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 Laser direct structuring (LDS) is very important step in the MID process and it is a complex 
process due to different parameters, which influence on this process and its final product. 
Therefore, it is very important to use a reliable model to predict, analyze and control the 
performance of the (LDS) process and the quality of the final product. In this work we develop 
mathematical models by using Artificial Neural Network (ANN) and Response Surface 
Methodology (RSM) to study this process. The proposed models are used to study the effect of 
the LDS parameters on the groove dimensions (width and depth), lap dimensions (groove lap 
width and height) and finally the heat effective zone (interaction width), which are important to 
determine the line width/space in the MID products and the metallization profile after the 
metallization step. We also study the relationship between the LDS parameters and the surface 
roughness which is very important factor for the adhesion strength of MID structures. Moreover 
these models capable of finding a set of optimum LDS parameters that provide the required 
micro-channel dimensions with the best or the suitable surface roughness. A set of experimental 
tests are carried out to validate the developed ANN and the RSM models. It has been found that 
the predicted values for the proposal ANN and RSM models were closer to the experimental 
values, and the overall average absolute percentage errors were 4.02 % and 6.52%, respectively. 
Finally, it has been found that, the developed ANN model could be used to predict the response 
of the LDS process more accurately than RSM model. 
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1. Introduction  
 

 
The MID process has received great attention in production of the electronic circuit board, due to the 
suitable quality, flexibility and accuracy for this process. Recently, the MID processes are focused on 
production of the more fine products or the smallest circuit lines and spaces in the circuit board. In fact, 
fine products depend on the quality of the micro channel or the groove after the LDS step, which depends 
on the groove dimensions (groove width and depth), groove lap dimensions (lap width and height) and 
finally the interaction width, which refers to the width of the circuit line, see Fig.1. All the above 
dimensions as well as the groove profile after the LDS process depend on the LDS parameters such as 
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laser power, laser speed and laser frequency (Bassim & Jörg, 2014; Bassim & Jörg, 2015). Another 
important requirement for the quality and reliability of the MID products is the adhesion strength of the 
MID structures. The adhesion force between the metallization and the substrate surface can be classified 
into two types of the chemical and mechanical adhesion and both these two types of adhesion are affected 
by the surface roughness, on the other hand, the surface roughness depends on the LDS parameters, 
(Hans, et al., 2005; Kim, et al., 2005). Moreover, it was found that the groove depth or ablation depth is 
a very important factor for the adhesion force (Horn et al., 1999). It is very important to mention that the 
LDS step is the key for producing the fine circuit line/space as well as the high quality and reliability for 
the MID structure. Artificial Neural Network (ANN) as well as the RAM methods have been used in 
different fields such as engineering, medicine, economic and others fields.  
 
Sofiane et al. (2003) and Abdoul-Fatah et al. (2009) used the ANN model for modeling the atmospheric 
plasma spraying (APS) process, which is a very important method in the coating process for different 
materials such as metallic, ceramic, polymer and composite materials. This model has been used to 
control the APS process and to study the effect of process parameters on the response such as deposited 
thickness per pass, coating properties and the influences on the in-service properties. 
 
 

  
 

 
Fig. 1. Laser process and the grove dimensions 

 

 
Arun and Avanish (2011) used a hybrid approach of Artificial Neural Network (ANN) and Fuzzy Logic 
(FL), Adaptive Neuron Fuzzy Inference System (ANFIS) as well as the Response Surface Methodology 
(RSM) for modeling of the laser cutting process for the thin sheet. The researchers used this method for 
predicting the kerf width (KW) and material removal rate (MRR) and, moreover, to study the effect of 
the laser parameters including the gas pressure, pulse width, pulse frequency and the cutting speed. The 
researchers found that the proposed models could be used for the prediction of kerf width and material 
removal rate in the laser cutting process.  
 
Pragya, et al. (2013) used the RSM and ANN modeling approaches for the wire electric discharge 
machining (WEDM) of SiCp/6061 Al metal matrix composite (Al MMC) to predict average cutting 
speed during this process. The researchers used this method to study the effective machining process 
parameters such as servo voltage (SV), pulse-on time (TON), pulse-off time (TOFF) and wire feed rate 
(WF), also these models were used to find the most important or effective parameters on the predicted 
average cutting speed. An ANN approach was developed to predict the CO2 laser cutting of the stainless 
steel process by Miloš, et al. (2013). This model was used to study the effect of process parameters such 
as specific laser energy, focus position and assist gas. The optimum cutting conditions were identified 
through the ANN proposal model. Miloš, et al. (2015) studied the same laser cutting process with the 
kerf taper angle obtained in CO2 laser cutting. The researchers used ANN method to propose a model to 
study the relationship between laser cutting parameters such as laser power, cutting speed, assist gas 
pressure and focus position, and kerf taper angle also the Monte Carlo method has been widely used to 
make an optimization for the process parameters. 
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Mohd et al. (2013) and Kalaiselvan et al. (2014) proposed the ANN in laser micro welding of thin steel 
sheet to describe the relationship between process parameters and weld bead geometry as well as to 
predict the weld bead geometry with a wide range of process parameters. The researchers also tested the 
accuracy of the proposal ANN model by comparing it with actual experimental data for the laser micro 
welding. The ANN and Multi Regression approaches have been used in another laser application which 
is the laser Heat-treatment for the 4340 Steel to increase the surface hardness by Ilyes et al. (2014). They 
proposed a model based on ANN and Multi Regression to predict the hardness profile and depth. These 
models also have been used to study the effect of process parameters and material properties on the 
surface hardness as well as to find the most important parameters in this process. The researchers 
concluded that the ANN and Multi Regression model could be used to simulate this process due to the 
good agreement with the experimental data. 
 
In the present work, a mathematical model based on ANN and RSM have been developed and 
implemented for modeling and optimization of LDS process. The proposal mathematical models can be 
used to simulate the nonlinear and interconnected systems (LDS process) and give an indication about 
the nonlinear relationship between the most important inputs laser parameters such as laser speed, laser 
power and laser frequency and the process response (outputs) which are groove dimensions (groove 
width and depth), lap dimensions (groove lap width and height), the heat effective zone (interaction 
width) and finally the surface roughness which is very important for the adhesion strength of MID 
structures. For all the above terms (Outputs) we will find a mathematical model as a function for the 
laser parameters (Inputs), furthermore the proposal models can be used to find or analyze the effect of 
each parameters and to suggest the optimum parameters. This will help to achieve the quality and 
reliability of the MID products moreover to reduce the effort as well as to save significant amount of 
materials wastage and cost for the requiring experimental tests for the MID process. 
 
2. Experimental Procedure and Details 
 
A set of experimental tests have been carried out in this work to study the effect of the inputs laser 
parameters on the mean outputs for the LDS process (response). A polymer plates of VESTAMID® HT 
plus LDS 3031 black, which is a mineral reinforced polyphthalamide (PPA) with glass fiber have been 
used in this experiments and the dimensions of these plates are 60×60×2 mm, this compound is designed 
to be used in the production of three dimensional interconnect devices by laser direct structuring, 
according to the LPKF LDS technology (Technical Information, Evonik Industries, 2014). The laser 
experiments were performed by a laser machine provided a Nd:YAG laser, the laser machine delivering 
a laser output power in range of from 1 to 17 W, wavelength of 10.6 μm, and the maximum laser 
frequency is 200 kHz . Different values of the LDS parameters have been used including the laser powers 
of 3, 6, 9 and 12 W, laser speeds of 1000, 1300, 1600, 1900 and 2200 mm/s and finally the laser 
frequencies of 70, 90, 110 and 130 kHz. According to the above process parameters, the total numbers 
of the experimental tests, which have been carried out in this work are 80. 3D Laser Scanning Microscope 
(Keyence), have been used to examine the laser effect on the surface of the polymer and measure the 
effective outputs for the LDS process, including the groove dimensions, lap dimensions, interactive 
width, and the surface roughness (Ra), see Table 1. 
 

 

 

 

 

 

 



556  

    

Table 1 
The LDS inputs parameters and the experimental measurements for the LDS outputs 

 

Test 
No. 

Laser Parameters Responses Test 
No. 

Laser 
Parameters Responses 

P V F D W L.W L.H I.W.Z Ra P V F D W L.W L.H I.W.Z Ra 
 W m/s kHz µm µm µm µm µm µ

 
 W m/s kHz µm µm µm µm µm µm 

1 3 1 70 6.84 33.4 20.9
 

4.4
 

75.3 3.
 

41 9 1 70 25.6 62.7 30.2
 

7.25 123.2
 

5.2
 2 3 1 90 6.09 30.2

 
20.4

 
4.6

 
71.16 2.

 
42 9 1 90 18.1

 
54.5 32.9 8.68 120.3 4.3 

3 3 1 11
 

5.57 27.5 21.4
 

5.1
 

70.4 2.
 

43 9 1 11
 

19.1 53.4
 

30.5 11.1
 

114.4
 

3.5
 4 3 1 13

 
5 24.7 20.5

 
5.4

 
65.85 1.

 
45 9 1 13

 
19.0

 
50.1

 
30.6

 
11.0

 
111.4

 
3.3

 5 3 1.3 70 6.05 30 21.1 4 72.2 3.
 

44 9 1.3 70 17.6
 

59.2 18.9 5.63 97 5.3
 6 3 1.3 90 4.08 25.3 22.1

 
4.2 69.52 2.

 
46 9 1.3 90 17.1

 
51.8

 
22.4

 
6.16 96.7 4.3

 7 3 1.3 11
 

3.61 24.4
 

20.9 4.3 66.25 2.
 

47 9 1.3 11
 

16.9
 

49.6
 

22.6
 

6.8 95 4.2
 8 3 1.3 13

 
3.17 17 21.2

 
4.3

 
59.55 2.

 
48 9 1.3 13

 
17.6

 
47.5

 
22.7

 
6.75 93 3.9

 9 3 1.6 70 4.45 25.5 19.0
 

2.3
 

63.55 3.
 

49 9 1.6 70 14.6
 

57.5 14.4
 

3.1 86.4 5.4
 10 3 1.6 90 2.46 20 20.7

 
2.7

 
61.55 2.

 
50 9 1.6 90 15.0

 
49.3 16.4

 
3.48 82.21 4.8

 11 3 1.6 11
 

2.41 19 20.9 3.3 60.8 2.
 

51 9 1.6 11
 

14.5
 

48 17 4.1 82 4.6
 12 3 1.6 13

 
0 0 27.7

 
4.5 55.44 1.

 
52 9 1.6 13

 
13.4

 
45.5

 
17.2

 
5.4 80 3.9

 13 3 1.9 70 3.32 23.2
 

18.9
 

2.0
 

61.11 4.
 

53 9 1.9 70 11.7 54.3
 

13.3
 

2.43 81.05 5.5 
14 3 1.9 90 2.3 19 18 1.5

 
55 2.

 
54 9 1.9 90 11.7

 
48.3 14.7 2.6 77.7 4.6

 15 3 1.9 11
 

2.38 18 18 2.9
 

54 2.
 

55 9 1.9 11
 

12.8 47 14 3.82 75 4.7
 16 3 1.9 13

 
0 0 26.6 4.6

 
53.2 1.

 
56 9 1.9 13

 
12.5 44.4 14.8 4.54 74 4.2

 17 3 2.2 70 2.9 21.7 18.7
 

1.6 59.25 4.
 

57 9 2.2 70 9.93 52.4 10.4 1.6 73.2 5.5 
18 3 2.2 90 2.36 18 17.0

 
1.4

 
52.1 3.

 
58 9 2.2 90 9.37 46.4 13.0

 
2 72.55 4.3

 19 3 2.2 11
 

2.18 17.5 16.1
 

2.4 49.85 2.
 

59 9 2.2 11
 

10.7
 

45 13.1
 

2.67 71.3 4.9
 20 3 2.2 13

 
0 0 24.2

 
4.8 48.5 2.

 
60 9 2.2 13

 
10.5

 
43.6 13.7 3.12 71 4.3

 21 6 1 70 17.3
 

56.3 15.7
 

5.7
 

87.8 4.
 

61 1
 

1 70 27.4 70.5
 

35.9
 

7.5 142.4
 

5.3
 22 6 1 90 16.5

 
49.4

 
16.9

 
5.4

 
83.4 3.

 
62 1

 
1 90 27.1

 
64.8 35.2

 
10.8

 
135.2

 
4.6 

23 6 1 11
 

16.4
 

46.2 18.0
 

7.2 82.35 3.
 

63 1
 

1 11
 

28.7
 

59.4
 

37.2
 

13.8
 

134 4.8 
24 6 1 13

 
13.1

 
44 18.6

 
8.3 81.35 2.

 
64 1

 
1 13

 
28.8

 
59 37 15.9

 
133 4 

25 6 1.3 70 14.9 54.5 12.3
 

5 79.2 4.
 

65 1
 

1.3 70 18.8
 

64.6 35.3 6.03 135.2 5.1
 26 6 1.3 90 12.8 42.6 17.3

 
4.7

 
77.22 4.

 
66 1

 
1.3 90 22.0

 
62.2

 
29.1

 
7.6 120.6 5.1

 27 6 1.3 11
 

13.5
 

41.6 17.2 5.9
 

76 3.
 

67 1
 

1.3 11
 

24.3
 

55.6 30.4
 

9.95 116.5 5.1
 28 6 1.3 13

 
10.9

 
36.3 19.3

 
6.1 75 3.

 
68 1

 
1.3 13

 
22.9

 
54 30.4

 
11.3

 
114.8

 
4.6

 29 6 1.6 70 10.9 50 13 2.7 76 4.
 

69 1
 

1.6 70 14.6
 

61.3
 

31.5
 

5.2 124.4 5.4
 30 6 1.6 90 11.1

 
40.2 17.3

 
2.6 74.94 4.

 
70 1

 
1.6 90 19.8

 
55.1 30.5

 
5.56 116.1

 
6.2

 31 6 1.6 11
 

11.1
 

39.5
 

16.9
 

3.8
 

73.5 4.
 

71 1
 

1.6 11
 

19.1
 

51.9
 

29.2
 

6.31 110.3
 

5.9
 32 6 1.6 13

 
9.4 34.6 18.9

 
5 72.5 3.

 
72 1

 
1.6 13

 
20.4 51 32.7

 
8.83 116.4

 
4.8

 33 6 1.9 70 8.8 45.4
 

12.4
 

2 70.37 5.
 

73 1
 

1.9 70 11.7
 

57.4 27.4
 

3.21 112.3
 

5.9 
34 6 1.9 90 7.75 38.1

 
15.2

 
2.1

 
68.65 4.

 
74 1

 
1.9 90 15.0

 
52.2 28.2 4.5 108.6 6.2

 35 6 1.9 11
 

9.8 37.4 15.0
 

3.2
 

67.5 4.
 

75 1
 

1.9 11
 

17.1
 

49.7
 

27.7
 

5.67 105.2 6.1
 36 6 1.9 13

 
8.47 34 16.2

 
3.7 66.5 3.

 
76 1

 
1.9 13

 
16.3 48.4 31.4

 
6.57 111.3

 
4.9

 37 6 2.2 70 6.87 40 13.7
 

1.6
 

67.5 5.
 

77 1
 

2.2 70 9.96 54 23.7
 

2.63 101.4
 

5.5 
38 6 2.2 90 5.71 33.7

 
16.3

 
2.1 66.36 4.

 
78 1

 
2.2 90 11.5

 
48.7 23.5

 
2.75 95.8 5.4

 39 6 2.2 11
 

7.5 31.4 16.0
 

2.7
 

63.5 4.
 

79 1
 

2.2 11
 

11.0
 

46.4 22.4
 

3 91.33 5.1
 40 6 2.2 13

 
8.03 26 17.6

 
3.2

 
61.25 4.

 
80 1

 
2.2 13

 
14.6 44.3 24.3

 
3.47 93 5.7

 
 

3. Mathematical Models  
3.1. The RSM Model 
Response surface methodology (RSM) is a mixed of mathematical and statistical tools that is powerful 
to predict and model the response or the outputs for any process which is affected by a number of input 
variables parameters. The RSM method also can be used to describe the relationship between the 
response and the input variable moreover to determine the effect of each parameter on the output 
response. In general the response surface can be expressed as follows, (Andre et al., 2010; Ying, 2011): 
 

Y = f ( P, V, F ),  (1) 
 
where Y represents the response (output) for the LDS process, P is the laser power (W), V is the laser 
speed (mm/s) and F is the laser frequency (kHz). Usually a second order polynomial equation can be 
used to represent response surface for the input factors as follows: 
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Y = 𝑏𝑏0 + � 𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖2
𝑛𝑛
𝑖𝑖=1 + � 𝑏𝑏𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2

𝑛𝑛
𝑖𝑖=1 + � 𝑏𝑏𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
𝑥𝑥𝑗𝑗 + 𝜀𝜀,    (2) 

 
where b0 is a constant of the regression equation, the coefficients, 𝑏𝑏𝑖𝑖, are linear terms, the coefficients 
𝑏𝑏𝑖𝑖𝑖𝑖, are quadratic terms and the coefficients 𝑏𝑏𝑖𝑖𝑖𝑖  are interaction terms. The above second order response 
model can be expressed as follows:- 
 

 Y = 𝑏𝑏0 + 𝑏𝑏1𝑃𝑃 + 𝑏𝑏2𝑉𝑉 + 𝑏𝑏3𝐹𝐹 + 𝑏𝑏11𝑃𝑃2 + 𝑏𝑏22𝑉𝑉2 + 𝑏𝑏33𝐹𝐹2 + 𝑏𝑏12𝑃𝑃𝑃𝑃 + 𝑏𝑏13𝑃𝑃𝑃𝑃 + 𝑏𝑏23𝑉𝑉𝑉𝑉 + 𝜀𝜀 (3) 
 
The Eq. (3) can be used to determine the response equation for the LDS outputs which are the groove 
depth (G.D), groove width (G.W), lap width (L.W), lap height (L.H), interactive width zone (I.W.Z) and 
surface roughness (Ra).  
 
3.2. The ANN Model 
 
ANN model has been used to propose a mathematical model in many different fields, which is a 
computational model inspired by biological nervous systems. The ANN was selected for this work 
because of its ability to model the non-linear system. In this method, we have a set of procedures as 
shown in Fig. 2, which shows the mean steps for the ANN methods (Margarita, 2002; Uğur, 2004). In 
the first step the input and the target or the output data must be defined, in this work, the inputs to the 
neural networks are the numeric of significant parameters such as laser power, laser speed and finally 
laser frequency. These inputs influence on the LDS outputs such as groove profile, the groove 
dimensions, lap dimensions, interactive width and the surface roughness (Ra), see Table 1. 
 
One of the most important and difficult steps in the ANN modeling is the structure or the architecture. 
Fig.3 shows the neural network architecture employed in this work, this architecture consists of three 
layers: first layer is the input layer, which represents the input vector, the output from each neuron in 
the input layer can be represents by wxyxi where wxy represents the weight associated with the connection 
between the processing element (inputs factor) 𝑥𝑥𝑖𝑖, and the processing element 𝑗𝑗𝑛𝑛. The second layer is 
the hidden layer which receives the signals from the processing elements layer as well as the bias 
function, Eq. (4) shows the net input to the each neuron in the hidden layer. 
 

𝐼𝐼𝑗𝑗𝑗𝑗 =  �𝑤𝑤𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖

3

𝑖𝑖=1

+ 𝑥𝑥𝑜𝑜, (4) 

 
where wxy is the weight from the input layer to hidden layer and xo is the bias for the input layer. The 
actual output in the hidden layer is calculated by applying the sigmoid activation function to activate 
each neuron (Uğur, 2004), see Eq. (5). 
 
𝑦𝑦𝑖𝑖  = 𝑓𝑓�𝐼𝐼𝑗𝑗𝑗𝑗� = 1

1+𝑒𝑒−(𝐼𝐼𝑗𝑗𝑗𝑗)
 , (5) 

 
The output layer is the final layer, and it is received in neuron k the outputs of the hidden and input 
layers as well as the bias for the input and hidden layer (b1) and (b2) respectively, see Eq. (6). 
 

𝐼𝐼𝑧𝑧𝑧𝑧 =  �𝑤𝑤𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖

3

𝑖𝑖=1

+ 𝑥𝑥𝑜𝑜 + �𝑤𝑤𝑦𝑦𝑦𝑦𝑦𝑦𝑗𝑗

𝑛𝑛

𝑗𝑗=1

+ 𝑦𝑦𝑜𝑜, (6) 
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where n is the numbers of neurons in the hidden layer and wyz is the weight from the hidden layer to 
output layer and yo is the bias for the hidden layer. By applying the same sigmoid function as applied 
for hidden layer, the actual output in the output layer is calculated by using Eq. (7). 
 
𝑧𝑧 = 𝑓𝑓(𝐼𝐼𝑧𝑧𝑧𝑧)  (7) 

 
The training process for the ANN model is the next step to find the sets of weight values that can match 
the designed network output with the actual target values. Next, the error between desired values and 
the output value of the network is computed for each output neuron. The other steps for the ANN model 
can be seen in the Fig.2. 
 

                                
 
                             Fig. 2. Steps of ANN modeling        Fig. 3. Architecture for the ANN model 
 
4. Results and Discussion 
4.1. The RSM mathematical model. 
The mathematical models, which correlate the considered input LDS process parameters and the 
measured responses such as surface roughness, interactive width, groove depth and width, and lap depth 
and height, have been developed based on the RSM technique. The final equations for the above 
responses have been predicated by calculating the coefficients of the polynomial equation for the 
responses in Eq. (2). These coefficients give an indication about the effect for each LDS parameters on 
the process response. Table 2 shows the coefficients for all process responses. 
 
Table 2 
The coefficients for all process responses 

 Ra (µm) I.W.Z (µm) G.W (µm) G.D (µm) LH (µm) LW (µm) 
Cons(bo) 3.434 130.246 56.11 16.55 8.371 37.06 

P(b1) 0.370 3.577 9.089 3.692 0.374 -2.756 
V(b2) 0.002 -0.042 -0.024 -0.015 -0.007 -0.009 
F (b3) -0.050 -0.577 -0.405 -0.108 -0.007 -0.086 

P2(b11) -0.023 0.409 -0.454 -0.101 0.036 0.431 
V2(b22) -6.5E-7 9.00E-6 3.9E-6 3.10E-6 2.7E-6 2.5E-6 
F2 (b33) 3.4E-5 0.002 0.001 0.000 0.000 0.001 
PV(b12) 2.5E-5 -0.002 0.000 -0.001 -0.001 -0.001 
PF(b13) 0.002 -0.001 0.013 0.012 0.004 -0.007 
VF(b23) 4.6E-6 4.97E-5 -1.58E-5 4.37E-5 -2.3E-5 3.2E-5 

 
Table 2 shows the coefficient for each process parameters referred to the effect of these parameters on 
the final process response. For example, in the developed model for the interactive width, it can see from 
this table that the b1>b3>b11>b2>(b33=b12)>b13 so that the laser power is the first and most the 

Response 
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effective parameter, the frequency is the second and the laser speed is the third effective parameter. The 
validity of these models has been checked through 80 confirmation experiments and it is observed that 
the developed RSM model could predict the responses satisfactorily as average percentage of prediction 
errors for interactive width and the groove depth are 3.94% and 4.55%, while these errors for the others 
responses were 6.74%, 7.25%, 7.9% and 8.76 % for the Groove depth, surface roughness, lap width and 
finally lap height respectively. The overall errors percentage was 6.52%. 
 
4.2. The ANN Mathematical Model. 
In the ANN proposal model, 80 experimental tests were used for training the ANN by using MATLAB 
R2014a and IBM SPSS 22 software. The number of the neurons in the input layer is 3: one hidden layer 
as well as one neuron at the output layer for calculating the process response. It was found that the 
numbers of the neurons in the hidden layer were different depending on the process response. The 
developed ANN model have been used to find the final equations for each process response (by using 
equations 4 to 7), as well as to find the importance of each process parameters. Table 3 shows the 
importance of the LDS parameters for each process response as well as the best ANN architecture for 
the developed models. 
 
Table 3 
The importance for the LDS parameters  

Parameters  Ra I.W.Z G.W G.D LH LW 
Power 0.543 0.585 0.573 0.560 0.305 0.553 
Speed  0.194 0.330 0.206 0.355 0.471 0.326 
Frequency 0.263 0.085 0.221 0.085 0.223 0.120 
ANN architecture 3-4-1 3-5-1 3-4-1 3-3-1 3-4-1 3-3-1 

 

From Table 3, we can see that the surface roughness and the groove width were affected by: First, the 
laser power, second the frequency and then the laser speed, whereas, the interactive width, groove depth 
and lap width were affected by: First, the laser power, second, the laser speed and finally the frequency. 
But only the lap height is affected by the laser speed followed by the laser power and frequency. The 
ANN developed model to predict the process response gives excellent results when compared with 
experimental tests. Table 4 shows the average percentage errors for the predicted response for the RSM 
and ANN developed models. From this table it can be concluded that the developed ANN model could 
predict the process more accurately than RSM developed model, where, the minimum value of the error 
by the ANN model is 2.29% while it is 3.94% for the RSM. The maximum errors value for the ANN 
and RSM models are 6.38% and 8.76% respectively 
 
Table 4 
The average Errors for the ANN and RSM models  

Responses ANN RSM 
Ra 4.16 7.25 

Interactive Width 2.29 3.94 
Groove Width 2.86 4.55 
Groove Depth 3.88 6.74 

Lap Height 6.38 8.76 
Lap Width 4.59 7.9 

Overall Error 4.02 6.52 
 

 
Fig. 4 to Fig. 9 show the comparison of results obtained by the ANN and RSM models with the 
experimental tests. It is observed that the predicted values agree with the measured values for the surface 
roughness, the interactive width, the groove width, the groove depth, lap height and lap width as well as 
the errors percentage for these models. 
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Fig. 4. Ra and % Errors comparison for the ANN and RSM 
 

 

Fig. 5. I.W.Z and % Errors comparison for the ANN and RSM 
 

 

Fig. 6. G. W and  % Errors comparison for the ANN and RSM 

 

Fig. 7. G. D and % Errors comparison for the ANN and RSM 
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Fig. 8. L. W and % Errors comparison for the ANN and RSM 
 

 

Fig. 9. L. H and % Errors comparison for the ANN and RSM 
 

4.3. The Effects of LDS Parameters on the Process Response 
As we mentioned earlier, the quality and the reliability must be achieved for the MID products. The 
lines/space is very important factor for the quality of the MID products; on the other hand the line width 
depends on the interactive width, whereas the space between two lines depends on the lap width. The 
reliability of the MID products depends mainly on the adhesion force. Moreover, there is a very 
important relationship between the adhesion force and the surface roughness, the groove depth and the 
laser power (Horn et al. 1999, Hans et al., 2005; Kim et al., 2005). It was found that the adhesion force 
increase with increasing the Rz (from smooth to rough surface), groove depth and laser power. This is 
absolutely due to increasing the contact surface between the metallization and the substrate surface, for 
the rough surfaces. In this section, we will use the ANN mathematical model to analyze the effect of the 
laser parameters on the process responses which are the interactive width, groove depth, lap width and 
the surface roughness (Ra) will be investigated, due to the importance of these process responses on the 
MID products, see Fig.10. It can be seen from this figure that the Ra, interactive width, groove depth 
and the lap width will be increased when the laser power increases. But when the laser speed increases 
the interactive width, groove depth and the lap width will be decreased whereas the Ra increases. There 
is an important effect for the laser frequency on the Ra, but when the frequency increases the Ra will be 
decreased; also it is very important to note that the effect of frequency on the Ra is more than the effect 
of the laser speed. The lap width increases when the frequency increases, whereas there is no high effect 
for the laser frequency on the groove depth and interactive width. 
 
4.4. LDS Process Optimization by ANN Model 
In order to increase the adhesion strength we need to increase the Ra, in other words, the rough surface 
produces high adhesion force, as mentioned previously, due to increase the contact surface between the 
two surfaces. In this section we present an attempted to use the ANN developed model to find the 
optimum LDS parameters by which the quality of MID product (The suitable interactive width, groove 
depth and lap width), as well as the reliability of the MID products (High adhesion force which depends 
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on the Ra and groove depth). According to the results of the ANN model, the high Ra of 5 µm can 
achieved by the sets of the laser parameters shown in Table 5. 
 

  
a. Ra at laser power of 3 and 9 (W) b. Interactive width at laser power of 3 and 6 (W) 

 

  
c. Lap width at laser power of 3, 6 and 12 (W) d. Groove Depth at laser power of 3, 6 and 12 (W) 

 

Fig. 10. The effect of the laser power, laser speed and laser frequency on the process responses 
 
This result shows the ANN predicted process response for the interactive width, lap width and groove 
depth in comparison with additional experimental tests to verify the results of the ANN model. The ANN 
results are consistent with the experimental data and the minimum percentage errors is 0.03 % while the 
maximum is 7.4 %. All these parameters give high adhesion force (the requirement for the reliability). 
But it is very important to find the optimum LDS parameters from these sets which give the best others 
responses (The suitable interactive width, groove depth and lap width) in order to support the MID 
quality. Table 5 shows the ANN predicted in comparison with the experimental tests, for the process 
responses and the corresponding LDS input parameters. From the highest value for the groove depth and 
because of the adhesion force increase with increasing the groove depth Horn et al. (1999), so that, the 
optimum LDS parameters are laser power of 12 W, laser speed of 1000 mm/s and laser frequency of 
71 kHz, these parameters will be produced an interactive width of 142 µm, lap width of 35,5 µm and 
groove depth of 27,4 µm. In case of fine line/space products, the interactive width and the lap width 
must decrease as much as possible. Previously mentioned that the interactive width affects the width of 
the circuit line, and the lap width affects the space between two circuit lines (Bassim & Jörg, 2015). 
Consequently the optimum parameters that give minimum interactive width and lap width as well as the 
highest Ra and groove depth are: First laser power 0f 9 W, laser speed of 1900 mm/s and laser frequency 
of 79 kHz and the second laser power of 9 W, laser speed of 2200 mm/s and laser frequency of 78 kHz. 
The first parameters group gives a groove depth of 11,7 µm more than that for the second which is 
9,5  µm, so that the adhesion force for the first parameters group better from the second group.  
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Table 5 
 Optimum LDS parameters for the Ra 5 (µm) 

P 
(W) 

V 
(m/sec) 

F 
(kHz) 

L.W 
Exp. 

L.W 
ANN %Err I.W 

 Exp 
I W 

ANN %Err G.D 
Exp. 

G.D 
ANN %Err 

9 1 73 30.7 30.7 1.2 123 119.5 2.84 24.5 23.8 2.85 
12 1 71 35.5 36.8 3.66 142 134.8 5 27.4 27.3 0.03 
9 1.3 71 18.9 18.8 0.38 97 101.9 5.13 17.6 17.5 0.27 
9 1.6 87 16 16.3 2.37 82.8 80.9 2.24 15.0 15 0.06 

12 1.6 71 31 31.5 1.73 124 125.3 1.09 15 13.3 10.8 
12 1.6 107 29 30.3 4.75 111 107.9 2.79 19.2 20 4.16 
9 1.9 79 14 13 7 79.2 79 0.22 11.7 11.2 4 

12 1.9 114.5 27.5 27.9 1.63 106 103.5 2.3 18 17 5.3 
9 2.2 78 11.5 12.4 8 72 75.4 4.72 9.5 8.9 5.76 

12 2.2 96 23.7 22.8 3.6 94 93.8 0.15 10.9 11.7 7.4 
12 2.2 128 24 24.4 1.79 92.8 94.6 1.97 14.2 14.5 2.17 

average     3.28   2.58   3.89 
 

 
5. Conclusions 
In this work, ANN and RSM models have used as an alternative for predicating the process response 
and for analyzing the interdependencies between the process parameters (laser power, laser speed and 
laser frequency) and process responses and finally to find or estimate the optimum process parameters. 
The conclusions drawn can be summarized by the following points: 
 
1. The results of the ANN and RSM models were compared with the experimental data show good 
agreement. The minimum percentage errors for the ANN and RSM models were 2.29% and 3.94% 
respectively, whereas the maximum value 6.38% and 8.76% respectively, and the overall percentage of 
prediction errors 4.02 % and 6.52%, for the ANN and RSM models respectively. In general the recorded 
error was below 12 percent, which falls within acceptable range of modeling standards. It can be 
concluded that the ANN model can be used efficiently for predicating, analyzing and optimizing more 
than the RSM model due to its high accuracy. 
  
2. According to the analyzing for the interdependencies between the process parameters and the process 
responses by using the ANN model, Table 6 shows the concluded relationship. It can be seen from this 
table that, all the process responses will be increased when the laser power increases, and these responses 
decrease with laser speed except the Ra which increases with laser speed. Moreover, these responses 
decrease with laser frequency except the lap dimensions (width and height) will be increased with laser 
frequency. 
 
Table 6 
The effect of parameters on the response 

 Response  

parameters 
Ra 

(µm) 
I.W.Z 
(µm) 

G.W 
(µm) 

G.D 
(µm) 

LH 
(µm) 

LW 
(µm) 

Power 
(W) 

0.543 
↑+ 

0.585 
↑+ 

0.573 
↑+ 

0.560 
↑+ 

0.305 
↑+ 

0.553 
↑+ 

Speed 
(mm/s) 

0.194 
↑+ 

0.330 
↓- 

0.206 
↓- 

0.355 
↓- 

0.471 
↓- 

0.326 
↓- 

Frequency 
(kHz) 

0.263 
↓- 

0.085 
↓- 

0.221 
↓- 

0.085 
↓- 

0.223 
↑+ 

0.120 
↑+ 

 
3. The ANN model has been used to find the optimal LDS parameters to achieve the quality and the 
reliability for the MID products. It was found that for the reliability it is very important to use a 
combination of the LDS parameter which leads to maximum Ra and groove depth values; this will help 
to increase the contact surface and then the adhesion force between the metallization and the substrate 
surface. Whereas a combination of the LDS parameters lead to minimum interactive width and lap width 
are suitable for the fine MID products. 
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