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 The theory of constraints is an approach for production planning and control, which emphasizes 
on the constraints in the system to increase throughput. The theory of constraints is often referred 
to as Drum-Buffer-Rope developed originally by Goldratt. Drum-Buffer-Rope uses the drum or 
constraint to create a schedule based on the finite capacity of the first bottleneck. Because of 
complexity of the job shop environment, Drum-Buffer-Rope material flow management has very 
little attention to job shop environment. The objective of this paper is to apply the Drum-Buffer-
Rope technique in the job shop environment using a Markov chain analysis to compare 
traditional method with Drum-Buffer-Rope. Four measurement parameters were considered and 
the result showed the advantage of Drum-Buffer-Rope approach compared with traditional one. 
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1. Introduction  
 

The theory of constraints (TOC) is a management methodology developed by Goldratt in the mid-1980s 
(Goldratt & Fox, 1986). Every system must have at least one constraint and if this condition were not 
true, a real system could make unlimited profit. So a constraint is anything that prevents a system from 
achieving higher performance (Goldratt, 1988). The existence of constraints represents opportunities for 
improvement. Because constraints determine the performance of a system, a slow elevation of the 
system’s constraints will improve its performance so TOC views constraints as positive. In the early 
1990s, Goldratt (1990) improved TOC by an effective  management  philosophy  on  improvement  based  
on  identifying  the  constraints  to increase throughput. TOC’s approach is based on a five step process: 

Identify the system constraint(s) 
Exploit the constraint(s) 
Subordinate all other decision 
Elevate the constraint 
Do not let inertia become the system constraint 
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The TOC is often referred to as Drum-Buffer-Rope (DBR) developed originally by Goldratt in the 1980s 
(Goldratt & Fox, 1986). DBR uses the protective capacity to eliminate  the  time  delays  to  guarantee  
the  bottleneck  resource  stays  on  schedule  and  customer orders are shipped on time (Chakravorty & 
Atwater, 2005). DBR uses the drum or constraint to create a schedule  based  on  the  finite  capacity  of  
the  first  bottleneck,  buffer  which  protects  the  drum scheduling from variation. The rope is a 
communication device that connects the capacity constrained resource (CCR) to the material release 
point and controls the arrival of raw material to the production system (Schragenheim & Ronen, 1990). 
Rope generates the  timely  release  of just  the  right  materials  into the  system  at  just  the  right  time 
(Wu et al., 1994). 
 
This paper is begun with a description of DBR scheduling logic and a literature review that has related 
to this study is discussed in section 2. Then proposed approach is explained in section 3 .In section 4 and 
5 a Markov chain analysis is applied to compare traditional method with Drum-Buffer-Rope. Finally, the 
conclusions and future development are showed in section 6. 
 
2. Literature review 

TOC normally has two major components. First, it focuses on the five steps of on-going improvement, 
the DBR scheduling, and the buffer management information system. The second component of TOC is 
an approach for solving complex problems called the thinking process (Rahman, 1998). Ray et al. (2008) 
proposed an integrated model by combining Laplace criterion and TOC into a single evaluation model 
in a multiproduct constraint resource environment. Pegels and Watrous (2005) applied the TOC to a 
bottleneck operation in a manufacturing plant and eliminated the constraint that prevented productivity 
at the plant. Bozzone (2002) introduced the theory of delays and claimed that this name is better than 
TOC because all constraints create delays but not all delays are caused by constraints. Rand (2000) 
explored the relationship between the ideas developed in the third novel, critical chain, by Goldratt 
(Goldratt, 1997) and the PERT/CPM approach. He showed the application of the theory of constraints 
on how management deal with human behaviour in constructing and managing the project network. 
 
Many of papers compared the TOC flow management with material requirement planning (MRP) and 
just in time (JIT). For example Gupta and Snyder (2009) compared TOC (i) with MRP, (ii) with JIT, and 
(iii) with both MRP and JIT together and concluded that TOC compete effectively against MRP and JIT. 
Sale and Inman (2003) compared the performance of companies under TOC and JIT approach. They 
indicated that the greatest performance and improvement accrued under TOC approach. Choragi et al. 
(2008) compared seven different production control systems in a flow shop environment. The result 
showed that no single production control system was best under all conditions and it depended not only 
on the type of manufacturing strategy but also on the values of the input parameters. 
 
Babue et al. (2006) generalized the TOC approach by integer linear programming (ILP) to increase the 
throughput with minimum investment. They collected the data from an automobile manufacturing 
industry to validate their model. Steele et al. (2005) studied a simulation model with the objective of 
comparison between the MRP and DBR systems. Their result showed that different systems provide 
various responses to customer demand and also DBR performance was clearly better than MRP 
implementation. Ray et al. (2010) compared three alternatives: TOC, ILP and their proposed approach. 
They considered an integrated heuristic model by using of analytic hierarchy process (AHP) in multiple 
resource environment. Their numerical result showed that the proposed approach is better than TOC and 
ILP. DBR  develops  production  schedule  by  applying  the  first  three  steps  in  the  TOC  process. 
Betterton and Cox (2009) did an investigation of DBR scheduling and flow control method in flow shop 
environment. They compared the DBR model and a similar push system. Georgiadis and Politou (2013) 
proposed a dynamic time-buffer control mechanism in both internal and external shop environment to 
support the decision-making on time-buffer policies. The result revealed the insensitivity of time-buffer 
policies to key factors related to demand, demand due date and operational characteristics such as 

http://www.scopus.com/authid/detail.url?authorId=7102383248&eid=2-s2.0-27844562110


M. Rabbani and F. Tanhaie / International Journal of Industrial Engineering Computations 6 (2015) 
 

459 

protective capacity and production times. In DBR,  any  job  that  is  not  processed  at  the  system’s  
first bottleneck  is  referred  as  a  free  good. Since free goods are not processed at the system’s first 
bottleneck, very little attention has been given to these jobs in DBR (Chakravorty & Verhoeven, 1996). 
Chakravorty and Atwater (2005) found that the performance of DBR is very sensitive to changes in the 
level of free goods release into the operation and claimed that schedulers of job shop environment using 
DBR need to be known of how orders of these items are scheduled. 
 
Schragenheim and Dettmer (2000) introduced simplified drum buffer rope (S-DBR). SDBR is based on 
the same concept as traditional DBR. The only different is that in S_DBR the market demand is the major 
system constraint. Lee et al. (2010) examined two conditions that handled with SDBR solutions. They 
considered following characteristics and solved an example: (1) capacity constraint resource (CCR) is 
not always located in the middle of the routing.  (2) Multiple CCRs can exist rather than the assumption 
of just one CCR. Chang and Huang (2013) provided a simple effective way to determine due dates and 
release dates of orders and jobs. They claimed that managers could easily use the proposed model to 
effectively manage their orders to meet customers’ requirements. 
 
3. The proposed approach 

After reviewing the literature on TOC and DBR material flow management, following results were 
determined: because of complexity of the job shop environment, DBR material flow management has 
very little attention to job shop environment. For example, Chacravorty (2001) applied the DBR 
technique in the job shop environment, which more focused on the buffer size and the released 
mechanism to the shop. Most of the authors did their researches and also their examples on the flow shop 
environment while many real production lines are job shop, so it is essential to schedule job shop 
environment by DBR method. Many different methods were applied to solve the authors proposed 
models in TOC and DBR approaches. Although Radovilsky (1998) formulated a single-server queue in 
calculating the optimal size of the time buffer in TOC and Miltenburg (1997) compared JIT, MRP and 
TOC by using of the Markov model. We could not find a paper of the DBR technique in the job shop 
environment by queuing theory. So this paper applies queuing theory and particularly Markov chain in 
the job shop environment and doing a Markov chain analysis to compare traditional method with DBR. 
In the proposed work the following assumptions were considered: 
 

(1) This paper applies DBR material flow management in the job shop environment. Job shops are 
the systems that handle jobs production. Jobs typically move on to different machines and 
machines are aggregated in shops by different skills and technological processes.  

(2) This paper uses Markov chain to study the effectiveness of DBR material flow management in 
job shop environment. The term ‘Markov chain’ refers to the set of states, { }1 2, , , rS s s s=   .The 
process begins in one states and moves successively from one state to another. Each move is 
called a step. If the chain is currently in state si, then it moves to state sj at the next step with a 
probability pij, and this probability does not depend on the before state (Grinstead et al., 1997). 

(3) Throughput, shortage, work-in-process and cycle time of each Job are the model measurement 
parameters. Throughput was defined as the rate the system generates money through sales, or the 
selling price minus total variable costs (Gupta, 2003). Shortage is a situation where demand for a 
product exceeds the available supply. Work-in-process are a company's partially finished goods 
waiting for completion and eventual sale or the value of these items. These items are waiting for 
further processing in a queue or a buffer storage. Cycle time is the period required to complete a 
job, or task from start to finish. 

(4) Because the complexity of job shop and Markov chain my proposed production line consists of 
two Jobs and two work stations. 
 

http://en.wikipedia.org/wiki/Job_production
http://en.wikipedia.org/wiki/Skills
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3.1. A job shop production system 

Consider a production line of two work stations and one inventory buffer. There are two Jobs in this 
system. Assume Job one enters at Station 1 and when its operation is completed moves to an inventory 
buffer and waits until can enter to Station 2. At Station 2 another operation is completed and finally 
product one leaves the production line. Job two enters at Station 2 and when its operation is completed 
leaves the production line (Fig. 1). 

                                                                                                                              Job two 

                                                                                  

                                                                                                                          First buffer 

                  Job one 
 

Fig. 1. A job shop production system. 
 
Station 1 and 2 can be idle or busy under defined conditions: Station 1 is idle when there is no job one to 
release to the Station 1 or when the inventory buffer is full (blocked) and is busy when Job one is released 
and at the same time the inventory buffer is not full. Station 2 is idle when there is no Job two to release 
or when the inventory buffer is empty (starved) and is busy when Job two is released or when there is at 
least one inventory in the buffer. A Markov chain model is developed to analyse the production line. 
Station 1 is either idle (I) or busy on Job one (B1). Station 2 is idle (I), busy on Job one (B1) or busy on 
Job two (B2). We define the inventory in the buffer and at Station 2 as a total inventory that can be 
{ }0,1,2, , MaxI  . Each state of the Markov chain when Imax=4 (three inventory in the buffer and one at 
Station 2)  is showed by the (S1, I, S2) where S1 = {I, B1}, I={ 0, 1, 2, 3,4} and S2 = {I, B1, B2}. So 
3*5*2=30 states can produced in this Markov chain but with attention to model definition some of them 
are impossible. In the proposed production line, Markov model consists of sixteen possible states as are 
shown in (Table 1): 
 
Table 1 
Possible states 

States number States S1 = {I, B1} I={ 0, 1, 2, 3,4} S2 = {I, B1, B2} 
1 (I,0,I) I 0 I 
2 (B1,0,I) B1 0 I 
3 (B1,3,B1) B1 3 B1 
4 (I,3,B1) I 3 B1 
5 (B1,3,B2) B1 3 B2 
6 (I,4,B2) I 4 B2 
7 (B1,1,B1) B1 1 B1 
8 (I,1,B1) I 1 B1 
9 (B1,1,B2) B1 1 B2 

10 (I,1,B2) I 1 B2 
11 (I,4,B1) I 4 B1 
12 (I,3,B2) I 3 B2 
13 (B1,2,B2) B1 2 B2 
14 (I,2,B2) I 2 B2 
15 (B1,2,B1) B1 2 B1 
16 (I,2,B1) I 2 B1 

 
Other fourteen states are not possible for this model. For example (B1, 0, B1) is not possible because 
when there is no inventory, Station 2 cannot be busy, (B1, 4, B2) is not possible because when buffer 
inventory is full (three inventory in buffer and one in Station 2), Station 1 cannot be busy or (B1, 3, I) 

Station one Station two 
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is not possible because when there is at least one inventory in the buffer, Station 2 cannot be idle and so 
on. 

• In each transition the states of Markov model will change if following condition occurs. 
• Station 1 completes the operation of Job one with the probability of α. 
• Station 2 completes the operation of Job one with the probability of β1. 
• Station 2 completes the operation of Job two with the probability of β2. 
• Job one releases to the production line with the probability of γ. 
• Job two releases to the production line with the probability of λ. 

 
The transition diagram for the model of considered production system is shown in Fig. 2 (part a and b). 
To improve the readability of the transition diagram, it has been divided to two part that each part shows 
some transition arc of the system. 
 

  
Fig. 2(a). Transition diagram Fig. 2(b). Transition diagram 

 

In the following transition probability matrix all states and their probabilities are shown .The summation 
of each row must be one. 

Transition Probability Matrix 
States 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1-γ- λ γ 0 0 0 0 0 0 0 λ 0 0 0 0 0 0 
2 0 1-α–λ 0 0 0 0 0 α λ 0 0 0 0 0 0 0 
3 0 0 1-α-β1 0 0 0 0 0 0 0 α 0 0 0 β1 0 
4 0 0 γ 1-γ-β1 0 0 0 0 0 0 0 0 0 0 0 β1 
5 0 0 0 0 1-α-β2 α 0 0 0 0 0 0 0 0 β2 0 
6 0 0 0 β2  1- β2 0 0 0 0 0 0 0 0 0 0 
7 0 β1 0 0 0 0 1- β1- α 0 0 0 0 0 0 0 0 α 
8 β1 0 0 0 0 0 Γ 1- β1- γ 0 0 0 0 0 0 0 0 
9 0 β2 0 0 0 0 0 0 1- β2- α 0 0 0 0 α 0 0 

10 β2 0 0 0 0 0 0 0 Γ 1- β2- γ 0 0 0 0 0 0 
11 0 0 0 β1 0 0 0 0 0 0 1-β1 0 0 0 0 0 
12 0 0 0 0 γ 0 0 0 0 0 0 1- β2- γ 0 0 0 β2 
13 0 0 0 0 0 0 β 2 0 0 0 0 α 1- β2- α 0 0 0 
14 0 0 0 0 0 0 0 β 2 0 0 0 0 γ 1- β2- γ 0 0 
15 0 0 0 α 0 0 β1 0 0 0 0 0 0 0 1- β1- α 0 
16 0 0 0 0 0 0 0 β1 0 0 0 0 0 0 γ 1- β1- γ 

 
The matrix were filled based on the states and their probabilities. For example we explained one state as 
follows: 
 
State 4: this state is (I, 3, B1), it means statin one is idle, maximum inventory in system is 3(two in the 
inventory buffer and one in Station 2) and Station 2 is working on Job one. In the next transition the 
states of Markov model will change if following condition occurs. 
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It goes to state three (B1, 3, B1), if another Job one releases to system (with the probability of γ). 
 

It remains in its state (I, 3, B1), if another Job one does not releases to and Station 2 still is working on 
Job one. So, all conditions occur with the probability of (1-β1-γ). 
 

It goes to state sixteen (I, 2, B1), if Station 2 completes the operation on Job one (with the probability of 
β1, Imax = 2). 
 

In the next section, we will calculate the transition probability with the assumed input of the job shop 
system and apply the DBR material flow management with a Markov chain analysis to compare 
traditional method with DBR. 
 
4. Traditional approach to handling the production system 

The predefined probability (α, β1, β2, γ, λ) are calculated in (Table 2). See Miltenburg (1997). For 
calculation of probabilities some assumption are considered: 
 

(1) Planning period is 1000 hours. 
(2) In production plan 240 units of Job one and 140 units of Job two are produced. 
(3) Production time at Station 1 for Job one is four hours for each unit. 
(4) Production time at Station 2 for Job one is six hours for each unit. 
(5) Production time at Station 2 for Job two is four hours for each unit. 

 

The following occurrences are expected to happen during an arbitrary length period (for example a period 
of 100 hours). 
 
Table 2 
Transition probability. 

Event Frequency Probability 
Station 1 completes the operation of Job one(α) 100/4=25 25/235=0.106 
Station 2 completes the operation of Job one(β1) (100/10)×(6/10)=6 6/235=0.025 
Station 2 completes the operation of Job two(β2) (100/10)×(4/10)=4 4/235=0.017 
Job one releases to the production line(γ) 100 100/235=0.0.425 
Job two releases to the production line(λ) 100 100/235=0.0.425 
 Total=235 total≈1 

 
Now, we can calculate the numerical transition probability matrix base on the attained probability. 
 
Numerical Transition probability Matrix 

State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 0.15 0.425 0 0 0 0 0 0 0 0.425 0 0 0 0 0 0 
2 0 0.469 0 0 0 0 0 0.106 0.425 0 0 0 0 0 0 0 
3 0 0 0.869 0 0 0 0 0 0 0 0.106 0 0 0 0.025 0 
4 0 0 0.425 0.55 0 0 0 0 0 0 0 0 0 0 0 0.025 
5 0 0 0 0 0.877 0.106 0 0 0 0 0 0 0 0 0.017 0 
6 0 0 0 0.017 0 0.983 0 0 0 0 0 0 0 0 0 0 
7 0 0.025 0 0 0 0 0.869 0 0 0 0 0 0 0 0 0.106 
8 0.025 0 0 0 0 0 0.425 0.55 0 0 0 0 0 0 0 0 
9 0 0.017 0 0 0 0 0 0 0.877 0 0 0 0 0.106 0 0 
10 0.017 0 0 0 0 0 0 0 0.425 0.558 0 0 0 0 0 0 
11 0 0 0 0.025 0 0 0 0 0 0 0.975 0 0 0 0 0 
12 0 0 0 0 0.425 0 0 0 0 0 0 0.558 0 0 0 0.017 
13 0 0 0 0 0 0 0.017 0 0 0 0 0.106 0.877 0 0 0 
14 0 0 0 0 0 0 0 0.017 0 0 0 0 0.425 0.558 0 0 
15 0 0 0 0.106 0 0 0.025 0 0 0 0 0 0 0 0.869 0 
16 0 0 0 0 0 0 0 0.025 0 0 0 0 0 0 0.425 0.55 

 
This matrix is called P and each cell of it is ijp (transition probability from state i to state j). We define 
some notation and then calculate them for our Markov chain as follows. See Miltenburg (1997). 

A = limiting behaviour of transition probability matrix. Each row isΠ  . 
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{ }jπΠ = , 
1

n

j i ij
i

pπ π
=

= ×∑ , 
1

1
n

j
j
π

=

=∑  
(1) 

Π  = [0.000014    0.0006    0.1653    0.0509    0.0015    0.0096    0.0112    0.0005    0.0021    0.000013    
0.7005    0.0004    0.0018    0.0005    0.0495    0.0055] 
 

{ }ijZ z= , Fundamental matrix. We need only the diagonal entries, so we write it here. 

{ } ( ) 1
ijZ z I P A −= = − +  (2) 

 Zjj = [1.2123    2.3019    5.6453    1.9548    8.0452   57.5257   10.0337    2.5039    9.4424    2.3125    
5.4840    2.2443    8.2654    2.3236    9.4581    2.8195] 
 
I = Unit matrix. { }jB b= =  The limiting variance for the number that the Markov chain is in each state;  

( )2 1j j jj jb zπ π= − −  (3) 

 
B = [0.000019    0.0022    1.6735    0.1456    0.0222    1.0995    0.2134    0.0019    0.0383    0.000048    
6.4919    0.0015    0.0276    0.0019    0.8848    0.0254] 
 
Before calculating the distribution of the number of units that are produced for each job we determine 
three sets from the Markov chain as follows: 
 

Set 1 = the states of Markov chain that Job one is at Station 1 (number of states: 2, 3, 5, 7, 9, 13, and 15). 
Set 2 = the states of Markov chain that Job one is at Station 2 (number of states: 3, 4, 7, 8, 11, 15, and 16). 
Set 3 = the states of Markov chain that Job two is at Station 2 (number of states: 5, 6, 9, 10, 12, 13, and 14). 
 
The number of units that are produced in a period of transition (for Job one and two) has a normal 
distribution (mean is j set RTπ ∈∑  and variance is 2

jb set RT∈∑ , here RT  is the Production time 
at each Station on each Job) and is calculated in (Table 3). See Kemeny and Snell (1960) and Miltenburg 
(1997). 
 

Table 3  
Production time distribution 

Job Production time Normal Distribution 

One(Station 1) 
X1 4 hours per unit 

1 1/ 0.0580mean j set RTπ= ∈ =∑  
2

1 1var / 0.1789iance bj set RT= ∈ =∑  

One(Station 2) 
X21 6 hours per unit 

2 21/ 0.1639mean j set RTπ= ∈ =∑  
2

212
var / 0.2621iance bj set RT= ∈ =∑  

Two 
X22 4 hours per unit 

3 22/ 0.040mean j set RTπ= ∈ =∑  
2

3 22var / 0.0744iance bj set RT= ∈ =∑  

4.1 Throughput 

The number of units of Job one produced over the production planning period has following mean and 
variance: 
 
Mean = 1000×mean of the number of units that are produced for Job one = 1000×0.1639 = 163.9 unit 
Variance = 1000× variance of the number of units that are produced for Job one = 1000×0.2621 = 262.1 
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The 95% interval estimate is = 163.9±1.96×16.18 = (140.2782, 195.6128) 
 

The number of units of Job two that produced over the production planning period has following mean 
and variance: 
 

Mean = 1000×mean of the number of units that are produced for Job two = 1000×0.040 = 40 
Variance = 1000× variance of the number of units that are produced for Job two = 1000× 0.0744 = 74.4 
The 95% interval estimate is = 40±1.96×8.62 = (23.1, 56.89) 
 
4.2 Shortage 

Shortage is a situation where demand for a product exceeds the available output. 

21 21 21( ) ( ) ( ) _
pp

E shortage pp x f x dx pp production plan
−∞

= − =∫  
(4) 

After some steps we have: 
 

( ) ( ) ( ( ) ( ))z zE shortage Throughput f s sF sσ= × + ≤  (5) 
 

while 
 

( ( )) ( )s pp E Throughput Throughputσ= −  (6) 

zf  and zF = unit normal distribution (See Miltenburg, 1997). 
 

For Job one: 240 163.9 4.703
16.18

s −
= =  

( ) 16.18 ( (4.703) 4.703 (4.703)) 76.09z zE shortage f F= × + ≤ =  

 For Job two: 140 40 11.6
8.62

s −
= =  

( ) 8.62 ( (11.6) 11.6 (11.6)) 100.76z zE shortage f F= × + ≤ =  

4.3 Work-in-process 

Work-in-process are items that are waiting for further processing in a queue or a buffer inventory. 
To calculation the mean and variance of the Work-in-process, first we have to consider the inventory in 
the production line in each state: 
 

State 1=0, State 2=0, State 3=3, State 4=3, State 5=3, State 6=4, State 7=1, State 8=1, State 9=1, State 
10=1, State 11=4, State 12=3, State 13=2, State 14=2, State 15=2 and State 16=2. 

16

1
3.623j j

j
Mean I π

=

= =∑  
(7) 

16
2

1
( ( )) 0.43j j

j
Variance I E I π

=

= − =∑  
(8) 

4.4 Cycle time 
 

Cycle time is the period required to complete a job from start to finish. In the proposed production system 
cycle time is the time at Station 1 adding to the time at Station 2 for Job one and is the time at Station 2 
for Job two. 

 

1 21Job (1 ( )) (( ( ) 1) ( )) 33.244one hoursE X E I E X= + − =  (9) 

221 ( ) 25two hoursJob E X= =  (10) 



M. Rabbani and F. Tanhaie / International Journal of Industrial Engineering Computations 6 (2015) 
 

465 

5. DBR approach to handling the production system 
 
DBR uses the drum or constraint to create a schedule based on the bottleneck. In the proposed production 
line Station 2 is the bottleneck of the system (its production time is larger than Station 1). Buffer which 
protects the constraint and the rope is a communication device that connects the constraint to the first 
Station. So, we use the buffer management to improve the measurement parameters (Fig. 3). 

                                                                                                    Rope                           

                                                                                  

                                                                                                                           

                   

Fig. 3. A job shop production system with DBR management. 
 

When the inventory in the production system deceases to one or zero and Station 2 is in the starvation 
danger, production time in Station 1 reduces the production time to 2.5 hours. When the inventory in the 
production system is more than one and Station 1 is in the danger to be blocked, production time in 
Station 2 reduces the production time to 5 hours for Job one and to 3 hours for Job two. So, again the 
Markov chain parameters and its calculation is shown in (Table 4). 
 

Table 4  
Transition Probability 

Event Frequency   I=0,1 (Probability) Frequency  I=2,3,4 (Probability) 
α 100/2.5=40 (40/250=0.16) 100/4=25 (25/238=0.105) 
β1 (100/10)×(6/10)=6 (6/250=0.024) (100/8)×(5/8)≈8 (8/238=0.034) 
β2 (100/10)×(4/10)=4 (4/250=0.016) (100/8)×(3/8)≈5 (5/238=0.021) 
γ 100 (100/250=0.4) 100 (100/238=0.42) 
λ 100 (100/250=0.4) 100 (100/238=0.42) 

 
Now, we can calculate the numerical transition probability matrix based on the attained probability and 
the inventory in their states. 
 

Numerical transition probability matrix 
State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0.2 0.4 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 
2 0 0.44 0 0 0 0 0 0.16 0.4 0 0 0 0 0 0 0 
3 0 0 0.861 0 0 0 0 0 0 0 0.105 0 0 0 0.034 0 
4 0 0 0.42 0.546 0 0 0 0 0 0 0 0 0 0 0 0.034 
5 0 0 0 0 0.874 0.105 0 0 0 0 0 0 0 0 0.021 0 
6 0 0 0 0.021 0 0.979 0 0 0 0 0 0 0 0 0 0 
7 0 0.024 0 0 0 0 0.816 0 0 0 0 0 0 0 0 0.16 
8 0.024 0 0 0 0 0 0.4 0.576 0 0 0 0 0 0 0 0 
9 0 0.016 0 0 0 0 0 0 0.824 0 0 0 0 0.16 0 0 
10 0.016 0 0 0 0 0 0 0 0.4 0.584 0 0 0 0 0 0 
11 0 0 0 0.034 0 0 0 0 0 0 0.966 0 0 0 0 0 
12 0 0 0 0 0.42 0 0 0 0 0 0 0.559 0 0 0 0.021 
13 0 0 0 0 0 0 0.021 0 0 0 0 0.105 0.874 0 0 0 
14 0 0 0 0 0 0 0 0.021 0 0 0 0 0.42 0.559 0 0 
15 0 0 0 0.105 0 0 0.034 0 0 0 0 0 0 0 0.861 0 
16 0 0 0 0 0 0 0 0.034 0 0 0 0 0 0 0.42 0.546 

 
We calculate all predefined matrix to can compare them with each other. 

1 1
, 1

ij

n n

j i j
i j

pπ π π
= =

= =∑ ∑  

Π  = [0.00004    0.0009    0.1960    0.0648    0.0023    0.01665    0.0187    0.0013    0.0021    0.000004    
0.5975    0.0006    0.0027    0.0008    0.0836    0.0115] 

{ } ( ) 1
ijZ z I P A −= = − + , Fundamental matrix. We need only the diagonal entries, so we write it here. 

Station 1 Station 2 

 
Buffer 
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Zjj = [1.2921    2.0585    4.8873    1.8372    7.8175   46.0817   7.5439    2.7246    6.1967    2.4575    
6.7840    2.2403    7.9854    2.3044    8.9619    2.9805] 

I = Unit matrix. { }jB b= = The limiting variance for the number that the Markov chain is in each state; 

( )2 1j j jj jb zπ π= − −  
 

B = [0.0001    0.0028    1.6814    0.1691    0.0337    1.5176    0.2631    0.0058    0.0239    0.0002    
7.1523    0.0021    0.0404    0.0029    1.4078    0.0569] 
 
The number of units that are produced in a period of transition (for Job one and two) has a normal 
distribution (mean is j set RTπ ∈∑  and variance is 2

jb set RT∈∑ , here RT  is the weighted mean of 
production time base on the probability of amount of inventory) and is calculated in (Table 5). 
 
RT1 = 2.5×(probability that inventory is 0 or 1) +4×(probability that inventory is 2, 3 or 4) = 3.9635 
RT21 = 6×(probability that inventory is 0 or 1) +5×(probability that inventory is 2, 3 or 4) = 5.0207 
RT22 = 4×(probability that inventory is 0 or 1) +3×(probability that inventory is 2, 3 or 4) = 3.0217 
 
Table 5  
Production time distribution 

Job Production time Normal Distribution 

One(Station 1) 
X1 

4 hours per unit 
1 1/ 0.0773mean j set RTπ= ∈ =∑  

2
1 1var / 0.2198iance bj set RT= ∈ =∑  

One(Station 2) 
X21 

6 hours per unit 
2 21/ 0.1939mean j set RTπ= ∈ =∑  

2
212

var / 0.4259iance bj set RT= ∈ =∑  

Two 
X22 

4 hours per unit 
3 22/ 0.083mean j set RTπ= ∈ =∑  

2
3 22var / 0.0775iance bj set RT= ∈ =∑  

 

5.1. Throughput 

Mean = 1000×mean of the number of units that are produced for Job one = 1000×0.1939=193.9 unit 
Variance = 1000× variance of the number of units that are produced for Job one = 1000× 0.2198 = 219.8 
The 95% interval estimate is = 193.9 ±1.96×14.82 = (164.85, 222.94) 
 
The number of units of Job two that produced over the production planning period has following mean 
and variance: 
 

Mean = 1000×mean of the number of units that are produced for Job two = 1000×0. 083 = 83 
Variance = 1000×variance of the number of units that are produced for Job two = 1000×0.0775 = 77.5 
The 95% interval estimate is 83±1.96×8.803 = (65.74, 100.25) 
 
5.2. Shortage 

22 22 22( ) ( ) ( ) _
pp

E shortage pp x f x dx pp production plan
−∞

= − =∫  

After some steps we have ( ) ( ) ( ( ) ( )),z zE shortage Throughput f s sF sσ= × + ≤ while 
 

( ( )) ( ) ,s pp E Throughput Throughputσ= −  zf  and zF = unit normal distribution (See Miltenburg, 1997). 
For Job one (240 193.9) 14.82 3.111s = − = , ( ) 14.82 ( (3.11) 3.11 (3.11)) 46.136z zE shortage f F= × + ≤ =  
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For Job two (140 83) 8.803 6.475s = − = ( ) 8.803 ( (6.47) 6.47 (6.47)) 85.57z zE shortage f F= × + ≤ =  
 

5.3. Work in process 
16 16

2

1 1
3.467   ( ( )) 0.59j j j j

j j
Mean I Variance I E Iπ π

= =

= = = − =∑ ∑  

5.4. Cycle time 

In the proposed production system cycle time is the time at Station 1 adding to the time at Station two 
for Job one and is the time at Station 2 for Job two. 
 

1 21(1 ( )) (( ( ) 1) ( )) 25.718one hoursJob E X E I E X= + − =  and 221 ( ) 12.048two hoursJob E X= =  
 

5.5. Comparison 

The results are summarized in (Table 6). This table compares traditional and DBR approach to 
management of simple job shop production system. Some measurement parameters were considered. 
 

Table 6  
Comparison of two approaches. 

Approach  Throughput (unit) WIP (unit) Shortage (unit) Cycle Time (hours) 

Traditional 
Job one 163.9 

3.623 
76.09 33.244 

Job two 40 100.76 25 

DBR 
Job one 193.9 

3.467 
46.136 25.718 

Job two 83 85.57 12.048 
 
It is clear that improvement by DBR is on all measurement parameters. While applying traditional 
approach is an easy approach to manage the production system, but in competition condition it cannot be 
a good approach. In competition environment, DBR gives the best competitive advantage. 
 
6. Conclusions and future development 
 
DBR  develops  production  schedule  by  applying  the  first  three  steps  in  the  TOC  process. Many 
of papers did their researches and also their examples on DBR in the flow shop environment and 
scheduling job shop environment by DBR method is ignored, while many real production lines are job 
shop. This report applied the DBR technique in the job shop environment and used a Markov chain 
analysis to compare traditional method with DBR. Four measurement parameters were considered and 
the result showed the advantage of DBR approach in comparison to traditional approach. The present 
work showed the Markov chain analysis in handling first constraint resource by DBR technique. So, there 
is a scope for further research to extend a Markov chain analysis in a multiple constraint resources 
environment. 
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