deterioration, the inventory level 
gradually diminishes during the period [0, t1] and ultimately reaches to zero at time t=t1. Then, from Eq. 
(2) and Eq. (3), we have 
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0
)(

0  R
dt

tdI
,  21   t  

(6) 

0
)( 2

222  tctba
dt

tdI
,  Tt 2  

(7) 

 
Now solving the differential Eqs. (4-7) with the condition I(t1)=0 and continuous property of I(t), we get 
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The beginning inventory level can be computed as  
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The total number of items which is perish in the interval [0, t1], say DT, is 
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The total amounts of inventory carried during the interval [0, t1], say CT, is 
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The total shortage quantity during the interval [t1, T], say BT, is 
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The average total cost per unit time for 110  t is given by 
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The total back order amount at the end of the cycle is follows, 
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Therefore, the optimal order quantity, denoted by *Q , is 1
**  SQ , where *S  denote the optimal 

value of S. 
 
Case-II, 211   t  
 
For the time period ],[ 211 t , then, the differential equations governing the inventory model can be 
expressed as follows: 
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Solving differential Eq. (22-25), using I(t1)=0, we get 
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The total amount of items which is perish within the time interval [0, t1] is 
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The total amount of inventory carried during the time interval [0, t1] is 
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The total amount of shortage during the interval [t1, T] 
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Now, the average total cost per unit time under the condition 211   t , can be obtained as 
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The first order derivative of )( 12 tA with respect to 1t is given by 
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The required necessary condition for )( 12 tA to be minimized is 0
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 , which implies that )( 1tp is strictly monotonically increasing 

function during the interval 211   t . 
 

Property-2 
 
 

The constant deteriorating rate of an inventory model with quadratic trapezoidal type demand function 
during the time interval 211   t , )( 12 tA attains its minimum at 1

*
1 t if 1

*
1 t  and )( 12 tA  attains 

its minimum at 2
*
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12 t . 
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Now, we can calculate the total amount of back-order quantity at the end of the cycle is 
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Therefore, the optimal order quantity denoted by *Q is 2
**  SQ , where *S denotes the optimal vale 

of S. 
 
Case-III Tt  12  
 
For the time interval ),[ 21 Tt  , then, the differential equations governing the inventory model can be 
expressed as follows: 
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Solving the differential Eqs. (39-42) with I(t1)=0, we can get 
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The total amount of inventory level at the beginning can be computed as 
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The total amount of items which is perish within the time interval [0, t1] is 
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The total amount of inventory carried during the time interval [0, t1] is 
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Total quantity of shortage during the time interval [t1, T] is 
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Then, the total average cost per unit time under the time interval Tt  12 , can be written as  
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The first order derivative of )( 13 tA with respect to 1t is as follows: 
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The required necessary condition for )( 13 tA to be minimized is 
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This implies that 
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function within the interval ],[ 21 Tt  . 
 
Property-3 
 
In this case, the inventory model under the condition Tt  12 , )( 13 tA attains its minimum at *

11 tt  , 

where 0)( *
1 tp if *

12 t . On the other hand, )( 13 tA  attains its minimum at 2
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1 t . Now, we 

can calculate the total back-order quantity at the end of the cycle is  
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Therefore, the optimal order quantity, denoted by *Q , is 3
**  SQ , where *S denotes the optimal 

value of S. From the above three cases, we can derive the following results 
 
Result-1 
 
An inventory model having constant deteriorating rate with quadratic trapezoidal type demand, the 
optimal replenishment time is *

1t  and )( 11 tA attains its minimum at *
11 tt   if and only if 1

*
1 t . On the 

other hand, )( 12 tA attains its minimum at *
11 tt   if and only if 2

*
11   t  and )( 13 tA attains its 

minimum at *
11 tt   if and only if *

12 t , where *
1t is the unique solution of equation 0)( 1 tp . 

 
Example 
 
We can consider suitable values of the following parameters as follows: T= 12 weeks, 1 = 4 weeks, 2
=10 weeks, a1= 100 unit, b1=5 unit, c1= 4 unit, a2= 220 unit, b2=10 unit, c2= 2 unit, 1.0 , k0=$200, 
k1= $3 per unit, k2=$10 per unit, k3=$4 per unit. Using the above data, we can find )( 1p =98.0951>0, 
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the optimal replenishment time *
1t =4.397 weeks, the optimal order quantity Q*, for each ordering cycle, 

is 4422.3465 unit and the minimum cost )( *
11 tA =$5848.1098   

 
Table 1 
Sensitivity analysis  

Paramete (%) t*
1 Q* A1(t1

*) Paramete (%) t*
1 Q* A1(t1

*)
 +50 4.82 4688.507 5546.2 +50 4.637 4547.5 5753.0
 +25 4.71 4616.024 5538.8  +25 4.592 4498.3 5742.4
 +20 4.67 4582.499 5536.2  +20 4.581 4485.6 5740.2

a1 +10 4.61 4536.084 5534.3  +10 4.558 4459.2 5735.8
 -10 4.43 4448.777 5527.3 c2 -10 4.522 4426.4 5725.7
 -20 4.28 4188.366 5523.2  -20 4.486 4403.5 5722.1
 -25 4.13 4117.554 5514.7  -25 4.471 4391.4 5719.6
 -50 3.99 3968.533 5541.4  -50 4.393 4333.1 5707.0
 +50 4.53 4549.407 5646.0 +50 4.748 4573.6 5865.2
 +25 4.5 4523.039 5634.9  +25 4.688 4495.6 5857.8
 +20 4.47 4474.111 5530.1  +20 4.566 4473.4 5851.3

b1 +10 4.42 4436.456 5525.3  +10 4.51 4422.3 5848.1
 -10 4.3 440.8903 5519.7 Ѳ -10 4.487 4379.8 5841.6
 -20 4.28 4385.378 5510.3  -20 4.417 4366.9 5835.3
 -25 4.21 4325.333 5499.8  -25 4.34 4359.8 5830.6
 -50 4.18 4300.178 5487.3  -50 4.319 4344.5 5823.1 
 +50 4.05 4665.328 5230.3 +50 3.57 3725.3 4955.6
 +25 4.29 4223.772 4886.8  +25 4.076 4057.7 4703.2
 +20 4.33 3943.030 4815.8  +20 4.294 4152.7 4677.2

c1 +10 4.42 3689.353 4675.3 k1 +10 4.375 4326.9 4605.4
 -10 4.74 3187.698 4387.0  -10 4.552 4560.3 4465.4
 -20 4.81 2931.327 4342.3  -20 4.664 4648.0 4397.6
 -25 5.27 2693.037 4367.8  -25 4.854 4702.0 4302.0
 -50 5.42 2114.598 4295.3  -50 4.908 4798.8 4195.0
 +50 4.94 4877.508 5916.9 +50 3.927 3744.7 4675.3
 +25 4.91 4803.015 5876.1  +25 3.832 3678.8 4614.2
 +20 4.88 4771.499 5842.5  +20 3.723 3635.4 4600.7

a2 +10 4.81 4726.773 5811.2 k2 +10 3.687 3548.8 4569.2
 -10 4.76 4710.000 5786.9  -10 3.613 3333.0 4485.1
 -20 4.68 4694.886 5774.5  -20 3.456 3186.2 4427.3
 -25 4.53 4617.663 5737.7  -25 3.341 3106.5 4392.8
 -50 4.47 4579.003 5689.1  -50 3.28 2537.8 4113.9 
 50 3.88 3778.544 5745.6 50 4.267 3823.4 4437.6
 25 4.38 4230.436 5682.3  25 3.883 3752.9 4485.3 
 20 4.44 4278.083 5622.8  20 3.826 3658.2 4492.0

b2 10 4.54 4375.889 5577.7 k3 10 3.652 3630.9 4512.7
 -10 4.62 4530.839 5484.8  -10 3.056 3577.4 4544.3
 -20 4.69 4580.458 5437.9  -20 2.866 3109.2 4564.3
 -25 4.73 4625.320 5412.2  -25 2.544 3014.6 4604.9
 -50 4.99 4673.683 5392.3  -50 1.987 2995.1 4687.3

 
In the above table some sensitivity analysis of the model is performed by changing the parameter -50%, 
-25%, -20%, -10%, +10%, +20%, +25% and +50% taking one at a time and keeping the remaining 
unchanged. 
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4. Conclusion  
 
In a realistic product life cycle, demand is increasing with time during the growth phase. Then, after 
reaching its peak, the demand becomes stable for a finite time period called the maturity phase. 
Thereafter, the demand starts decreasing with time. Therefore, in this paper, we have studied the 
inventory model for constant deteriorating items with quadratic trapezoidal demand rate. We have 
proposed an inventory replenishment policy for this type of inventory model. From the market 
information, we have found that the quadratic trapezoidal type demand rate was more realistic than ramp 
type demand rate, constant demand rate and other time dependent demand rate Our paper provides an 
interesting topic for the future study of such kind of important inventory models, and at the same time, 
the following problems can be considered for future research work (1) How about the inventory model 
starting with shortages? (2) How about the inventory model with time dependent deteriorating rate 
instead of constant deteriorating rate? 
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