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 Resource-Constrained Project Scheduling Problem (RCPSP) is considered as an important 
project scheduling problem. However, increasing dimensions of a project, whether in number of 
activities or resource availability, cause unused resources through the planning horizon. Such 
phenomena may increase makespan of a project and also decline resource-usage efficiency. To 
solve this problem, many methods have been proposed before. In this article, an effective 
backward-forward search method (BFSM) is proposed using Greedy algorithm that is employed 
as a part of a hybrid with a two-stage genetic algorithm (BFSM-GA). The proposed method is 
explained using some related examples from literature and the results are then compared with a 
forward serial programming method. In addition, the performance of the proposed method is 
measured using a mathematical metric. Our findings show that the proposed approach can 
provide schedules with good quality for both small and large scale problems. 
  

© 2015  Growing Science Ltd.  All rights reserved 

Keywords: 
Project Scheduling  
Resource-constrained  
Backward Approach  
Makespan  
Genetic Algorithm 

 

 

 
 

 
1. Introduction  
 

Classic Resource-constrained project scheduling problem, which is dealt with scheduling the project 
activities considering time and resource constraints, is generalized for minimizing completion time of 
the project (makespan) (Kelley, 1963). Normally, In RCPSP, activities are scheduled by considering two 
types of constraints: 
 
I) The executive priority relations between activities which are expressed by relation matrix 
II) The availability resources level for executing activities 

As a consequence, final solution must be feasible in both priority and resource level. During the last few 
decades, several researches have addressed the RCPSP models by considering varied objectives, 
constraints and solution solvers using either optimizing or heuristic approaches (Demeulemeester, 2002; 
Kolisch & Hartmann, 1999). In this manner, a peer review on RCPSP models, objective functions, 
constraints and limitations and some approaches was prepared by Hartmann and Briskorn (2010). They 
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mostly focused on objectives such as minimizing 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, minimal and maximal time lags and net present 
value (NPV).  

Traditionally, classical RCPSP models are developed for minimizing 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (Patterson et al., 1989; 
Talbot, 1982). But, during the last 2 decades, scientists have developed more RCPSP problems 
considering varied objectives. Mainly, authors tackle RCPSP with four optimization criteria: 1) 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 
minimization, where an attempt has been accomplished to minimize the total elapsed time among time 
horizon of the project. 2) NPV maximization has been developed to maximize profit of the project while 
positive and/or negative cash flows were taken into consideration (RCPSP-CF) (Delgoshaei et al., 2014; 
Seifi & Tavakkoli-Moghaddam, 2008; Sung & Lim, 1994; Ulusoy et al., 2001; Yang et al., 1993) .3) 
Cost minimization where declining of total cost of the project is the main objective of the problem (Laslo, 
2010). 4) Optimizing robustness of solutions. For this purpose a trade-off between quality-robustness 
and solution-robustness in RCPSP has been accomplished while safety times (spread time buffers 
throughout the project time horizon) in project scheduling were taken into consideration (Van de Vonder 
et al., 2005). Afterward, a similar research was accomplished focusing on resource constraint impacts 
(Van de Vonder et al., 2006). RCSPs can be developed using single objective function or multi –objective 
functions. In this manner, a time dependent cost structure for minimizing completion time by using extra 
resources which cause faster execution of activities was developed by Achuthan and Hardjawidjaja 
(2001). Afterward, 2 more versions of resource-constraint multi project scheduling problem were 
developed in a way that in first version, the activity durations are considered fixed but in second one, a 
project duration function is used to decrease the amount of resource allocating (Lee & Lei, 2001). Effects 
of the serial and parallel scheduling schemes while using multi- and single-project approaches were 
analysed later (Lova & Tormos, 2001). It was found that using parallel scheduling schemes and multi-
project approach could provide a basis for managers to minimize mean project delay or multi-project 
duration increasing. Hence, Kim et al. (2005) proposed a hybrid of GA with fuzzy logic controller (FLC-
HGA) to solve the resource-constrained multiple project scheduling problem (RC-MPSP). The proposed 
approach worked based on using genetic operators with fuzzy logic controller (FLC) through initializing 
the revised serial method with precedence and resources constraints. Afterward, an attempt has been 
accomplished for minimizing 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, as well as maximizing solution robustness by increasing float time 
maximization (Abbasi et al., 2006). In another study, a two-stage algorithm was developed for RCPSP 
while minimize 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, considered as an acceptance threshold for the second stage and then, in next stage, 
a set of 12 alternative robust predictive indicators was employed to maximize robustness of the project 
(Chtourou & Haouari, 2008). Ke and Liu (2010) focused on project scheduling problem while fuzzy 
activity duration times were taken into consideration. They used fuzzy concepts for minimizing 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 in 
an integrated fuzzy-based GA.   

(Icmeli et al., 1993) discussed that adding resource constraints increase the complexity of RCPSPs and 
in many cases such problems cannot be solved by regular optimizing algorithms. Afterward, Kolisch 
(1996) argued that RCPSPs can be considered as an NP-hard problem while more than one none-
renewable resources are taken into account. There are also some other parameters of project complexity 
that should be noticed as other managerial factors (Castejón-Limas et al., 2011). Traditionally, many 
problems were solved using branch-and-bound (B&B) algorithms (Speranza & Vercellis, 1993; 
Sprecher, 2000; Sprecher et al., 1997) but heuristics and metaheuristics were then found as good ways 
of solving RCPSPs. Perhaps GA was used more than other metaheuristics for solving RCPSPs. As a good 
example, Alcaraz and Maroto (2001) developed a GA for solving single mode RCPSP. They showed that 
GA could efficiently solve RCPSPs in an acceptable computation time. Hartmann (2001) employed GA 
for minimizing 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 in multi-mode RCPSP (MRCPSP). In next step, a local search extension motor is 
used for improving performance of the proposed GA. Peteghem and Vanhoucke (2010) used GA for 
minimizing 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 in MRCPSP by assuming pre-emptive resources where activity splitting was allowed 
through the optimization process. GA was then used for solving a multi-criteria project portfolio selection 
problem when project interactions, in terms of multiple selection criteria, and preference information, in 
terms of the criteria importance, were considered. The results showed that it could provide effective 
solutions for the proposed problem (Yu et al., 2012).  
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In this article, a new method for rescheduling RCPSP to improve 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, using unused resources where 
all resources were considered pre-emptive is executed. For this purpose, we developed a backward 
method by employing a hybrid greedy search and GA, which was formulated as a non-linear mixed 
integer programming (NL-MIP) model.  

2. Materials and Methods 
 
The mathematical model, proposed in this paper, is developed in a way that activities can be split through 
planning horizon where time horizon is divided to 𝑇𝑇 slots to be proper for tracking the rescheduling 
process. It should be emphasized that, the proposed model is developed as single activity mode to make 
investigating of the proposed method easier.  
The assumptions of the model are defined as follow: 
 
1. Model is presented in AON (Activity on Node) structure.  
2. Resources are renewable.  
3. The renewable resources have limited capacities. 
4. Activities are allowed to move only in their free float time. 
5. Activity splitting is allowed. 
6. All movements have been considered in both backward and forward modes respecting to the 

precedence relations. 
7. Initial scheduling of activities will be performed using forward serial programming. 
8. Rescheduling over 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is prohibited. 

Input arguments and variables for the proposed model are defined as: 

Inputs 
𝑖𝑖 ∈  𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝑟𝑟 ∈  𝑅𝑅 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
𝑡𝑡 ∈ [1, … ,𝑇𝑇] 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

Parameters 
𝑅𝑅𝑘𝑘  Maximum amount of resource type k 
𝑟𝑟𝑖𝑖,𝑘𝑘  Required amount of resource r for performing activity i in each time slot 
𝑑𝑑𝑖𝑖   Executive duration of activity i 
𝑇𝑇𝑇𝑇  Time horizon 
𝑃𝑃𝑖𝑖  Precedence vector for activity i 

Binary Variables 

𝑌𝑌𝑖𝑖,𝑡𝑡 �
1  if activity 𝑖𝑖 executed in time slot 𝑡𝑡
0 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                           

 
 

Integer Variables 
 

𝐸𝐸𝐸𝐸𝑖𝑖: Start time of activity i 
 

Mathematical Model 
The proposed model in this research is a pertinent version of Peteghem and Vanhoucke (2010) where 
greedy selection of activities for using unscheduled resources is taken into consideration. 

𝑚𝑚𝑚𝑚𝑚𝑚: ��𝑡𝑡.𝑌𝑌𝑖𝑖,𝑡𝑡

𝑇𝑇𝑇𝑇

𝑡𝑡=1

𝑛𝑛

𝑖𝑖=1

 
(1) 

subject to  
𝐸𝐸𝐸𝐸𝑖𝑖 ≥ 1 ∀ 𝑖𝑖 ∈ 𝑛𝑛 (2) 
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𝐸𝐸𝐸𝐸𝑖𝑖 ≥ �𝑃𝑃𝑖𝑖,𝑗𝑗 .𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡=1𝑇𝑇ℎ �𝑡𝑡.𝑌𝑌𝑗𝑗,𝑡𝑡�� ;  ∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃 (3) 

��𝑌𝑌𝑖𝑖,𝑡𝑡

𝑛𝑛

𝑖𝑖=1

. 𝑟𝑟𝑖𝑖,𝑘𝑘

𝑇𝑇𝑇𝑇

𝑡𝑡=1

≤ 𝑅𝑅𝑘𝑘 ;   ∀ 𝑘𝑘 ∈ 𝐾𝐾 
(4) 

𝑌𝑌𝑖𝑖,𝑡𝑡 .𝐸𝐸𝐸𝐸𝑖𝑖 ≤ 𝑡𝑡;      ∀ 𝑖𝑖 ∈ 𝑛𝑛 , 𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (5) 
𝑌𝑌𝑖𝑖,𝑡𝑡 .𝐸𝐸𝐸𝐸𝑖𝑖 = 𝑑𝑑𝑖𝑖;   ∀ 𝑖𝑖 ∈ 𝑛𝑛 , 𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (6) 
𝐸𝐸𝑆𝑆𝑖𝑖: 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (7) 
𝑌𝑌𝑖𝑖,𝑡𝑡: 𝑏𝑏𝑏𝑏𝑏𝑏 (8) 

 
For the proposed model, minimization of 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 by considering renewable resources is considered as the 
main objective. Using 𝑡𝑡 as a part of objective function (𝑌𝑌𝑖𝑖,𝑡𝑡 . 𝑡𝑡) helps model use backward movements for 
minimizing 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 as early scheduling of activities causes lower amounts for t and consequently lower 
value for the objective function. 

First constraint in this model is defined as determination of initial start of each activity, which helps 
model start from a feasible solution. Second constraint ensures the feasibility of the activities precedence 
relations. Using the term 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡=1𝑇𝑇ℎ �𝑡𝑡.𝑌𝑌𝑗𝑗,𝑡𝑡� helps activities start not earlier than their predecessors last 
execution day. It is important to know that using standard definition of early start of activities (𝐸𝐸𝐸𝐸𝑗𝑗 =
𝐸𝐸𝐸𝐸𝑖𝑖 + 𝑑𝑑𝑖𝑖 𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑒𝑒 𝑖𝑖 ∈  𝑃𝑃𝑗𝑗) is not suitable for applying for allowed activity splitting RCPSPs and may cause 
wrong results. To explain more, suppose it is decided to calculate the early start of activity 𝐷𝐷 in 2 modes 
where in the first mode the activity splitting is forbidden while in the second mode it is allowed (Fig. 1). 

                                   
                                   
                                   

A A A A               A A A A              
    B B B B               B B B B          
        C C C C               C  C C  C    
            D D D                  D D D 
                                   
                                   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Fig. 1. Comparing Different Styles of Calculating ES with and without Activity Splitting (Left to Right) 

In the left Gantt of Fig. 1, while splitting is not allowed, 𝐸𝐸𝐸𝐸𝐷𝐷 will be calculated correctly by using the 
standard formula (𝐸𝐸𝐸𝐸𝐷𝐷 = 𝐸𝐸𝐸𝐸𝐶𝐶 + 𝑑𝑑𝐶𝐶). But, as seen, calculating early start of activity D while activity 
splitting is allowed (right figure) will not be 13 das anymore since activity C is split two times in days 
10 and 13 and therefore it cannot be finished earlier than day 14. Consequently, activity D cannot be 
started sooner than the day 15. Therefore, to prevent such error, the above formula is modified for 
calculating ES of each activity considering the real planning dates, Eq. (9): 

𝐸𝐸𝐸𝐸𝑖𝑖 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡=1𝑇𝑇ℎ �𝑌𝑌𝑗𝑗,𝑡𝑡 . 𝑡𝑡�;      ∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝑃𝑃 (9) 

The third constraint ensures that activities are scheduled considering resource availability in every time 
slots. The fourth constraint is used to find a logic relation between 𝑌𝑌𝑖𝑖,𝑡𝑡 and 𝐸𝐸𝐸𝐸𝑖𝑖 which ensures that 𝑌𝑌𝑖𝑖,𝑡𝑡  
will not start earlier than the calculated early start of each activity. The fifth constraint guarantees that 
total duration of activity splits should not exceeded than the original duration of the activity. For example, 
if duration of the activity C is assumed 4 days (Fig.9; left image), then the sum of activity splits of the 
mentioned activity should not be exceeded than 4 days after scheduling accordingly (Fig.9; right image). 
The sixth and seventh constraints are set for 𝐸𝐸𝐸𝐸𝑖𝑖 variables to stay integer and 𝑌𝑌𝑖𝑖,𝑡𝑡 to be binary. 
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3. The Proposed Method 
 
Genetic algorithms (GA) are iterative search procedures that work based on the biological process of 
natural selection and genetic inheritance, which maintain a population of a number of candidate members 
over many simulated generations. Hopefully, good characteristics of the population members that will 
be retained over the generations can maximize a pre-determined fitness function. 
 
In general, the main steps of the proposed greedy-based GA procedure are (Fig. 2): 
 

Step 1) Create an initial population, 
Step 2) Use selecting operator to update tournament list, 
Step 3) Run greedy algorithm as crossover operator of GA: 

• Run Selecting operator (Crossover) 
• Run Feasibility check operator 
• Run Solution check operator 

Step 4) Calculate mutation probability function, 
Step 5) Run mutation operator (if needed), 
Step 6) Terminate the searching process if stopping criteria are met, otherwise go to Step 2. 

 

 
Fig. 2. Structure of the Proposed GA-based Method 

3.1 Population Size 
 

Generally metaheuristic algorithms quickly respond to small size or relaxed resource RCPSPs but while 
large scale problems are taken into account choosing appropriate population size for such algorithms 
plays essential rule to solve experiments. For this purpose a GA coding operator is developed which 
suggests the suitable, but not necessarily the best, population size according to the equation below: 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖)
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

   ;∀  𝑖𝑖 (10) 

 
Eq. (10) consists on the largest frequency of the resource demands. The genetic algorithm maintains a 
collection (population) of solutions in each generation until the end of the searching process. 

3.2 String Representation 
 
The proposed GA requires a unique solution string representation scheme. In this study, authors applied 
binary representative scheme which seems appropriate to present strings of solutions. The encoding of 
solutions in the proposed procedure is ‘one-to-one’, which refers to solutions that are represented by 𝑛𝑛 
(activity number) binary strings as chromosomes. Chromosomes contain sets of 𝑡𝑡 genes where each gene 
is a binary digit in its nature: 

𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑝𝑝,𝑔𝑔) = �1;  if activity 𝑖𝑖 performs in date 𝑗𝑗            
0;  else                                                              

(11) 

Start 
Generate 

Initial 
Population  
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Solution 

N 

Selecting 
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G=G+1 

Y 

Cross over 
Operator 

Feasible 
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Finish 

Y 
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where 𝑝𝑝 demonstrates population size and 𝑔𝑔 presents generation. Fig. 3 shows an example of encoding 
and decoding chromosome strings: 

A A A A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 B B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 C C C C C 0 0 0 0 0 0 0 0 0 0 0 

 

 

  

 

   

 

           
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

Fig. 3. Sample of Encoding and Decoding Chromosomes Strings 

3.3 Initial Solution Generator 
 
During the first stage, the proposed approach provides 𝑛𝑛 (pop-size) initial time networks which are both 
precedence- and resource-feasible but are scheduled in maximum time horizon that is defined as upper 
bound (𝑈𝑈𝑈𝑈𝑃𝑃,𝐺𝐺) for the problem. Note that each solution in this stage contains a set of chromosomes that 
meet priority requirements: 
 
𝑈𝑈𝑈𝑈𝑃𝑃,𝐺𝐺 = ∑ max 𝑑𝑑𝑖𝑖𝑛𝑛

𝑙𝑙=1    𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑖𝑖)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (12) 
 
Using upper bound strategy in this step will guarantee precedence- and resource-feasibility for initial 
solutions and at the same time it can be considered as a good threshold for measuring efficiency of the 
solutions in final stage. 

  𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔_𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈_𝒑𝒑𝒑𝒑𝒑𝒑 (: , : ,𝟏𝟏,𝟏𝟏) 

A 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
D 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
G 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔_𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈_𝒑𝒑𝒑𝒑𝒑𝒑 (: , : ,𝟐𝟐,𝟏𝟏) 

A 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
B 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
D 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 
J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Fig. 4. Samples of Using Upper-bound in Forward Serial Programming 

Fig. 4 that is retrieved from optimizing process of an experiment, shows two members in a generation 
for an example contains 10 activities. It can be seen, activities are scheduled in a serial mode among time 
horizon without time overlapping. This will avoid resource over allocating in time networks that will 
remain through optimization process. 
Tournament List and Fitness Function 
 

The selection operator is defined to select parents from the population in generations. Individual's 
selection procedure operates as follows: 
• Time-based selecting operator which is developed to select those activities that have positive free 

slack after scheduling by forward serial programming in first stage. Such activities can move 
backward or forward respecting to the precedence matrix and without affecting the critical path(s).   

a) Suppose activity X has been scheduled to start at ESt. 𝑖𝑖 ∈ 𝑃𝑃𝑋𝑋 are the defined as predecessors of 
activity X. 
b) FSX = min

𝑖𝑖 ∈𝑃𝑃𝑋𝑋
(LFi). 

c) If FSX > 0 then Tournamet. listi = X. 

Encoding Decoding 
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Note that population size operator will select individuals in the way that population size remained fixed 
through the optimizing process. 
 

3.4. Crossover Operator 
 
The main genetic operator is the crossover, which has the role of combining pieces of information from 
different individuals in the population. In this article, crossover operator will perform as a greedy 
algorithm. To explain crossover operator, we must first explain Precedence Constraint Posting (PCP) that 
is considered as an effective strategy for minimizing 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (Lombardi & Milano, 2012; Policella et al., 
2007). In PCP, sets of initial precedence constraints or precedence operators are amplified through 
solving process to prevent resource over-allocating. In this research we used greedy algorithm for 
creating PCP ( 
Table 1). Normally, greedy algorithms must have at least (but not last) the following 3 steps: selecting 
operator, feasibility check and solution check. 
 
I) Selecting operator (backward movement): when an activity is selected randomly for crossing over, the 
first step is to find maximum available backward movement which is a maximum of 𝐿𝐿𝐿𝐿𝐽𝐽 ∈𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖. As 
a result, procedure finds the maximum possible time slots for backward movements called 𝑇𝑇𝑇𝑇𝑖𝑖. Activity 
slots are scheduled for backward movements for 𝑇𝑇𝑇𝑇𝑖𝑖 members from minimum member sequentially. 
 
II) Feasibility Check: the resource availability operator is employed to check the availability of slot 
backward movement using the equation: 

             
∑ 𝑟𝑟𝑖𝑖,𝑡𝑡 ≤ 𝑅𝑅𝐾𝐾 − 𝑟𝑟𝑠𝑠,𝑡𝑡
𝑠𝑠−1
𝑖𝑖=1       𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇𝑖𝑖 (13) 

III) Selecting operator (forward movement): the function of this operator is avoiding resource confliction 
among activities during a backward move where such transferring causes resource over-allocation. For 
this manner, if the resource availability constraint does not satisfy for each member of  𝑇𝑇𝑇𝑇𝑖𝑖 then PCP 
operator will find the nearest forward neighbor (time slot) to set the activity. 
 
Solution Check: in this step the value of the solution will be checked using fitness function. In this 
research we considered 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 as fitness function that can be calculated as sum of time slots of activity 
execution of all activities: 
 

� � 𝑌𝑌𝑖𝑖,𝑡𝑡 .
𝑛𝑛

𝑖𝑖=1

𝑇𝑇𝑇𝑇

𝑡𝑡=1
𝑡𝑡 

(14) 

 
Table 1 
Pseudo-code for Employing Greedy Algorithm in PCP Operator 
 Selecting Operator 
𝐹𝐹𝐹𝐹𝐹𝐹 𝑡𝑡 ∈ (max (𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃),𝐸𝐸𝐸𝐸𝑖𝑖) 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀 
 Feasibility Check 
For 𝑅𝑅𝑘𝑘 
𝐼𝐼𝐼𝐼 𝑟𝑟(𝑖𝑖,𝑘𝑘) ≤ 𝑅𝑅𝑘𝑘 − ∑ 𝑟𝑟(𝑖𝑖, 𝑘𝑘)𝑖𝑖−1

1   
 Solution Generating Operator 
𝑎𝑎𝑖𝑖,𝑡𝑡 = 1 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  
𝑎𝑎𝑖𝑖,𝑡𝑡 = 0 

 Solution Check 

To illustrate the greedy movements, suppose a time segment of proceeding problem that an activity (let’s 
call 𝐷𝐷) is scheduled for a backward movement to use opportunity date 𝐿𝐿𝐿𝐿𝐵𝐵 + 1, where activity B was 
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defined as a predecessor of activity 𝐷𝐷. The resource availability for backward movement (see black arrow 
in left Gantt of figure 5) is enough to let activity 𝐷𝐷 being started at (𝐿𝐿𝐿𝐿𝐵𝐵 + 1) ∈ 𝑇𝑇𝑇𝑇𝑖𝑖, but for the next two 
coming days since the all resource capacity is filled by activity 𝐴𝐴, the backward operator will not let 
activity 𝐷𝐷 to continue until activity 𝐴𝐴 is finished (see Fig. 5, the middle Gantt). Hence, forward Operator 
seeks for the first possible time to schedule activity 𝐷𝐷 which is 𝐿𝐿𝐿𝐿𝑎𝑎 + 1. This phenomena causes a split 
in activity 𝐷𝐷 (see Fig. 5, the right Gantt) but will demonstrate using remain resource among 𝑇𝑇𝑇𝑇𝑖𝑖 which 
will cause increasing usage of remained resource during planning horizon. 

                                             
                                                  A A  

       

     A A  

       

     A A  

       B B B B 

           

B B B B 

           

B B B B 

           
  

C C C C C C 

         

C C C C C C 

         

C C C C C C 

       
     

D D D D 

     

D 

 

D D D -- 

     

D 

  

D D D  

    
                    

D 

                     
                     

D 

                     
                      

D 

                     
                                             Fig. 5. Opportunity for Backward Movement (Left Gantt); Activity D is Not Allowed Shift Back to LF(B)+2 

(Middle Gantt); Activity “D” Rescheduled to LF(A)+1 instead (Right Gantt) 

3.5 Mutation Operator 
 
The mutation operator is used to rearrange the structure of a chromosome which possibly is helpful for 
escaping from local optimum or crowding phenomena. In this article, a single bit string mutation is used 
to rearrange the position of two gens in a chromosome and to swap their contents. The probability 
function of mutation operator is formulated as below:  
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑘𝑘,
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐)

max (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃1),𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃2))
� (15) 

where 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐) is the total makespan for a new chromosome and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃1) & 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃2) are the achieved 
makespan for parents and 𝑘𝑘 is a parameter between 0 and 1.  

This equation prevents GA to leave a certain solution space area even if the hybrid algorithm cannot find 
good solutions inside the area. Consequently, if crossover operator does not improve the new born 
chromosome the chance of using mutation operator will increase. Such typical function can help us pass 
local optimum traps. The developed mutation operator, replaces the 𝑖𝑖𝑡𝑡ℎ gene in the string (Fig. 6): 

                                                     

A A A                A A A                A A A               

   B B B                B B B                B B B            

      C C C                C C C                C C C         

         D D  D               D D D                D D D      

             E E E                E E E               E E E   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Solution 1  Solution 2  Solution 1 (After Mutation)  

Fig. 6. A typical Bit string Mutation Operator 

As seen, in this example by replacing the solution string of activity D in solution 1 with the same activity 
string in solution 2, the algorithm find an opportunity to improve the  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 in solution 1. In large scale 
problems while there are many activities can be considered for mutation replacements in each solution, 
such replacements sometimes lead to achieve better 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. 
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3.6 Stop Criteria 

The searching process will be terminated if at least one of these conditions happens: 
 

I) The maximum number of generations is reached. 
II) Activities are scheduled in a way that there are no further opportunity for using remain resources 
during time horizon which means no improvements are possible. 
It is important to consider the steady condition of the designed algorithm while solving experiments. For 
example, if two activities, which are scheduled simultaneously and over allocated through their scheduled 
period, are bounded by a common successor, the program would never meet a steady condition since it 
got stock into a loop: 
 

|ES(A) − ES(B)| < |𝐷𝐷(𝐴𝐴) − 𝐷𝐷(𝐵𝐵)| (16) 

 
Fig. 7. A Graphical Sample of Unsteady Condition of RCSP 

Fig. 7 shows that under mentioned condition, activity A and B will be over-allocated during the 
scheduling process. This means that RCSP system will fall into an unsteady state but it will not pass it. 
The performance of the proposed hybrid is shown in Table 2. 
 
Table 2  
Pseudo Code of the Proposed GA 

Procedure: 
Initialization of  i, t, k, pop-size, Generation 
Begin 

Calculate the UB 
Select 𝑛𝑛 initial time network (n is pop-size) 
Calculate the Resource-remained, 
for G ∈ Generation 
     for n ∈ pop-size 

Rand parent(p); Rand parent(q) 
Call ES operator 
Chromosome(p)= ∑ gen�i, j, parentp, generation�time−horizon

j=1  
Chromosome(q)= ∑ gen�i, j, parentq, generation�time−horizon

j=1  
calculate ESp , ESq 
Call Remained path operator: 

t1: min (ES(Chromosome(p), Chromosome(q))) 
t2: max (LF (Child(j))); j ∈ Precedence(i) 
for ∆t 
if rt,k ≤ Rk − (∑ rj,k)j ∈ Precedence(i)  
gen(I, t, pop-size, generation)=1 
else  
Call PCP availability operator: 
      Set make split on chromosome(j) 
      find first possible t 
      set gen(I, possible-t, pop-size, generation) 

       end 
       calculate Cmax    

                       update Gantt 
                       Generation=Generation-1 
                       check stopping criteria 

end 
end 

End 

 
 
 

Time 

B 

A. 

St
 

Resource  

Resource 
 

  ES (A)     ES (B)          LF (A)    LF (B) 

 

C 
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3.7. Using Taguchi method for estimating input parameters 
 

In this research a Taguchi method is used using Minitab®17 in order to survey impacts of input 
parameters of the proposed hybrid method on completion time of the developed model and also estimate 
appropriate values for setting the input parameters. For this purpose a 𝐿𝐿9 (3^4) orthogonal optimization 
design is employed (Fig. 8). Table 3 shows the factors and their level in use for the proposed hybrid 
method. 
 

Table 3 
The factors and the levels considering for Taguchi method 

Factor Level 1 Level 2 Level 3 

A)Number of Generations 5 10 15 

B) Pop-size 3 6 9 

C) Mutation Rate 0.1 0.2 0.3 

 
Results for: Worksheet 1 

Taguchi Design 

Taguchi Orthogonal Array Design 
L9 (3^3) 
Factors: 3 
Runs:  9 
Columns of L9(3^4) Array 
1 2 3 

Fig. 8. Specifications of the used Taguchi method 

Table 4 shows the experiments designed by Taguchi method. The value R shows the minimum 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 
observed while using the suggested parameters.  
 
Table 4 
Results of implemeting the experiments for Taguchi method 

Experiment Number 
Factor 

R Number of Generations 
 (A) 

Pop-size  
(B) 

Mutation  
(C) 

1 1 1 1 89 
2 1 2 2 83 
3 1 3 3 76 
4 2 1 2 81 
5 2 2 3 78 
6 2 3 1 74 
7 3 1 3 75 
8 3 2 1 72 
9 3 3 2 67 

  

Fig. 9 provides details of analyzing the results of the experiments. As seen, all factors A (the number of 
generations), B (population size) and C (mutation rate) can improve 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 but with different severity 
levels. The normal plot of effects that is drawn in Fig. 10 indicates that all factors (the number of 
generations, population size and mutation rate) have significant impact on the quality of the solutions in 
the proposed GA but with different values.  

Taguchi Analysis: R versus A, B, C 
Response Table for Signal to Noise Ratios 
Smaller is better 
 
Level             A          B             C 
1               -38.33    -38.22   -37.64 
2               -37.80    -37.79   -37.69 
3               -37.06    -37.17   -37.65 
Delta        1.27       1.05       0.19 
Rank             1             2            3 

Response Table for Means 
  
 
Level             A          B             C 
1                 82.67      81.67     78.33 
2                 77.67      77.67     77.00 
3                 71.33      72.33     76.33 
Delta           11.33      9.33       2.00 
Rank             1             2            3 

Response Table for Standard Deviations 
 
 
 
Level            A           B          C 
1                    *           *           * 
2                    *           *           * 
3                    *           *           * 
Rank              2           2           2 

Fig. 9. Results of analysing the achieved data for designed experiments 
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The downward trend line of factor 𝐴𝐴 in Fig. 11 has a steep slope which reveals the number of generations 
has the maximum impact while minimizing the 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. Similarly, number of populations can influence on 
minimizing 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 but with less severity. Since the mutation operator has been used rarely, it is obvious 
that its effects are less than what observed for the other investigated factors. After implementing the 
method, the regression equation in uncoded Units based on actual values can be determined as: 
 
R = 77.63 - 7.125 A - 2.625 B - 0.8750 C - 0.2070 A×B - 0.1250 A×C - 0.1250 B×C - 0.1250 A×B×C (17) 

 

 
Fig. 10. The normal plot of the effects between input 
parameters for the proposed hybrid method 

 
Fig. 11. The main effects plot for showing the impact 
of levels of input parameters 

As seen, in this equation, the interactions between factors can effect on the Y (the expected 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚based 
on actual values) in a constructive manner. Therefore, for the larger scale experiments the number of 
generations and the number of population must set maximum and for medium scale problems the focus 
is on increasing the generation numbers where possible. The mutation rate is considered 0.1 constant for 
small and medium size problems and for the large scale problems it is considered 0.3.  

4. Discussion and Result 
 
To examine and verify robustness of the proposed backward-forward method in improving 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 in 
limited time projects while all resources are considered limited and renewable, several problems in small, 
medium and large sizes are solved by the Matlab® R2009a software on an Intel® Core i7 laptop which 
is supported by 4 Mb RAM. The Upper bound is considered as time horizon of each problem. To examine 
the proposed approach, 7 series of numerical examples are designed and solved with 6, 10, 15, 18, 20, 
30 and 50 variables. For evaluating the efficiency of proposed model each example is solved under two 
conditions where all the criteria are considered the same but resource availability. The results, then, 
checked with results of forward serial programming method (Table 5 and Table 6). At first stage, the 
initial solutions that are results of using initial solution engine are shown in navy blue time networks. In  
 

 
Fig. 12. Results of Serial programming, BFSM-GA (Active RCPSP) and BFSM-GA (Relaxed RCPSP) 

for Example 11 with 30 variables (Left to Right)  

0-2-4-6-8-10-12-14-16

99

95

90

80

70
60
50
40
30

20

10

5

1

A A
B B
C C

Factor Name

Effect

Pe
rc

en
t

Not Significant
Significant

Effect Type

C

B

A

Normal Plot of the Effects
(response is R, α = 0.05)

Lenth’s PSE = 0.375
321

86

84

82

80

78

76

74

72

70
321 321

A

M
ea

n 
of

 M
ea

ns

B C

Main Effects Plot for Means
Data Means

Activity 

C max C max C max 



514  

    

 
Fig. 13. Results of Serial Programming, BFSM-GA (Active RCPSP) and BFSM-GA (Relaxed RCPSP) 

for Example 13 with 50 Variables (Left to Right) 

 
Fig. 12 and Fig. 13, results of solving some experimental problems are provided considering 3 status 
considering results of serial programming, (left Gantts), rescheduling while resource constraints are 
considered and activity splitting is allowed (middle Gantts) and rescheduling while resource constraints 
are relaxed (right Gantts). As seen, the proposed approach can effectively reschedule problem to find 
minimum 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. But, in second runs, where problems are considered in a way that one or more resources 
are limited, show how the proposed approach can effectively use remained resources by backward and 
forward movements which cause activity splitting whenever is needed.  
 
Table 5 
Numerical Examples for the Proposed Backward-forward Method 

Example 
No. 

A
ctivity 

R
esource 

Resources 
Capacity* Resource Usage Precedence Matrix SP** 

GA 
Mutation 

rate ∆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Steady 
Generation 

Gen Pop-
size 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 

1 6 3 8/10/8 
[4 5 3 6 5 4; 
2 3 5 4 3 6; 
5 4 6 5 3 4] 

Act. Pre. Act. Pre. 
A - D B 
B A E C 
C A F D-E 

 

14 3 3 14 0.1 0 2 

2 6 3 20/25/20 
[4 5 3 6 5 4; 
2 3 5 4 3 6; 
5 4 6 5 3 4] 

14 3 3 10 0.1 4 2 

3 10 2 10/10 [3 5 4 6 5 4 5 2 6 5; 
3 2 5 4 3 5 3 4 3 6] 

Act. Pre. Act. Pre. 
A - F B,C 
B A G D 
C A H E,F 
D A I G 

E B J H,I 
 

32 5 4 21 0.1 11 2 

4 10 2 30/30 [3 5 4 6 5 4 5 2 6 5; 
3 2 5 4 3 5 3 4 3 6] 32 5 4 17 0.1 15 2 

5 15 2 20/11 [3 4 5 7 6 8 5 4 6 5 4 5 2 6 5; 
3 2 5 2 3 5 4 2 6 3 5 3 4 3 6] 

Act. Pre. Act. Pre. 
A - I D 
B A J E,F 
C A K G 
D A L G 
E B M H,I 
F B N J,K,L 
G C O M,N 
H D   

 

54 7 8 29 0.1 25 2 

6 15 2 40/50 [3 4 5 7 6 8 5 4 6 5 4 5 2 6 5; 
3 2 5 2 3 5 4 2 6 3 5 3 4 3 6] 54 7 8 23 0.1 31 2 

7 18 3 15/20/10 

[7 6 5 8 7 6 3 4 6 5 7 4 5 6 7 
3 4 6; 

5 7 8 6 4 5 7 6 3 5 4 6 7 8 5 6 
7 9; 

8 3 6 5 4 7 6 4 5 7 3 4 6 5 6 6 
4 7] 

Act. Pre. Act. Pre. 
A - J F 
B A K G 
C A L H 
D  M H 
E B N I 
F C O J 
G C P K 
H D Q K 
I E R LMNOPQ 

 

79 10 6 57 0.1 22 5 

8 18 3 50/60/40 

[7 6 5 8 7 6 3 4 6 5 7 4 5 6 7 
3 4 6; 

5 7 8 6 4 5 7 6 3 5 4 6 7 8 5 6 
7 9; 

8 3 6 5 4 7 6 4 5 7 3 4 6 5 6 6 
4 7] 

79 10 6 31 0.1 48 2 

9 20 3 15/20/10 

[5 6 4 7 6 8 7 5 6 4 5 7 6 3 5 
6 4 7 6 5; 

8 7 6 5 7 5 6 4 7 6 8 7 5 6 4 5 
7 6 3 4; 

5 4 6 5 7 6 4 5 3 4 6 5 7 6 4 5 
3 4 6 5] 

Act. Pre. Act. Pre. 
A - K F 
B A L F 
C A M G 
D A N H 
E B O I 
F B P I 
G C Q J,K 
H D R L,M 
I D S N,O,P 
J E T Q,R,S 

 

91 15 6 53 0.1 38 7 

10 20 3 50/60/50 

[5 6 4 7 6 8 7 5 6 4 5 7 6 3 5 
6 4 7 6 5; 

8 7 6 5 7 5 6 4 7 6 8 7 5 6 4 5 
7 6 3 4; 

5 4 6 5 7 6 4 5 3 4 6 5 7 6 4 5 
3 4 6 5] 

91 15 6 28 0.1 63 2 

Sp: Steady point (iteration)    Act.: Activity     Pre.: Predecessor 

Activity 

C max C max C max 
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This procedure can decline makespan. Although the approach rearranges activities in order to maximum 
the usage of remained resources while minimizing 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 but it is obvious that 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 can experience its 
lowest value while resource constraints are relaxed (right Gantts). 
 

Table 6 
Numerical Examples for the Proposed Backward-forward Method (Continued from table 5) 

No. 

A
ctivity 

R
esource 

Resources 
Capacity* Resource Usage Precedence Matrix SP** 

GA 
Mutation 

rate ∆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Steady 
Generation 

Gen Pop-
size 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 

11 30 2 20/25 

[5 6 4 7 6 8 7 5 6 4 5 7 6 3 4 6 5 4 7 6 5 6 
7 8 5 6 4 7 6 5; 

8 7 6 5 7 6 4 5 6 3 4 6 5 4 7 5 6 4 7 6 8 7 
5 6 4 5 7 6 3 4] 

Act. Pre. Act. Pre. Act. Pre. 
A - K E U L-M 
B A L F V O 
C A M F W P 
D A N G X Q-R 
E A O H Y S
T 
F B P H Z N-U 
G B Q I AA V-W 
H C R J AB X-Y 
I D S J AC Z-AA 
 D T K AD AB-AC 

 

144 15 6 55 0.3 89 9 

12 30 2 80/70 

[5 6 4 7 6 8 7 5 6 4 5 7 6 3 4 6 5 4 7 6 5 6 
7 8 5 6 4 7 6 5; 

8 7 6 5 7 6 4 5 6 3 4 6 5 4 7 5 6 4 7 6 8 7 
5 6 4 5 7 6 3 4] 

144 15 6 36 0.3 108 2 

13 50 5 

20/30/20 

/30/40 

[7 6 5 8 7 6 3 4 6 5 7 4 5 6 7 3 4 6 5 7 8 6 
4 5 7 6 3 5 4 6 7 8 5 6 7 9 8 3 6 5 4 7 6 4 

5 7 3 4 6 5; 
6 7 3 4 6 5 7 8 6 4 5 7 6 3 5 8 7 6 3 4 6 5 
7 4 5 6 7 3 4 6 5 7 4 6 7 4 6 7 8 5 6 7 8 3 

6 5 4 3 5 6; 
5 5 3 7 6 3 4 5 7 6 3 5 8 7 4 6 5 7 4 5 6 7 
3 4 6 5 7 4 6 7 4 6 7 8 5 7 8 6 4 5 7 6 3 5 

4 6 7 8 5 6; 
5 7 4 6 7 4 6 7 8 5 6 7 8 3 6 5 4 3 5 4 6 5 
7 4 5 6 7 3 4 6 5 7 8 6 4 5 7 6 3 5 8 7 4 6 

5 7 4 5 6 4; 
8 7 6 3 4 6 5 7 4 5 5 3 7 6 3 4 5 7 6 3 5 8 
7 4 6 5 6 7 3 4 6 5 7 4 6 7 4 6 7 8 5 3 5 4 

6 5 7 4 5 6] 

Act. 
Pre

. Act. 
Pre

. Act. Pre. Act. Pre. 
A - P H AE T AT AP 

B A Q I AF U-V AU AP 

C A R J AG W AV AQ-AR 

D A S J AH X-Y AW AT-AU 

E A T K AI Z-AA AX AS-AW-
AV 

F B U K AJ AA  

G B V L AK AB-AC   

H B W M AL AD-AE   

I C X N AM AF-AG   

J C Y N AN AH-AI   

K D Z O-P AO AJ-AK   

L E AA Q AP AL   

M E AB R AQ AM   

N F AC S AR AM   

O F-G AD T AS AN-AO   
 

207 15 9 79 0.3 128 7 

14 50 5 

80/90/90 

/80/90 

[7 6 5 8 7 6 3 4 6 5 7 4 5 6 7 3 4 6 5 7 8 6 
4 5 7 6 3 5 4 6 7 8 5 6 7 9 8 3 6 5 4 7 6 4 

5 7 3 4 6 5; 
6 7 3 4 6 5 7 8 6 4 5 7 6 3 5 8 7 6 3 4 6 5 
7 4 5 6 7 3 4 6 5 7 4 6 7 4 6 7 8 5 6 7 8 3 

6 5 4 3 5 6; 
5 5 3 7 6 3 4 5 7 6 3 5 8 7 4 6 5 7 4 5 6 7 
3 4 6 5 7 4 6 7 4 6 7 8 5 7 8 6 4 5 7 6 3 5 

4 6 7 8 5 6; 
5 7 4 6 7 4 6 7 8 5 6 7 8 3 6 5 4 3 5 4 6 5 
7 4 5 6 7 3 4 6 5 7 8 6 4 5 7 6 3 5 8 7 4 6 

5 7 4 5 6 4; 
8 7 6 3 4 6 5 7 4 5 5 3 7 6 3 4 5 7 6 3 5 8 
7 4 6 5 6 7 3 4 6 5 7 4 6 7 4 6 7 8 5 3 5 4 

6 5 7 4 5 6] 

207 15 9 43 0.3 164 2 

Table 7 
Solution String of the Experimental Case Studies with and without Activity Splitting 

Example 
NO. 

Problem Status 
(RC*/RR**) Solution String 

1 RC A-B-C-D-E-F 
2 RR A-B-C-D-E-F 
3 RC A-B-C-D(1)*-E(1)-D(2)F-E(2)-G-H-I-J 
4 RR A-B-C-D-E-G-F-I-H-J 
5 RC A-B-C-D-E-H-F-G-I-J-K-L(1)-M-L(2)-N-O 
6 RR A-B-C-D-E-F-H-I-G-J-K-L-M-N-O 
7 RC A-B-C-E-D-I(1)-F-G-H-K-I(2)-L(1)-J-L(2)-O(1)-M-N-O(2)-P-Q-R 
8 RR A-B-C-D-E-F-G-H-I-K-J-N-M-P-Q-O-R 
9 RC A-B-C-D-G(1)-E-I-F-J-G(2)-H-L(1)-K-L(2)-Q-M-N-R-O-P-S-T 
10 RR A-B-C-D-G-E-F-H-I-K-L-M-J-P-O-R-N-Q-S-T 

11 RC A-B-C-D-E(1)-F-H-E(2)-I(1)-J(1)-G(1)-K(1)-G(2)-L-M(1)-N-H(2)-I(2)-P-R-V-J(2)-Q-K(2)-M(2)-
R(2)-S(2)-T-U(1)-Y(1)-Z(1)X-U(2)-V(2)-W-Y(2)-Z(2)-X(2)-AB(1)-AA-AB(2)-AC-AD 

12 RR A-B-C-D-E-H-F-K-I-J-P-T-N-R-S-V-L-M-Q-W-Y-AA-U-X-Z-AB-AC-AD 

13 RC 
A-B-C-D-I(1)-F-G-E-H-I(2)-L-M-I(3)-J-P(1)-Q-V-K-R-S(1)-N-T-AB-O-U(1)-X-Y(1)-AE(1)-P(2)-Q(2)-Z-S(2)-
AA-U(2)-AC-V(2)-AI(1)-W-AC(2)-AF-AI(2)-Y(2)-AG-AC(2)-AD-AE(2)-AL-AM-AP-AQ-AR(1)-AI-AN(1)-
AR(2)-AJ-AU-AT(2)-AN(2)-AK-AO(1)-AS(1)-AO(2)-AR-AS(2)-AV-AT(4)-AU(2)-AW(1)-AV(2)-AW(2)-AX 

14 RR A-B-C-D-E-F-G-H-I-J-L-M-K-N-O-R-S-T-U-V-P-Q-W-AC-X-Y-AB-AG-AD-AE-AF-Z-AA-AH-AK-AL-AI-AJ-
AM-AP-AO-AN-AQ-AR-AT-AU-AS-AV-AW-AX 

*RC: Recourse Constrained     **RR: Relaxed Resource          
Note activities that are taken apart shown in parenthesis  
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Using the proposed backward-forward method, whether the constraint resources are considered relaxed 
or not, the algorithm started from a high point which was calculated using the upper bound of the 
problem. The GA, then, experienced a sudden drop until a significant low level of 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 achieves (Fig. 
14 and Fig. 15). The procedure then continued to find better solutions using remained resources. Such 
procedure provides a high speed of convergence at early stage of solving process. In addition, as shown 
in red trend lines, problems were designed in a way that one or more resources are limited so that they 
can significantly affect rescheduling process. In all the cases, using proposed backward-forward method, 
optimal or semi-optimal solutions were obtained in a reasonable speed of convergence. Table 7 represents 
the modified schedules for the experiments of table 5 and 6.  

  
Fig. 14. Results of Cmax for Example 11 & 12 (30 variables) 

  Fig. 15. Results of 𝐂𝐂𝐦𝐦𝐦𝐦𝐦𝐦  for Example 13 & 14 (50 variables) 

Designing a powerful algorithm depends on setting appropriate initial parameters of the solving method 
which are population size and generation number and mutation rate. Fig. 16 Shows the power-graphs 
for all examples, high value of r-square (𝑅𝑅2) show high speed of solution convergence that is a 
consequence of employing backward and forward method which means the proposed method follows 
a logical way to find the optimal solution (or near optimal solution) and no illogical answer will reveal 
during the procedure of generation otherwise the amount of 𝑅𝑅2 will significantly dropped. 

  
 

Fig. 16. Power Graph for Backward-Forward Approach (examples 12 and 14) 

30/2/ 20, 25 
30/2/ 80, 70 

Cmax Cmax 

Generation Generation 

50/5/ 80, 90, 90, 80, 90 
50/5/ 20, 30, 20, 30, 40 

Generation Generation 
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Fig. 17. Comparing the Results of Serial Programming Method and the Proposed Method 

Findings in Fig. 17 reveal that in all cases, BFSM can provide better feasible solution strings by moving 
activities through resource calendar. In addition, while RCPSPs are active which means one or more 
resources can be over allocated through the planning horizon in some time slots (problems 3, 5, 7, 9, 11 
& 13), the amount of makespan saving is significantly less than relaxed RCPSPs where all resource 
constraints are relaxed (problems 2, 4, 6, 8, 10, 12 & 14). 

 
 

Fig. 18. Impacts of Activity Splitting Ability on Minimizing Cmax in Studied Cases  

Negative slope of graphs shows that using activity splitting ability allows managers to save 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 
significantly. In addition, by increasing number of activities and resources the degree of the slope which 
reveals speed of the convergence increases (Fig. 18).  

Table 8 
Results of Computational Experience 

Ref. A RE RC 
Best Results (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚) CPU 

time SP BFSM ∆𝐶𝐶 
Abbasi et al. (2006) 50 1 10 156 55 101 5.351 
Shi-man et al. (2012) 8 4 9/20/20/20 51 29 22 0.751 
Shi-man et al. (2012) 12 2 6/8 88 55 33 2.141 
Wu et al. (2011) 27 3 6/6/6 89 63 26 2.57 

For evaluating the performance of the proposed method, we used the performance measure called 
Makespan improvement that was proposed by Buddhakulsomsiri and Kim (2006): 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (18) 
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Using makespan improvement ratio (Table 9), a supreme improvement can be seen while activity 
splitting is allowed which means that BFSM-GA can effectively use unfilled resource capacities 
respecting to activity priorities. Note that for the first problem, since both states of makespan with and 
without activity splitting reported the same structure, the makespan improvement value reported 0.  

Table 9 
Results of Comparing BFSM-GA with Serial Programming Method 

No. A/R Resource capacity M.W.S M.W(O).S Makespan Improvement 
1 6/3 8/10/8 14 14 0.00 
3 10/2 10/10 21 32 0.34 
5 15/2 20/11 29 54 0.46 
7 18/3 15/20/10 57 79 0.278 
9 20/3 15/20/10 53 91 0.417 
11 30/2 20/25 55 144 0.618 
13 50/5 20/30/20/30/40 79 128 0.383 

A: Activity   R: Resource 
M.W.S: Makespan with activity splitting 
M.W (O).S: Makespan without activity splitting 

Table 10 
Results of Evaluating the Problems Gained from the Literature Using Proposed Method 

No. References M.W.S M.W(O).S Makespan Improvement 
1 Abbasi et al. (2006) 156 55 0.647 
2 Shi-man et al. (2012) 51 29 0.431 
3 Shi-man et al. (2012) 88 55 0.375 
4 Wu et al. (2011) 89 63 0.292 

In this comparison, results obtained by the competing algorithms have been taken verbatim from opted 
references from literature (Table 8). Results of the makespan ratio, it can be concluded that almost in all 
case the proposed method can provide supreme solutions. Using unfilled resources BFSM-GA can save 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 in a range between 27% and 64% depending on precedence matrix and resource availabilities 
(Table 9 and Table 10). Moreover, the method is always promised to stay in feasible area through 
improving 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. For future work, further attempt is suggest to solve the proposed model in multi-mode 
state (MRCPSP) using the proposed method.  

5. Conclusion 
 

By presenting the mixed backward-forward rescheduling technique, a novel mathematical method was 
developed to assure that, given the need to assign activities using remained resources through resource 
calendar while activity spitting is allowed, their combination will be as efficient as possible to minimize 
the makespan. Our finding show that using hybrid greedy and genetic algorithms for the proposed mixed 
backward-forward technique, where activity splitting is allowed, will cause noticeable reduction of 
makespan in classical RCPSPs that is a direct consequence of rising up in remained resources usage 
through project planning horizon.  

Acknowledgment 
 
The authors would like to thank the editor and anonymous reviewers for their positive comments through 
the progressing period. 
 
 
 
 



A. Delgoshaei et al. / International Journal of Industrial Engineering Computations 6 (2015) 
 

519 

References 
 
Abbasi, B., Shadrokh, S., & Arkat, J. (2006). Bi-objective resource-constrained project scheduling with 

robustness and makespan criteria. Applied Mathematics and Computation, 180(1), 146-152.  
Achuthan, N., & Hardjawidjaja, A. (2001). Project scheduling under time dependent costs–A branch and 

bound algorithm. Annals of Operations Research, 108(1-4), 55-74.  
Alcaraz, J., & Maroto, C. (2001). A robust genetic algorithm for resource allocation in project scheduling. 

Annals of Operations Research, 102(1-4), 83-109.  
Buddhakulsomsiri, J., & Kim, D. S. (2006). Properties of multi-mode resource-constrained project 

scheduling problems with resource vacations and activity splitting. European Journal of Operational 
Research, 175(1), 279-295.  

Castejón-Limas, M., Ordieres-Meré, J., González-Marcos, A., & González-Castro, V. (2011). Effort 
estimates through project complexity. Annals of Operations Research, 186(1), 395-406.  

Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust resource-
constrained project scheduling. Computers & industrial engineering, 55(1), 183-194.  

Delgoshaei, A., Ariffin, M. K., Baharudin, B. H. T. B., & Leman, Z. (2014). A Backward Approach for 
Maximizing Net Present Value of Multi-mode Pre-emptive Resource-Constrained Project Scheduling 
Problem with Discounted Cash Flows Using Simulated Annealing Algorithm. International Journal 
of Industrial Engineering and Management, 5(3), 151-158.  

Demeulemeester, E. L. (2002). Project scheduling: a research handbook (Vol. 102): Springer. 
Hartmann, S. (2001). Project scheduling with multiple modes: a genetic algorithm. Annals of Operations 

Research, 102(1-4), 111-135.  
Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained 

project scheduling problem. European Journal of Operational Research, 207(1), 1-14.  
Icmeli, O., Erenguc, S. S., & Zappe, C. J. (1993). Project scheduling problems: a survey. International 

Journal of Operations & Production Management, 13(11), 80-91.  
Ke, H., & Liu, B. (2010). Fuzzy project scheduling problem and its hybrid intelligent algorithm. Applied 

Mathematical Modelling, 34(2), 301-308.  
Kelley, J. E. (1963). The critical-path method: Resources planning and scheduling. Industrial scheduling, 

13, 347-365.  
Kim, K., Yun, Y., Yoon, J., Gen, M., & Yamazaki, G. (2005). Hybrid genetic algorithm with adaptive 

abilities for resource-constrained multiple project scheduling. Computers in industry, 56(2), 143-160.  
Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods revisited: Theory 

and computation. European Journal of Operational Research, 90(2), 320-333.  
Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for the resource-constrained project 

scheduling problem: Classification and computational analysis: Springer. 
Laslo, Z. (2010). Project portfolio management: An integrated method for resource planning and 

scheduling to minimize planning/scheduling-dependent expenses. International Journal of Project 
Management, 28(6), 609-618.  

Lee, C.-Y., & Lei, L. (2001). Multiple-project scheduling with controllable project duration and hard 
resource constraint: some solvable cases. Annals of Operations Research, 102(1-4), 287-307.  

Lombardi, M., & Milano, M. (2012). A min-flow algorithm for minimal critical set detection in resource 
constrained project scheduling. Artificial Intelligence, 182, 58-67.  

Lova, A., & Tormos, P. (2001). Analysis of scheduling schemes and heuristic rules performance in 
resource-constrained multiproject scheduling. Annals of Operations Research, 102(1-4), 263-286.  

Patterson, J., Slowinski, R., Talbot, F., & Weglarz, J. (1989). An algorithm for a general class of 
precedence and resource constrained scheduling problems. Advances in project scheduling, 187, 3-
28.  

Peteghem, V. V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive 
multi-mode resource-constrained project scheduling problem. European Journal of Operational 
Research, 201(2), 409-418.  



520  

    

Policella, N., Cesta, A., Oddi, A., & Smith, S. F. (2007). From precedence constraint posting to partial 
order schedules A CSP approach to Robust Scheduling. Ai Communications, 20(3), 163-180.  

Seifi, M., & Tavakkoli-Moghaddam, R. (2008). A new bi-objective model for a multi-mode resource-
constrained project scheduling problem with discounted cash flows and four payment models. Int. J. 
of Engineering, Transaction A: Basic, 21(4), 347-360.  

Speranza, M. G., & Vercellis, C. (1993). Hierarchical models for multi-project planning and scheduling. 
European Journal of Operational Research, 64(2), 312-325.  

Sprecher, A. (2000). Scheduling resource-constrained projects competitively at modest memory 
requirements. Management Science, 46(5), 710-723.  

Sprecher, A., Hartmann, S., & Drexl, A. (1997). An exact algorithm for project scheduling with multiple 
modes. Operations-Research-Spektrum, 19(3), 195-203.  

Sung, C., & Lim, S. (1994). A project activity scheduling problem with net present value measure. 
International Journal of Production Economics, 37(2), 177-187.  

Talbot, F. B. (1982). Resource-constrained project scheduling with time-resource tradeoffs: The 
nonpreemptive case. Management Science, 28(10), 1197-1210.  

Ulusoy, G., Sivrikaya-Şerifoğlu, F., & Şahin, Ş. (2001). Four payment models for the multi-mode 
resource constrained project scheduling problem with discounted cash flows. Annals of Operations 
Research, 102(1-4), 237-261.  

Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project 
management: The trade-off between stability and makespan. International Journal of Production 
Economics, 97(2), 227-240.  

Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2006). The trade-off between 
stability and makespan in resource-constrained project scheduling. International Journal of 
Production Research, 44(2), 215-236.  

Yang, K. K., Talbot, F. B., & Patterson, J. H. (1993). Scheduling a project to maximize its net present 
value: an integer programming approach. European Journal of Operational Research, 64(2), 188-198.  

Yu, L., Wang, S., Wen, F., & Lai, K. K. (2012). Genetic algorithm-based multi-criteria project portfolio 
selection. Annals of Operations Research, 197(1), 71-86.  

 
  


	Input arguments and variables for the proposed model are defined as:
	Inputs
	Parameters
	Binary Variables
	Integer Variables
	Mathematical Model
	The proposed model in this research is a pertinent version of Peteghem and Vanhoucke (2010) where greedy selection of activities for using unscheduled resources is taken into consideration.

