International Journal of Industrial Engineering Computations 6 (2015) 503-520

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Minimizing makespan of a resource-constrained scheduling problem: A hybrid
greedy and genetic algorithms

Aidin Delgoshaei®, Mohd Khairol Mohd Ariffin, B. T. Hang Tuah Bin Baharudin and Zulkiflle Leman

University Putra Malaysia, Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, 43400 UPM, Serdang, Kuala Lumpur,
Malaysia

CHRONICLE ABSTRACT
Article history: Resource-Constrained Project Scheduling Problem (RCPSP) is considered as an important
Received January 16 2015 project scheduling problem. However, increasing dimensions of a project, whether in number of
ifgcrﬁ“{%dzlglgewsed Format activities or resource availability, cause unused resources through the planning horizon. Such

phenomena may increase makespan of a project and also decline resource-usage efficiency. To

Accepted May 10 2015 solve this problem, many methods have been proposed before. In this article, an effective

Available online

May 14 2015 backward-forward search method (BFSM) is proposed using Greedy algorithm that is employed
Keywords: as a part of a hybrid with a two-stage genetic algorithm (BFSM-GA). The proposed method is
Project Scheduling explained using some related examples from literature and the results are then compared with a
Resource-constrained forward serial programming method. In addition, the performance of the proposed method is
Backward Approach measured using a mathematical metric. Our findings show that the proposed approach can
Makespan provide schedules with good quality for both small and large scale problems.

Genetic Algorithm

© 2015 Growing Science Ltd. All rights reserved

1. Introduction

Classic Resource-constrained project scheduling problem, which is dealt with scheduling the project
activities considering time and resource constraints, is generalized for minimizing completion time of
the project (makespan) (Kelley, 1963). Normally, In RCPSP, activities are scheduled by considering two
types of constraints:

I) The executive priority relations between activities which are expressed by relation matrix
I1) The availability resources level for executing activities

As a consequence, final solution must be feasible in both priority and resource level. During the last few
decades, several researches have addressed the RCPSP models by considering varied objectives,
constraints and solution solvers using either optimizing or heuristic approaches (Demeulemeester, 2002;
Kolisch & Hartmann, 1999). In this manner, a peer review on RCPSP models, objective functions,
constraints and limitations and some approaches was prepared by Hartmann and Briskorn (2010). They

* Corresponding author.
E-mail: delgoshaei.aidin@gmail.com (A. Delgoshaei)

© 2015 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2015.5.002

mailto:delgoshaei.aidin@gmail.com

504

mostly focused on objectives such as minimizing C,,,,, minimal and maximal time lags and net present
value (NPV).

Traditionally, classical RCPSP models are developed for minimizing C,,,, (Patterson et al., 1989;
Talbot, 1982). But, during the last 2 decades, scientists have developed more RCPSP problems
considering varied objectives. Mainly, authors tackle RCPSP with four optimization criteria: 1) Cp,qx
minimization, where an attempt has been accomplished to minimize the total elapsed time among time
horizon of the project. 2) NPV maximization has been developed to maximize profit of the project while
positive and/or negative cash flows were taken into consideration (RCPSP-CF) (Delgoshaei et al., 2014;
Seifi & Tavakkoli-Moghaddam, 2008; Sung & Lim, 1994; Ulusoy et al., 2001; Yang et al., 1993) .3)
Cost minimization where declining of total cost of the project is the main objective of the problem (Laslo,
2010). 4) Optimizing robustness of solutions. For this purpose a trade-off between quality-robustness
and solution-robustness in RCPSP has been accomplished while safety times (spread time buffers
throughout the project time horizon) in project scheduling were taken into consideration (\VVan de VVonder
et al., 2005). Afterward, a similar research was accomplished focusing on resource constraint impacts
(Van de Vonder et al., 2006). RCSPs can be developed using single objective function or multi —objective
functions. In this manner, a time dependent cost structure for minimizing completion time by using extra
resources which cause faster execution of activities was developed by Achuthan and Hardjawidjaja
(2001). Afterward, 2 more versions of resource-constraint multi project scheduling problem were
developed in a way that in first version, the activity durations are considered fixed but in second one, a
project duration function is used to decrease the amount of resource allocating (Lee & Lei, 2001). Effects
of the serial and parallel scheduling schemes while using multi- and single-project approaches were
analysed later (Lova & Tormos, 2001). It was found that using parallel scheduling schemes and multi-
project approach could provide a basis for managers to minimize mean project delay or multi-project
duration increasing. Hence, Kim et al. (2005) proposed a hybrid of GA with fuzzy logic controller (FLC-
HGA\) to solve the resource-constrained multiple project scheduling problem (RC-MPSP). The proposed
approach worked based on using genetic operators with fuzzy logic controller (FLC) through initializing
the revised serial method with precedence and resources constraints. Afterward, an attempt has been
accomplished for minimizing C,, 4, as well as maximizing solution robustness by increasing float time
maximization (Abbasi et al., 2006). In another study, a two-stage algorithm was developed for RCPSP
while minimize C,,4,, considered as an acceptance threshold for the second stage and then, in next stage,
a set of 12 alternative robust predictive indicators was employed to maximize robustness of the project
(Chtourou & Haouari, 2008). Ke and Liu (2010) focused on project scheduling problem while fuzzy
activity duration times were taken into consideration. They used fuzzy concepts for minimizing C,, 4, in
an integrated fuzzy-based GA.

(Icmeli et al., 1993) discussed that adding resource constraints increase the complexity of RCPSPs and
in many cases such problems cannot be solved by regular optimizing algorithms. Afterward, Kolisch
(1996) argued that RCPSPs can be considered as an NP-hard problem while more than one none-
renewable resources are taken into account. There are also some other parameters of project complexity
that should be noticed as other managerial factors (Castejon-Limas et al., 2011). Traditionally, many
problems were solved using branch-and-bound (B&B) algorithms (Speranza & Vercellis, 1993;
Sprecher, 2000; Sprecher et al., 1997) but heuristics and metaheuristics were then found as good ways
of solving RCPSPs. Perhaps GA was used more than other metaheuristics for solving RCPSPs. As a good
example, Alcaraz and Maroto (2001) developed a GA for solving single mode RCPSP. They showed that
GA could efficiently solve RCPSPs in an acceptable computation time. Hartmann (2001) employed GA
for minimizing C,,,4, in multi-mode RCPSP (MRCPSP). In next step, a local search extension motor is
used for improving performance of the proposed GA. Peteghem and Vanhoucke (2010) used GA for
minimizing C,,,, iIn MRCPSP by assuming pre-emptive resources where activity splitting was allowed
through the optimization process. GA was then used for solving a multi-criteria project portfolio selection
problem when project interactions, in terms of multiple selection criteria, and preference information, in
terms of the criteria importance, were considered. The results showed that it could provide effective
solutions for the proposed problem (Yu et al., 2012).

A. Delgoshaei et al. / International Journal of Industrial Engineering Computations 6 (2015) 505

In this article, a new method for rescheduling RCPSP to improve C,,,,, using unused resources where
all resources were considered pre-emptive is executed. For this purpose, we developed a backward
method by employing a hybrid greedy search and GA, which was formulated as a non-linear mixed
integer programming (NL-MIP) model.

2. Materials and Methods

The mathematical model, proposed in this paper, is developed in a way that activities can be split through
planning horizon where time horizon is divided to T slots to be proper for tracking the rescheduling
process. It should be emphasized that, the proposed model is developed as single activity mode to make
investigating of the proposed method easier.

The assumptions of the model are defined as follow:

. Model is presented in AON (Activity on Node) structure.

. Resources are renewable.

. The renewable resources have limited capacities.

. Activities are allowed to move only in their free float time.

. Activity splitting is allowed.

. All movements have been considered in both backward and forward modes respecting to the
precedence relations.

. Initial scheduling of activities will be performed using forward serial programming.

. Rescheduling over C,,, is prohibited.

OO U WN P

oo

Input arguments and variables for the proposed model are defined as:

Inputs
i € nactivities
r € Rresources
t €[1,..,T] Time slots

Parameters
R;,, Maximum amount of resource type k
1: . Required amount of resource r for performing activity i in each time slot
d; Executive duration of activity i
TH Time horizon
P; Precedence vector for activity i

Binary Variables
. {1 if activity i executed in time slot t
Lo Otherwise

Integer Variables

ES;: Start time of activity i

Mathematical Model

The proposed model in this research is a pertinent version of Peteghem and Vanhoucke (2010) where
greedy selection of activities for using unscheduled resources is taken into consideration.

n TH (1)

min: Z Z t.Y,

i i=1t=1
subject to

ES;>1Vi€n)

506

ES; 2 (P,j.max{y(t.Y;,)); Vi,j € P (3)

TH n (4)
ZZYM.ri_k <Ry; VkEK

t=1 i=1

Y. ES;<t, Vien,teTH 5)
Yi.ES;=d;; Vien,teTH (6)
ES;: integer @)
Y,.: bin (8)

For the proposed model, minimization of C,,,, by considering renewable resources is considered as the
main objective. Using t as a part of objective function (Y; .. t) helps model use backward movements for
minimizing C,,,, as early scheduling of activities causes lower amounts for t and consequently lower
value for the objective function.

First constraint in this model is defined as determination of initial start of each activity, which helps
model start from a feasible solution. Second constraint ensures the feasibility of the activities precedence
relations. Using the term maxthhl(t. Yj,t) helps activities start not earlier than their predecessors last
execution day. It is important to know that using standard definition of early start of activities (ES; =
ES; +d; while i € P;)is not suitable for applying for allowed activity splitting RCPSPs and may cause

wrong results. To explain more, suppose it is decided to calculate the early start of activity D in 2 modes
where in the first mode the activity splitting is forbidden while in the second mode it is allowed (Fig. 1).

A A A A A A A A
B B B B B B B B

cC cC Cc C ﬂ|cc||T

D D D D D D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Fig. 1. Comparing Different Styles of Calculating ES with and without Activity Splitting (Left to Right)

In the left Gantt of Fig. 1, while splitting is not allowed, ES,, will be calculated correctly by using the
standard formula (ES, = ES; + d.). But, as seen, calculating early start of activity D while activity
splitting is allowed (right figure) will not be 13 das anymore since activity C is split two times in days
10 and 13 and therefore it cannot be finished earlier than day 14. Consequently, activity D cannot be
started sooner than the day 15. Therefore, to prevent such error, the above formula is modified for
calculating ES of each activity considering the real planning dates, Eq. (9):

ES; = max[™ (Y. t); V(i) E€EP (9)

The third constraint ensures that activities are scheduled considering resource availability in every time
slots. The fourth constraint is used to find a logic relation between Y; . and ES; which ensures that Y; ,
will not start earlier than the calculated early start of each activity. The fifth constraint guarantees that
total duration of activity splits should not exceeded than the original duration of the activity. For example,
if duration of the activity C is assumed 4 days (Fig.9; left image), then the sum of activity splits of the
mentioned activity should not be exceeded than 4 days after scheduling accordingly (Fig.9; right image).
The sixth and seventh constraints are set for ES; variables to stay integer and Y; . to be binary.

A. Delgoshaei et al. / International Journal of Industrial Engineering Computations 6 (2015) 507

3. The Proposed Method

Genetic algorithms (GA) are iterative search procedures that work based on the biological process of
natural selection and genetic inheritance, which maintain a population of a number of candidate members
over many simulated generations. Hopefully, good characteristics of the population members that will
be retained over the generations can maximize a pre-determined fitness function.

In general, the main steps of the proposed greedy-based GA procedure are (Fig. 2):

Step 1) Create an initial population,
Step 2) Use selecting operator to update tournament list,
Step 3) Run greedy algorithm as crossover operator of GA:
e Run Selecting operator (Crossover)
e Run Feasibility check operator
e Run Solution check operator
Step 4) Calculate mutation probability function,
Step 5) Run mutation operator (if needed),
Step 6) Terminate the searching process if stopping criteria are met, otherwise go to Step 2.

Selecting Cross over Mutation
Operator Operator Operator
Pas:

Reject

Generate
Initial

Population

Stopping
Criteria

' Finish '

Fig. 2. Structure of the Proposed GA-based Method

3.1 Population Size

Generally metaheuristic algorithms quickly respond to small size or relaxed resource RCPSPs but while
large scale problems are taken into account choosing appropriate population size for such algorithms
plays essential rule to solve experiments. For this purpose a GA coding operator is developed which
suggests the suitable, but not necessarily the best, population size according to the equation below:

Max(renewable resource demand;)

Vo 10
Number of Generations ' (10)

Eqg. (10) consists on the largest frequency of the resource demands. The genetic algorithm maintains a
collection (population) of solutions in each generation until the end of the searching process.

3.2 String Representation

The proposed GA requires a unique solution string representation scheme. In this study, authors applied
binary representative scheme which seems appropriate to present strings of solutions. The encoding of
solutions in the proposed procedure is ‘one-to-one’, which refers to solutions that are represented by n
(activity number) binary strings as chromosomes. Chromosomes contain sets of t genes where each gene
is a binary digit in its nature:

_(1; if activity i performs in date j (11)
gen(ijkip.g) = {0; else

508

where p demonstrates population size and g presents generation. Fig. 3 shows an example of encoding
and decoding chromosome strings:

A A A A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 B B 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 c C C cC C 0 0 0 0 0 0 0 0 0 0 0
Encoding ¢ T Decoding

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Fig. 3. Sample of Encoding and Decoding Chromosomes Strings

3.3 Initial Solution Generator

During the first stage, the proposed approach provides n (pop-size) initial time networks which are both
precedence- and resource-feasible but are scheduled in maximum time horizon that is defined as upper
bound (UBp) for the problem. Note that each solution in this stage contains a set of chromosomes that
meet priority requirements:

UBpg = Xj=1maxd; for all (i)belongs to Productgeqyencematrix (12)

Using upper bound strategy in this step will guarantee precedence- and resource-feasibility for initial
solutions and at the same time it can be considered as a good threshold for measuring efficiency of the
solutions in final stage.

solution_generation_pop (:,:,1,1)

Aj1 1 1 1 0 0 0 O 0O O O OO OO OO O0O OO0 0O O0OO0O 0O SO0 0O O0O D0 O O0O OO0
B|{o o o o o0 o0 00 000 0 o0 0 o0 0 1 1 0 0 0 0 0 0O O0OOTU OUOTUOTUOSFWO
c,o o o o o0 o0 o0 o011 1 1 1 1 0 00 0 O0OO0 O0OO0OOWOU OO OUOT O OO O0OTO
pjo o o o 1 1 1 1 0 0 O 0O O O OOUOTU OTU OOUOTU OOTU OO OOTU OOTU O OO OO
ElO O O 0 O 0O o o o o o o0 o0 0 o0 0 0 o0 00 0121 1 1 0 0 0 0 0 o0 00O
F{lO 0O O 0 0 0 OO0 OO0 0 O O O0OO0O 0 00 00 000 01 1 1 1 00 000
Gfo o o o o 0o o o 0o 0 060 0 121 1 1 0 00 0 0 0 00 0 0 0 0 0 0 00O
H{O O 0 0 o0 0 o o0 O o0 o o o o o0 0O o0 0 0 0 0 o0 00 0 0 0 0 1 1 0 O
l1yo o o o 0 0o 0o 00 0 0 0 OO0 OO OO 11 1 1 00 0 0 0 00 0 0 0O
Jio o o o o 0 0 0O OO OOWOFW OOTU OW OOU OUOOW OWUOW OO OOUOO OOTU OOTOOO OO0 1 1
solution generation pop (:,:,2,1)
Aj1 1 1 1 0 0 0 O O O O OO OO O0O O O0O O O0O O OO0 O O0O 0O O0O O0OD O O0O OO0
B|{o o o o o0 o0 o0 o0 000 0 o0 1 1 0 0 0 00 0 OO0 0 0 O0O0O 0 O0 0 00O
c,o o oo o0 o0 o0 o011 1 1 1 1 0 00 0 0 0 00 O0OOTO0OOU OOTU O O0OOTO0OTO
pjo o o o 1 1 1 1 0 0 O 0O O O OOOU OTU OOUOTU OO OO OO OOTU OOTU O OO OO
E|lO O O 0 O 0O o o o o o o0 o0 0 o0 0 0 o0 00 0 0 1 1 1 0 0 0 0 0 00O
F{lO 0O O 0 O 0 o0 o o o o0 0O o0 0 o0 000 1 1 1 1 0 00 O0OO0OTO0OO0OO0O O0OTUO
Gfo o o o o 0o o 0o 0 06 060 0 0 01 1 1 0 0 0 0 00 0 O0O0 00 0 00O
H{O O 0 0 o0 0 o o0 o0 o o o o o o0 0O o0 0 0 0 0 o0 00 0 11 1 0 0 0 0 O
l1yo o o o 0 0o 0 00 0 O 0O O0OO0OOOOOO OOU OOO OO OOOW OOTI11 1 00
J|10 0 O o o o o0 o0 o0 o000 o0 0000 0 00 0 0 0 0 o0 00 0 o0 1 1

0
Fig. 4. Samples of Using Upper-bound in Forward Serial Programming

Fig. 4 that is retrieved from optimizing process of an experiment, shows two members in a generation
for an example contains 10 activities. It can be seen, activities are scheduled in a serial mode among time
horizon without time overlapping. This will avoid resource over allocating in time networks that will
remain through optimization process.

Tournament List and Fitness Function

The selection operator is defined to select parents from the population in generations. Individual's

selection procedure operates as follows:

e Time-based selecting operator which is developed to select those activities that have positive free
slack after scheduling by forward serial programming in first stage. Such activities can move
backward or forward respecting to the precedence matrix and without affecting the critical path(s).

a) Suppose activity X has been scheduled to start at ES;. i € Py are the defined as predecessors of
activity X.
b) FSx = min (LF;).

LEPy

c) If FSx > 0 then Tournamet. list; = X.

A. Delgoshaei et al. / International Journal of Industrial Engineering Computations 6 (2015) 509

Note that population size operator will select individuals in the way that population size remained fixed
through the optimizing process.

3.4. Crossover Operator

The main genetic operator is the crossover, which has the role of combining pieces of information from
different individuals in the population. In this article, crossover operator will perform as a greedy
algorithm. To explain crossover operator, we must first explain Precedence Constraint Posting (PCP) that
is considered as an effective strategy for minimizing C,,,,, (Lombardi & Milano, 2012; Policella et al.,
2007). In PCP, sets of initial precedence constraints or precedence operators are amplified through
solving process to prevent resource over-allocating. In this research we used greedy algorithm for
creating PCP (

Table 1). Normally, greedy algorithms must have at least (but not last) the following 3 steps: selecting
operator, feasibility check and solution check.

I) Selecting operator (backward movement): when an activity is selected randomly for crossing over, the
first step is to find maximum available backward movement which is a maximum of LS; cprecegence i- AS
a result, procedure finds the maximum possible time slots for backward movements called TS;. Activity
slots are scheduled for backward movements for T'S; members from minimum member sequentially.

I1) Feasibility Check: the resource availability operator is employed to check the availability of slot
backward movement using the equation:

Sinc<Rgk—15, fort €TS; (13)

I11) Selecting operator (forward movement): the function of this operator is avoiding resource confliction
among activities during a backward move where such transferring causes resource over-allocation. For
this manner, if the resource availability constraint does not satisfy for each member of TS; then PCP
operator will find the nearest forward neighbor (time slot) to set the activity.

Solution Check: in this step the value of the solution will be checked using fitness function. In this
research we considered C,,,, as fitness function that can be calculated as sum of time slots of activity
execution of all activities:

TH n 14
S et @
t=1 i=1

Table 1
Pseudo-code for Employing Greedy Algorithm in PCP Operator
= Selecting Operator
FORt € (max(LFpgrp), ES;)
Calculate MCS
= Feasibility Check
For Ry,
IF 1xy < R — X717 (0, k)
= Solution Generating Operator

Q=1
Else
a;=0

= Solution Check

To illustrate the greedy movements, suppose a time segment of proceeding problem that an activity (let’s
call D) is scheduled for a backward movement to use opportunity date LSz + 1, where activity B was

510

defined as a predecessor of activity D. The resource availability for backward movement (see black arrow
in left Gantt of figure 5) is enough to let activity D being started at (LS + 1) € TS;, but for the next two
coming days since the all resource capacity is filled by activity A, the backward operator will not let
activity D to continue until activity A is finished (see Fig. 5, the middle Gantt). Hence, forward Operator
seeks for the first possible time to schedule activity D which is LS, + 1. This phenomena causes a split
in activity D (see Fig. 5, the right Gantt) but will demonstrate using remain resource among TS; which
will cause increasing usage of remained resource during planning horizon.

BBBB BBBB BBBB
cccccc cccccc
<4—— [DDDD D ¢— DDD - E W
D 4—
DR o
D %

Fig. 5. Opportunity for Backward Movement (Left Gantt); Activity D is Not Allowed Shift Back to LF(B)+2
(Middle Gantt); Activity “D” Rescheduled to LF(A)+1 instead (Right Gantt)

3.5 Mutation Operator

The mutation operator is used to rearrange the structure of a chromosome which possibly is helpful for
escaping from local optimum or crowding phenomena. In this article, a single bit string mutation is used
to rearrange the position of two gens in a chromosome and to swap their contents. The probability
function of mutation operator is formulated as below:

Cmax(c)
max(Cmax(P,), Cmax(Pz))>

Prob; = max <k, (15)

where G, (¢) is the total makespan for a new chromosome and C,,,,, (P;) & Cp,q(P,) are the achieved
makespan for parents and k is a parameter between 0 and 1.

This equation prevents GA to leave a certain solution space area even if the hybrid algorithm cannot find
good solutions inside the area. Consequently, if crossover operator does not improve the new born
chromosome the chance of using mutation operator will increase. Such typical function can help us pass
local optimum traps. The developed mutation operator, replaces the it* gene in the string (Fig. 6):

DDHE DDD DDD

EEE‘ EEE EEE

123456 7 8 91011121314151617 123456 7 8 91011121314151617 123456 7 8 9 1011121314151617

Solution 1 Solution 2 Solution 1 (After Mutation)

Fig. 6. A typical Bit string Mutation Operator

As seen, in this example by replacing the solution string of activity D in solution 1 with the same activity
string in solution 2, the algorithm find an opportunity to improve the C,,,, in solution 1. In large scale
problems while there are many activities can be considered for mutation replacements in each solution,
such replacements sometimes lead to achieve better C,,, -

A. Delgoshaei et al. / International Journal of Industrial Engineering Computations 6 (2015) 511

3.6 Stop Criteria

The searching process will be terminated if at least one of these conditions happens:

I) The maximum number of generations is reached.

I1) Activities are scheduled in a way that there are no further opportunity for using remain resources
during time horizon which means no improvements are possible.

It is important to consider the steady condition of the designed algorithm while solving experiments. For
example, if two activities, which are scheduled simultaneously and over allocated through their scheduled
period, are bounded by a common successor, the program would never meet a steady condition since it
got stock into a loop:

|[ES(A) — ES(B)| < |D(4) — D(B)| (16)
Resource
A
Resource f=— — — — I— —! B - I—)

B B
| N
1A g
L |
I I || » lime

St ES(A) ES(B) LF(A) LF(B)

Fig. 7. A Graphical Sample of Unsteady Condition of RCSP

Fig. 7 shows that under mentioned condition, activity A and B will be over-allocated during the
scheduling process. This means that RCSP system will fall into an unsteady state but it will not pass it.
The performance of the proposed hybrid is shown in Table 2.

Table 2
Pseudo Code of the Proposed GA

Procedure:
Initialization of i, t, k, pop-size, Generation
Begin
Calculate the UB
Select n initial time network (n is pop-size)
Calculate the Resource-remained,
for G € Generation
forn € pop-size
Rand parent(p); Rand parent(q)
Call ES operator
Chromosome(p)= Yjipe-horizon gen(j, j, parent,, generation)
Chromosome(q)= Zj“:"l‘e'h"riz"" gen(i, j, parentg, generation)
calculate ES,, , ESy
Call Remained path operator:
t,: min (ES(Chromosome(p), Chromosome(q)))
t,: max (LF (Child(j))); j € Precedence(i)
for At
ifrex < R — (% € precedence(i) Tjk)
gen(l, t, pop-size, generation)=1
else
Call PCP availability operator:
Set make split on chromosome(j)
find first possible t
set gen(l, possible-t, pop-size, generation)
end
calculate Cpay
update Gantt
Generation=Generation-1
check stopping criteria

end
end
End

512
3.7. Using Taguchi method for estimating input parameters

In this research a Taguchi method is used using Minitab®17 in order to survey impacts of input
parameters of the proposed hybrid method on completion time of the developed model and also estimate
appropriate values for setting the input parameters. For this purpose a Lq (3”4) orthogonal optimization
design is employed (Fig. 8). Table 3 shows the factors and their level in use for the proposed hybrid
method.

Table 3

The factors and the levels considering for Taguchi method
Factor Level 1 Level 2 Level 3
A)Number of Generations 5 10 15
B) Pop-size 3 6 9
C) Mutation Rate 0.1 0.2 0.3

Results for: Worksheet 1
Taguchi Design

Taguchi Orthogonal Array Design
L9 (3"3)

Factors: 3

Runs: 9

Columns of L9(3"4) Array

123

Fig. 8. Specifications of the used Taguchi method

Table 4 shows the experiments designed by Taguchi method. The value R shows the minimum C,,,
observed while using the suggested parameters.

Table 4
Results of implemeting the experiments for Taguchi method
Factor
Experiment Number Number of Generations Pop-size Mutation R
(A) (B) ©)
1 1 1 1 89
2 1 2 83
3 1 3 3 76
4 2 1 2 81
5 2 2 3 78
6 2 3 1 74
7 3 1 3 75
8 3 2 1 72
9 3 3 2 67

Fig. 9 provides details of analyzing the results of the experiments. As seen, all factors A (the number of
generations), B (population size) and C (mutation rate) can improve C,,4, but with different severity
levels. The normal plot of effects that is drawn in Fig. 10 indicates that all factors (the number of
generations, population size and mutation rate) have significant impact on the quality of the solutions in
the proposed GA but with different values.

Taguchi Analysis: R versus A, B, C

Response Table for Signal to Noise Ratios Response Table for Means Response Table for Standard Deviations
Smaller is better

Level A B C Level A B C

1 -38.33 -38.22 -37.64 1 82.67 81.67 78.33 Level A B C

2 -37.80 -37.79 -37.69 2 77.67 77.67 77.00 1 * * *

3 -37.06 -37.17 -37.65 3 71.33 7233 76.33 2 * * *

Delta 127 105 0.19 Delta 1133 933 2.00 3 * * *

Rank 1 2 3 Rank 1 2 3 Rank 2 2 2

Fig. 9. Results of analysing the achieved data for designed experiments

A. Delgoshaei et al. / International Journal of Industrial Engineering Computations 6 (2015) 513

The downward trend line of factor A in Fig. 11 has a steep slope which reveals the number of generations
has the maximum impact while minimizing the C,,,,,. Similarly, number of populations can influence on
minimizing C,,,, but with less severity. Since the mutation operator has been used rarely, it is obvious
that its effects are less than what observed for the other investigated factors. After implementing the
method, the regression equation in uncoded Units based on actual values can be determined as:

R=77.63-7.125A-2.625B - 0.8750 C - 0.2070 AxB - 0.1250 AxC - 0.1250 BxC - 0.1250 AxBxC (17)

Normal Plot of the Effects Main Effects Plot for Means
(response is R, a = 0.05) Data Means

99 A B C

Percent
3
(]

[1]

w s
838
L
pd
Mean of Means
3

10 mA

-16 -4 -2 -10 6 -4 -2 0

8 p
Effect]

1 2 3 1 2 3 1 2 3
Lenth's PSE = 0375

Fig. 10. The normal plot of the effects between input Fig. 11. The main effects plot for showing the impact
parameters for the proposed hybrid method of levels of input parameters

As seen, in this equation, the interactions between factors can effect on the Y (the expected C,,,based
on actual values) in a constructive manner. Therefore, for the larger scale experiments the number of
generations and the number of population must set maximum and for medium scale problems the focus
is on increasing the generation numbers where possible. The mutation rate is considered 0.1 constant for
small and medium size problems and for the large scale problems it is considered 0.3.

4. Discussion and Result

To examine and verify robustness of the proposed backward-forward method in improving C,4, In
limited time projects while all resources are considered limited and renewable, several problems in small,
medium and large sizes are solved by the Matlab® R2009a software on an Intel® Core i7 laptop which
is supported by 4 Mb RAM. The Upper bound is considered as time horizon of each problem. To examine
the proposed approach, 7 series of numerical examples are designed and solved with 6, 10, 15, 18, 20,
30 and 50 variables. For evaluating the efficiency of proposed model each example is solved under two
conditions where all the criteria are considered the same but resource availability. The results, then,
checked with results of forward serial programming method (Table 5 and Table 6). At first stage, the
initial solutions that are results of using initial solution engine are shown in navy blue time networks. In

Activity

i - - '||'F-.

C max C max C max

Fig. 12. Results of Serial programming, BFSM-GA (Active RCPSP) and BFSM-GA (Relaxed RCPSP)
for Example 11 with 30 variables (Left to Right)

514

Activity

C max

C max

C max

Fig. 13. Results of Serial Programming, BFSM-GA (Active RCPSP) and BFSM-GA (Relaxed RCPSP)
for Example 13 with 50 Variables (Left to Right)

Fig. 12 and Fig. 13, results of solving some experimental problems are provided considering 3 status
considering results of serial programming, (left Gantts), rescheduling while resource constraints are
considered and activity splitting is allowed (middle Gantts) and rescheduling while resource constraints
are relaxed (right Gantts). As seen, the proposed approach can effectively reschedule problem to find
minimum C,, .. But, in second runs, where problems are considered in a way that one or more resources
are limited, show how the proposed approach can effectively use remained resources by backward and
forward movements which cause activity splitting whenever is needed.

Table 5
Numerical Examples for the Proposed Backward-forward Method
e B D GA . Stead
Example & & Resources) e Mutation teady
No. = S Capacity* Resource Usage Precedence Matrix SP rate Amakespan Generation
<8 Gen "% ¢
size ~“max
[453654;
1 6 3 8108 222422; Act Pre. Act Pre. 14 3 3 14 0.1 0 2
546534] A - D B
[453654 B A E ¢
2 6 3 20025720 235436 c A F D-E 14 3 3 10 01 4 2
546534]
. Act. Pre. Act. Pre.
310 2 1010 [3325;4635;3553?; 7 - B BC 2 5 4 2 o1 11 2
B A G D
[3546545265 ¢ A H EF
; D A I G
4 10 2 3030 5254353436] 2 5 4 17 0.1 15 2
E B J H,I
Act. Pre. Act. Pre.
[345768546545265;
5152 M G, e sha36) A 5] D 54 7 8 29 01 25 2
B A J EF
[< A K G
345768546545265; D A L G
6 15 2 40/50 4 7 8 23 01 31 2
325235426353436] E B M H
F B N JKL
[765876346574567
346; Act. Pre. Act. Pre.
5786457635467856 7 A . 3 F
7 18 3 1520010 76 A A by G 79 10 6 57 01 2 5
8365476457346566 ¢ A L H
D M H
[765876346574567 E B N |
. F c 0 J
5786457635467856 G © P K
8 18 3 50/60/40 76 0 5 o K 79 10 6 31 01 48 2
8365476457346566 I E R LMNOPQ
47]
[564768756457635
64765; Act. Pre. Act. Pre.
8765756476875645 A : K F
9 20 3 152010 T6aa A A v . 91 15 6 53 01 38 7
5465764534657645 © A M G
3465] D A N H
[564768756457635 E B 9 '
64765 g E g J'K
10 20 3 sooso 87OO7O01I0875645 H D R LM 91 15 6 28 0.1 63 2
5465764534657645 ; 'é‘ ? N'g’:
3465] QR,

Sp: Steady point (iteration)

Act.: Activity ~ Pre.: Predecessor

A. Delgoshaei et al. / International Journal of Industrial Engineering Computations 6 (2015)

515

This procedure can decline makespan. Although the approach rearranges activities in order to maximum
the usage of remained resources while minimizing C,,,,, but it is obvious that C,,,, can experience its
lowest value while resource constraints are relaxed (right Gantts).

Table 6
Numerical Examples for the Proposed Backward-forward Method (Continued from table 5)

> GA .
9 @ Resources . Mutation Steady
= O *Ak
No. g £ Capacity* Resource Usage Precedence Matrix SP Pop- rate Amakespan Generation
< 2 Gen size ‘max
[5647687564576346547656 Act. Pre. Act. Pre. Act. Pre.
78564765 A - K E U LM
130 2 2025 g765764563465475647687 B A L F V o 144 15 6 55 03 89 9
56457634] C A M F W P
D A N G X QR
E A O H Y ST
[5647687564576346547656 F B P H Z NU
78564765 G B Q | AA VW
1230 2 800 g765764563465475647687 H C R J AB XY 44 15 6 36 03 108 2
56457634] I D S J AC ZAA
D T K AD AB-AC
[7658763465745673465786
4576354678567983654764 Pre Pre
573465; Act. . Act. . Act. Pre. Act. Pre.
6734657864576358763465 A - P H AE T AT AP
7456734657467467856783
2013072 654356: B A Q I AF UV AU AP
0130720 5537634576358746574567 C AR JAC W AV AGAR
13 50 5 3465746746785786457635 @ w15 o 79 03 128 .
130740 467856, DA S JAH XY AW AT-AU '
5746746785678365435465
7456734657864576358746 E A T K Al ZAA AX aAS.AW-
574564 o
8763465745537634576358 F B U K Al AA
7465673465746746785354
657456] G B V L AKABAC
H B W M AL AD-AE
[7658763465745673465786
4576354678567983654764 I C X N AMAF-AG
573465,
6734657864576358763465 J C Y N AN AH-AI
7456734657467467856783
80/90/90 654356 K D Z 0-PAO AJ-AK
“ 50 s 5537634576358746574567
oy 3465746746785786457635 L EAAQ AP AL 207 15 9 43 03 164 2
467856; M E AB R AQ AM
5746746785678365435465
7456734657864576358746 N F AC S AR AM
574564
8763465745537634576358 O F-GAD T AS AN-AO
7465673465746746785354
657456
Table 7

Solution String of the Experimental Case Studies with and without Activity Splitting

Ex’z\iln(;[.::le P(rgtéli;ggﬁl;s Solution String

1 RC A-B-C-D-E-F

2 RR A-B-C-D-E-F

3 RC A-B-C-D(1)*-E(1)-D(2)F-E(2)-G-H-I-J

4 RR A-B-C-D-E-G-F-I-H-J

5 RC A-B-C-D-E-H-F-G-I-J-K-L(1)-M-L(2)-N-O

6 RR A-B-C-D-E-F-H-I-G-J-K-L-M-N-O

7 RC A-B-C-E-D-I(1)-F-G-H-K-1(2)-L(1)-J-L(2)-O(1)-M-N-O(2)-P-Q-R

8 RR A-B-C-D-E-F-G-H-I-K-J-N-M-P-Q-O-R

9 RC A-B-C-D-G(1)-E-I-F-J-G(2)-H-L(1)-K-L(2)-Q-M-N-R-O-P-S-T

10 RR A-B-C-D-G-E-F-H-I-K-L-M-J-P-O-R-N-Q-S-T

1 RC A-B-C-D-E(1)-F-H-E(2)-1(1)-J(1)-G(1)-K(1)-G(2)-L-M(1)-N-H(2)-1(2)-P-R-V-J(2)-Q-K(2)-M(2)-
R(2)-S(2)-T-U(1)-Y(1)-Z(1)X-U(2)-V(2)-W-Y(2)-Z(2)-X(2)-AB(1)-AA-AB(2)-AC-AD

12 RR A-B-C-D-E-H-F-K-I-J-P-T-N-R-S-V-L-M-Q-W-Y-AA-U-X-Z-AB-AC-AD
A-B-C-D-1(1)-F-G-E-H-1(2)-L-M-1(3)-J-P(1)-Q-V-K-R-S(1)-N-T-AB-0-U(1)-X-Y(1)-AE(1)-P(2)-Q(2)-Z-S(2)-

13 RC AA-U(2)-AC-V(2)-Al(1)-W-AC(2)-AF-Al(2)-Y (2)-AG-AC(2)-AD-AE(2)-AL-AM-AP-AQ-AR(1)-Al-AN(1)-
AR(2)-AJ-AU-AT(2)-AN(2)-AK-AO(1)-AS(1)-AO(2)-AR-AS(2)-AV-AT(4)-AU(2)-AW(1)-AV(2)-AW(2)-AX

14 RR A-B-C-D-E-F-G-H-I-J-L-M-K-N-0O-R-S-T-U-V-P-Q-W-AC-X-Y-AB-AG-AD-AE-AF-Z-AA-AH-AK-AL-AI-AJ-

AM-AP-AO-AN-AQ-AR-AT-AU-AS-AV-AW-AX

*RC: Recourse Constrained
Note activities that are taken apart shown in parenthesis

**RR: Relaxed Resource

516

Using the proposed backward-forward method, whether the constraint resources are considered relaxed
or not, the algorithm started from a high point which was calculated using the upper bound of the
problem. The GA, then, experienced a sudden drop until a significant low level of C,,,, achieves (Fig.
14 and Fig. 15). The procedure then continued to find better solutions using remained resources. Such
procedure provides a high speed of convergence at early stage of solving process. In addition, as shown
in red trend lines, problems were designed in a way that one or more resources are limited so that they
can significantly affect rescheduling process. In all the cases, using proposed backward-forward method,
optimal or semi-optimal solutions were obtained in a reasonable speed of convergence. Table 7 represents
the modified schedules for the experiments of table 5 and 6.

Cmax Cmax
160 150 T

120

o} | 30/2/ 80, 70 1 sof
| ol . 30/2/ 20, 25
- - - - - - - - - - - - a0l m

: ' Ty Ger-1erat|on
ables)

L L L) =
n B 4 +5 Ge

= = A = Generation oL s
Fig. 14. Results of Cmaa;< for Example 11 & 12 (30 vari

| 120 \
100 \

sof | 50/5/ 80, 90, 90, 80, 90 1 or
B0} 5 B0 = - = - - - -
\l- L L] L L]

50/5/ 20, 30, 20, 30, 40

2-Generation 150 L

Fig. 15. Results of C,,, for Example 13 & 14 (50 variables) ceneraton
Designing a powerful algorithm depends on setting appropriate initial parameters of the solving method
which are population size and generation number and mutation rate. Fig. 16 Shows the power-graphs
for all examples, high value of r-square (R%) show high speed of solution convergence that is a
consequence of employing backward and forward method which means the proposed method follows
a logical way to find the optimal solution (or near optimal solution) and no illogical answer will reveal
during the procedure of generation otherwise the amount of R? will significantly dropped.

250
200

150

. -
et ————————
— b—-——-_.__.__;-_—____4_-—-
w0 y= 2113.,?:*:(”-3-*’ y = 184.66x057
R?=0.7776 50 R = 0LGOB

1 2 3 4 5 [7 8 9 10 11 12 13 14 15 1 2 3 a4 5 B 7 a 9

Fig. 16. Power Graph for Backward-Forward Approach (examples 12 and 14)

A. Delgoshaei et al. / International Journal of Industrial Engineering Computations 6 (2015) 517

250

200

150

Cmax

100 M Serial Pro. Method

The proposed method
o +iLE I I .

123 456 7 8 91011121314

Experiments

Fig. 17. Comparing the Results of Serial Programming Method and the Proposed Method

Findings in Fig. 17 reveal that in all cases, BFSM can provide better feasible solution strings by moving
activities through resource calendar. In addition, while RCPSPs are active which means one or more
resources can be over allocated through the planning horizon in some time slots (problems 3, 5, 7, 9, 11
& 13), the amount of makespan saving is significantly less than relaxed RCPSPs where all resource
constraints are relaxed (problems 2, 4, 6, 8, 10, 12 & 14).

160 ¢
140
120
100 ©
80 F
~ ——_
40 F
20
0 E

6/3

10/2

15/2

18/3

20/3

30/2

50/2

MwWs MW(0)s

Fig. 18. Impacts of Activity Splitting Ability on Minimizing Cmax in Studied Cases

Negative slope of graphs shows that using activity splitting ability allows managers to save C,qx
significantly. In addition, by increasing number of activities and resources the degree of the slope which
reveals speed of the convergence increases (Fig. 18).

Table 8
Results of Computational Experience
Best Results (C,
Ref. A RE RC (Cmax) CcPU
SP BFSM AC time
Abbasi et al. (2006) 50 1 10 156 55 101 5.351
Shi-man et al. (2012) 8 4 9/20/20/20 51 29 22 0.751
Shi-man et al. (2012) 12 2 6/8 88 55 33 2.141
Wu et al. (2011) 27 3 6/6/6 89 63 26 2.57

For evaluating the performance of the proposed method, we used the performance measure called
Makespan improvement that was proposed by Buddhakulsomsiri and Kim (2006):

Makespan without splitting — makespan with splitting (18)
Makespan Improvement = - —
makespan without splitting

518

Using makespan improvement ratio (Table 9), a supreme improvement can be seen while activity
splitting is allowed which means that BFSM-GA can effectively use unfilled resource capacities
respecting to activity priorities. Note that for the first problem, since both states of makespan with and
without activity splitting reported the same structure, the makespan improvement value reported 0.

Table 9
Results of Comparing BFSM-GA with Serial Programming Method
No. A/R Resource capacity M.W.S M.W(0).S Makespan Improvement
1 6/3 8/10/8 14 14 0.00
3 10/2 10/10 21 32 0.34
5 15/2 20/11 29 54 0.46
7 1873 15/20/10 57 79 0.278
9 20/3 15/20/10 58 91 0.417
11 30/2 20/25 55 144 0.618
13 50/5 20/30/20/30/40 79 128 0.383

A: Activity R: Resource
M.W.S: Makespan with activity splitting
M.W (O).S: Makespan without activity splitting

Table 10
Results of Evaluating the Problems Gained from the Literature Using Proposed Method
No. References M.W.S M.W(0).S Makespan Improvement
1 Abbasi et al. (2006) 156 55 0.647
2 Shi-man et al. (2012) 51 29 0.431
3 Shi-man et al. (2012) 88 55 0.375
4 Wuetal. (2011) 89 63 0.292

In this comparison, results obtained by the competing algorithms have been taken verbatim from opted
references from literature (Table 8). Results of the makespan ratio, it can be concluded that almost in all
case the proposed method can provide supreme solutions. Using unfilled resources BFSM-GA can save
Cmax 1N @ range between 27% and 64% depending on precedence matrix and resource availabilities
(Table 9 and Table 10). Moreover, the method is always promised to stay in feasible area through
improving C,, - For future work, further attempt is suggest to solve the proposed model in multi-mode
state (MRCPSP) using the proposed method.

5. Conclusion

By presenting the mixed backward-forward rescheduling technique, a novel mathematical method was
developed to assure that, given the need to assign activities using remained resources through resource
calendar while activity spitting is allowed, their combination will be as efficient as possible to minimize
the makespan. Our finding show that using hybrid greedy and genetic algorithms for the proposed mixed
backward-forward technique, where activity splitting is allowed, will cause noticeable reduction of
makespan in classical RCPSPs that is a direct consequence of rising up in remained resources usage
through project planning horizon.

Acknowledgment

The authors would like to thank the editor and anonymous reviewers for their positive comments through
the progressing period.

A. Delgoshaei et al. / International Journal of Industrial Engineering Computations 6 (2015) 519

References

Abbasi, B., Shadrokh, S., & Arkat, J. (2006). Bi-objective resource-constrained project scheduling with
robustness and makespan criteria. Applied Mathematics and Computation, 180(1), 146-152.

Achuthan, N., & Hardjawidjaja, A. (2001). Project scheduling under time dependent costs—A branch and
bound algorithm. Annals of Operations Research, 108(1-4), 55-74.

Alcaraz, J., & Maroto, C. (2001). A robust genetic algorithm for resource allocation in project scheduling.
Annals of Operations Research, 102(1-4), 83-109.

Buddhakulsomsiri, J., & Kim, D. S. (2006). Properties of multi-mode resource-constrained project
scheduling problems with resource vacations and activity splitting. European Journal of Operational
Research, 175(1), 279-295.

Castejon-Limas, M., Ordieres-Meré, J., Gonzélez-Marcos, A., & Gonzélez-Castro, V. (2011). Effort
estimates through project complexity. Annals of Operations Research, 186(1), 395-406.

Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust resource-
constrained project scheduling. Computers & industrial engineering, 55(1), 183-194.

Delgoshaei, A., Ariffin, M. K., Baharudin, B. H. T. B., & Leman, Z. (2014). A Backward Approach for
Maximizing Net Present Value of Multi-mode Pre-emptive Resource-Constrained Project Scheduling
Problem with Discounted Cash Flows Using Simulated Annealing Algorithm. International Journal
of Industrial Engineering and Management, 5(3), 151-158.

Demeulemeester, E. L. (2002). Project scheduling: a research handbook (Vol. 102): Springer.

Hartmann, S. (2001). Project scheduling with multiple modes: a genetic algorithm. Annals of Operations
Research, 102(1-4), 111-135.

Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained
project scheduling problem. European Journal of Operational Research, 207(1), 1-14.

Icmeli, O., Erenguc, S. S., & Zappe, C. J. (1993). Project scheduling problems: a survey. International
Journal of Operations & Production Management, 13(11), 80-91.

Ke, H., & Liu, B. (2010). Fuzzy project scheduling problem and its hybrid intelligent algorithm. Applied
Mathematical Modelling, 34(2), 301-308.

Kelley, J. E. (1963). The critical-path method: Resources planning and scheduling. Industrial scheduling,
13, 347-365.

Kim, K., Yun, Y., Yoon, J., Gen, M., & Yamazaki, G. (2005). Hybrid genetic algorithm with adaptive
abilities for resource-constrained multiple project scheduling. Computers in industry, 56(2), 143-160.

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods revisited: Theory
and computation. European Journal of Operational Research, 90(2), 320-333.

Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for the resource-constrained project
scheduling problem: Classification and computational analysis: Springer.

Laslo, Z. (2010). Project portfolio management: An integrated method for resource planning and
scheduling to minimize planning/scheduling-dependent expenses. International Journal of Project
Management, 28(6), 609-618.

Lee, C.-Y., & Lei, L. (2001). Multiple-project scheduling with controllable project duration and hard
resource constraint: some solvable cases. Annals of Operations Research, 102(1-4), 287-307.

Lombardi, M., & Milano, M. (2012). A min-flow algorithm for minimal critical set detection in resource
constrained project scheduling. Artificial Intelligence, 182, 58-67.

Lova, A., & Tormos, P. (2001). Analysis of scheduling schemes and heuristic rules performance in
resource-constrained multiproject scheduling. Annals of Operations Research, 102(1-4), 263-286.
Patterson, J., Slowinski, R., Talbot, F., & Weglarz, J. (1989). An algorithm for a general class of
precedence and resource constrained scheduling problems. Advances in project scheduling, 187, 3-

28.

Peteghem, V. V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive
multi-mode resource-constrained project scheduling problem. European Journal of Operational
Research, 201(2), 409-418.

520

Policella, N., Cesta, A., Oddi, A., & Smith, S. F. (2007). From precedence constraint posting to partial
order schedules A CSP approach to Robust Scheduling. Ai Communications, 20(3), 163-180.

Seifi, M., & Tavakkoli-Moghaddam, R. (2008). A new bi-objective model for a multi-mode resource-
constrained project scheduling problem with discounted cash flows and four payment models. Int. J.
of Engineering, Transaction A: Basic, 21(4), 347-360.

Speranza, M. G., & Vercellis, C. (1993). Hierarchical models for multi-project planning and scheduling.
European Journal of Operational Research, 64(2), 312-325.

Sprecher, A. (2000). Scheduling resource-constrained projects competitively at modest memory
requirements. Management Science, 46(5), 710-723.

Sprecher, A., Hartmann, S., & Drexl, A. (1997). An exact algorithm for project scheduling with multiple
modes. Operations-Research-Spektrum, 19(3), 195-203.

Sung, C., & Lim, S. (1994). A project activity scheduling problem with net present value measure.
International Journal of Production Economics, 37(2), 177-187.

Talbot, F. B. (1982). Resource-constrained project scheduling with time-resource tradeoffs: The
nonpreemptive case. Management Science, 28(10), 1197-1210.

Ulusoy, G., Sivrikaya-Serifoglu, F., & Sahin, S. (2001). Four payment models for the multi-mode
resource constrained project scheduling problem with discounted cash flows. Annals of Operations
Research, 102(1-4), 237-261.

Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project
management: The trade-off between stability and makespan. International Journal of Production
Economics, 97(2), 227-240.

Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2006). The trade-off between
stability and makespan in resource-constrained project scheduling. International Journal of
Production Research, 44(2), 215-236.

Yang, K. K., Talbot, F. B., & Patterson, J. H. (1993). Scheduling a project to maximize its net present
value: an integer programming approach. European Journal of Operational Research, 64(2), 188-198.

Yu, L., Wang, S., Wen, F., & Lai, K. K. (2012). Genetic algorithm-based multi-criteria project portfolio
selection. Annals of Operations Research, 197(1), 71-86.

	Input arguments and variables for the proposed model are defined as:
	Inputs
	Parameters
	Binary Variables
	Integer Variables
	Mathematical Model
	The proposed model in this research is a pertinent version of Peteghem and Vanhoucke (2010) where greedy selection of activities for using unscheduled resources is taken into consideration.

