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 Optimization of hole-making operations plays a crucial role in which tool travel and tool switch 
scheduling are the two major issues. Industrial applications such as moulds, dies, engine block 
etc. consist of large number of holes having different diameters, depths and surface finish. This 
results into to a large number of machining operations like drilling, reaming or tapping to achieve 
the final size of individual hole. Optimal sequence of operations and associated cutting speeds, 
which reduce the overall processing cost of these hole-making operations are essential to reach 
desirable products. In order to achieve this, an attempt is made by developing an effective 
methodology. An example of the injection mould is considered to demonstrate the proposed 
approach. The optimization of this example is carried out using recently developed particle 
swarm optimization (PSO) algorithm. The results obtained using PSO are compared with those 
obtained using tabu search method. It is observed that results obtained using PSO are slightly 
better than those obtained using tabu search method. 
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1. Introduction  
 

 
In machining process of many industrial parts such as dies and moulds, operations like drilling, reaming 
or tapping account for a large segment of process. Generally, a part, for e.g. a plastic injection mould 
may have many holes with different diameters, surface finish, and maybe various depths. If the diameter 
of hole is relatively large, a pilot hole may have to be drilled first using a tool of smaller diameter and 
then enlarge it to its final size with a larger tool, which could be followed by reaming or tapping whenever 
essential. For hole H3, as shown in Fig. 1, there could be four different combinations of tools:(A,B,C), 
(A,C), (B,C), and (C). The selection of tool combinations for each hole directly influences on the 
optimum cutting speeds, required number of tools switches, and tool travel distance (Kolahan & Liang, 
2000). 
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Fig. 1. Image showing various tool combinations required to drill a hole on workpiece 
 
Tool switch and tool travel from one position to another takes more amount of machining time in 
machining processes. Usually 70% of the overall time in machining processes is spent on movements of 
tools and part (Merchant, 1985). To reduce the tool travel, the spindle is not moved until a hole is 
completely drilled using several tools in different diameters, which increases tool switching cost. On the 
other hand, to reduce tool switching cost, it may be used to drill all possible holes which, in turn, increases 
the tool travel cost. Luong and Spedding (1995) addressed the process planning and cost estimation of 
hole-making operations by developing a generic knowledge based procedure. Castelino et al. (2000) 
reported an algorithm for minimizing airtime for milling by optimally connecting various tool path 
segments. In their work, a problem was formulated as a generalized travelling salesmen problem and it 
was solved using a heuristic method. Kolahan and Liang (2000) introduced a tabu search approach to 
reduce the overall processing cost of hole-making operations. Alam et al. (2003) presented a practical 
application of computer-aided process planning (CAPP) system to reduce the overall processing time of 
injection moulds. Genetic algorithm (GA) was used for optimizing the selection of machine tools, cutting 
tools, and cutting conditions for different processes. Abu Qudeiri et al. (2007) used genetic algorithm to 
find the optimal sequence of operations which gives the shortest cutting tool travel path (CTTP).  
 
Jiang et al. (2007) reported a stochastic convergence analysis of the parameters {ω, C1, C2} of standard 
particle swarm optimization (PSO) algorithm. Shi et al. (2007) presented a novel PSO based algorithm 
for solving the travelling salesman problem (TSP). They compared their proposed algorithm with existing 
algorithms and found that PSO could be used for solving large size problems. Zhang et al. (2008) 
presented an improved PSO algorithm (IPSO) based on the “all different” constraint to solve the flow 
shop scheduling problem with the aim of minimizing make span. Guo et al. (2009) developed a problem 
on integration of process planning, scheduling of manufacturing field using PSO algorithm. Shao et al. 
(2009) used a modified genetic algorithm based approach to integrate the process planning and 
scheduling of manufacturing systems in order to achieve an improved performance. Zhang and Zhu 
(2011) proposed two models of PSO algorithm; one is based on value exchange and the other based on 
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order exchange. Chandramouli et al. (2012) reported sheep flock heredity algorithm (SFHA) and artificial 
immune system (AIS) for reducing time of the scheduling of machines, an automated guided vehicle 
(AGV) and two robots in a flexible manufacturing system. Bhongade and Khodke (2012) proposed two 
heuristics for solving assembly flow shop scheduling problem. Shahsavari Pour et al. (2013) presented 
genetic algorithm for solving the flow shop scheduling problem. 
 
Ghaiebi and Solimanpur (2007) applied ant colony optimization (ACO) algorithm for optimizing the 
sequence of hole-making operations of industrial part. Hsieh et al. (2011) used immune based 
evolutionary approach to find the optimal sequence of hole-making operations. Tamjidy et al. (2014) 
presented an evolutionary algorithm to reduce the tool travel and tool switching time during hole-making 
operations based on geographic distribution of biological organism.  
 
It is revealed from the literature that non-traditional methods such as tabu search (TS), genetic algorithm, 
ant colony algorithm, immune algorithm (IA) etc. were used to solve the problem of optimization of 
hole-making operations. However, pure tabu search that uses only one solution can easily neglect some 
promising areas of the search space, and may also not find optimal or exact solution. Most commonly 
used advanced optimization techniques are the implementation for genetic algorithm in manufacturing 
optimization. Genetic algorithm (GA) gives near optimal solution for complex problems (Rao, 2011) and 
it requires more parameters (Elbeltagi et al., 2005). In ACO algorithm, convergence is slow due to 
pheromone evaporation and it tends to use more CPU time (Elbeltagi et al., 2005). Immune based 
evolutionary approach requires more parameters. Hence it is necessary to use non-traditional 
optimization algorithm, which gives correct solution for complex problems (Rao, 2011). From literature 
it is found that recently developed optimization algorithm known as PSO could be used due to its 
simplicity, easy implementation and high convergence rate (Coello et al., 2011). In this work an attempt 
has been made by using PSO to reduce overall processing cost of hole-making operations through 
determination optimal sequence for hole-making operations. 
 
2. Formulation of an optimization model 
 
In order to reduce the overall processing cost of hole-making operation, the following optimization model 
is formulated based on the analysis given by Kolahan and Liang (2000) considering the following 
components of overall processing cost: 
 
2.1. Tool travel cost  
 
Tool travel cost is the cost of moving the tool from its previous location to the current drilling location. 
 
2.2. Tool switch cost  
 
It occurs whenever a various tool is used for the next operation. If the required tool type is not available 
on the spindle for machining operation, then the required tool must be loaded on the spindle prior to 
performing a machining operation.  
 
2.3. Tool and machining costs   
 
Tool cost includes the new tool cost and the cost of machine down time required to replace the tool. 
Machining cost comprises the operating cost and the machine overhead cost. The combined tooling and 
machining costs when tool type m is used on hole j can be expressed as Eq. (1): 
 

,mjm
mj

mj
mj YtZ

T
t

Y +×=  
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where, 
 
m, tool type index in ascending order according to the tool diameters, m=1,...,M 
j,k,l, hole index, j=1,...,J k=1,...,J l=1,...,J 
mj, index for the last tool to be used on hole j 
Ymj, combined tool and machining costs when tool type m is used on hole j. 
tmj, machining time required by tool m for hole j 
Tmj life of tool type m associated with cutting operation on hole j 
Zm, cost of tool type m 
Y, machining cost per unit time 
 
Machining time, tmj, is determined by Eq. (2): 
 

,
1000 mmj

jm
mj fU

Ld
t

π
=  

(2) 

where, 
 
dm, diameter of tool m 
Lj, depth of hole j, including the clearance 
Umj, cutting speed of tool m associated with an operation on hole j 
fm, recommended feed rate for tool type m 
 
In drilling operations depth of cut is fixed. In normal practice feed is kept as a constant rate of cutting 
speed. Hence the optimum cutting speed, Umj, for the constant feed rate can be obtained by solving the 
following differential Eq. (3): 
 

0=
mj

mj

dU
dY

 
(3) 

                                   
The cutting speed obtained from Eq. (3) reduces the sum of tool and machining costs for a single 
operation. Considering all aspects mentioned above the final optimization model can be expressed as 
given by Eqs. (4-6). 
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where, 
 
s is the sequence index, denoting a specific permutation of operations, G(s) represents the overall cost 
associated with operations in sequence s, a denotes the cost per unit non-productive travelling distance, 
b is associated with the cost per unit tool switch time, Mj, is a set of tools that can be used to drill hole j 
to its final size, pjk, is non-productive travelling distance between hole j and hole k, 

jmmq '' , represents tool 

switch time between current tool type, m", and tool m required by hole j and finally ljkmmmx '''  , is a 0-1 
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integer variable, i.e. ljkmmmx ''' =1 if tool m replaces tool m" to drill hole j which is located in the path 

between holes l and k and has been drilled by tool m'; 0, otherwise. The   0-1 decision variable,
 ljkmmmx '''  

simultaneously determines the sequence of holes to be processed as well as the indices m, m', and m" are 
used to achieve the correct sequence of tools for machining of each hole. Constraint set (5) ensures that 
each hole is drilled to its final size. Constraint set (6) states that backward movement of spindle is not 
allowed unless a tool switch is needed. To solve this model large amount of computational time is 
required as relatively large number of 0-1 decision variables are involved. To overcome this problem, 
efficient solution procedure using PSO algorithm is proposed. 
 
3. Particle Swarm Optimization (PSO) algorithm 
 
Particle swarm optimization is an evolutionary computation technique developed by Kennedy and 
Eberhart (1995). The particle swarm thought was originated as a simulation of a simplified social system. 
This technique starts with initialization of population of random solutions called “particles”. This 
algorithm consists of two “best” values. First one is the “pbest” best fitness values of individual particles 
achieved so far. Second is the “gbest” which is the one with the best values among all the particles. 
Velocity and position of individual particles are obtained and updated using Eqs. (7-8) (Kennedy & 
Eberhart, 1995). Each particle updates its velocity and position through the problem space by comparing 
its current position and velocity with the optimal solution. In PSO, velocity of particles is changed at 
every generation towards the “pbest” and “gbest”.  
 

)()( 22111 ibestiibestiii XgrCXprCVwV −××+−××+×=+  (7) 

11 ++ += iii VXX  (8) 
             
where, 
 
 1+iV = New velocity of each particle,   

 w  = Inertia weight, 
 iV =Previous velocity of particle,    
 1r & 2r =random numbers between 0 to 1, 

 1C & 2C = acceleration constants or Cognitive and social constants, 
 

i
X = Previous position of particle. 

 
The acceleration constants ‘Cl’ and ‘C2’ in Eq. (7) represent the weighting of the stochastic acceleration 
terms that pull each particle towards ‘pbest’ and ‘gbest’ positions. Thus, tuning of these constants varies the 
amount of tension in the system. Low values of the constants allow particles to pass through far from 
target regions before being tugged back, while high values result in rapid movement toward, or pass 
through target regions (Elbeltagi et al. 2005; Dong et al. 2005). The inertia weight ‘w’ plays a crucial 
role in the PSO convergence behavior since it is used to manage the exploration abilities of the swarm. 
The effect of w, C1 and C2 on convergence for standard numerical benchmark functions was provided by 
Bergh and Engelbrecht (2006). The optimum selection of operating parameters of the algorithm like 
acceleration constants ‘C1’ and ‘C2’ as well as inertia weight ‘w’ is essential for the convergence of the 
algorithm. To ensure the convergence of the PSO algorithm, the condition specified by the f Eq. (9) must 
be satisfied (Bergh & Engelbrecht, 2006):  
 
max (|λ1|, |λ2|) <1 (9) 
where  
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where ( ) ww 41 2
21 −−−+= φφγ   , φ1 = C1×r1 and φ2 = C2×r2. 

 
As the feasible range for w is 0-1 and for C1 and C2 is 0-2, the selected values of w, C1 and C2 should be 
arranged such that the Eq. (9) is satisfied for all possible values of random numbers r1 and r2 in the range 
0-1. The controlling parameters of PSO algorithm are selected based on the above mentioned criteria for 
the application example discussed in the next section.   
 
4. Application Example 
 
The particle swarm optimization algorithm is implemented to determine the optimal sequence of 
operations and corresponding cutting speeds of the upper holder of plastic injection mould as shown in 
Fig. 2 (Kolahan & Liang, 2000). The input data required for determining the optimal sequence of 
operations and corresponding cutting speeds of this mould using PSO are considered from (Kolahan & 
Liang, 2000).This mould consists of total 32 holes namely GP1, GP2, GP3, GP4, GE1-GE4, PR1-PR4, 
C1-C4, C1''-C4'', P1-P4, EB1-EB6, ES1-ES2. Fig. 2 also shows data related to the distances between the 
holes, type of operations required, and the depth of each hole. 

 
Fig. 2. Upper holder of the plastic injection mould                                                           

 
Three types of operations: drilling, reaming, or tapping are necessary to machine the holes on this part. 
Total numbers of tools required for hole-making are 12. Data of each tool and its corresponding feed 
rate, diameter and cost of machining are given in Table 1. The tool life expressions for drilling, reaming, 
or tapping operations are given in   Eqs. (12- 14) (Zhao, 1992). 
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Table 1 
Data of tool diameter, cost, and specified feed rate considered for an application example. 

Tool type m 
Drill Reamer Tap 

1 2 3 4 5 6 7 8 9 10 11 12 
fm (mm/rev) 0.12 0.1 0.12 0.15 0.2 0.2 0.18 0.15 0.5 0.8 0.8 1.5 
dm (mm) 7 7.25 10.5 12.5 13 19 25 41 12.7 19.1 41.2 16 
Zm($) 10 12 15 15 14 20 26 50 55 70 85 45 
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= , for enlarging a hole by reaming or tapping 

(14) 
 

 
where, emj, is depth of cut when tool type m performing a cutting operation on hole j. Optimum cutting 
speeds expressed in Eqs.(15-17) can be achieved by solving differential Eq.(3) with Eqs. (12-14) 
(Kolahan & Liang, 2000): 
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(15) 
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5.2 65.15.0

75.0

3.10
mmjm

m
mj feZ

YdU ×= , for enlarging a hole by reaming or tapping 
(17) 

 
Tooling and machining costs of individual operations are calculated using optimum cutting speeds 
obtained using Eqs. (15-17). For this application example, tool switch times required for machining of 
hole-making operations are given in Table 2. 
 
Table 2 
Tool switch times (min) 

Next in line Tool 
Previous Tool 

1 2 3 4 5 6 7 8 9 10 11 12 
1 0 0.6 0.2 0.4 0.4 0.9 0.6 1 0.8 1.4 0.4 1 
2 0.6 0 0.8 1.2 0.4 0.8 1.2 0.5 0.6 0.6 1.2 1.4 
3 0.2 0.8 0 0.6 1.4 1.2 1.4 1 0.4 1 1.9 1.2 
4 0.4 1.2 0.6 0 0.4 0.7 1 1.6 0.8 1.4 0.4 0.6 
5 0.4 0.4 1.3 0.5 0 0.8 0.6 1 0.8 1.8 1.6 1.5 
6 0.5 0.5 1.2 0.2 0.8 0 0.2 1.5 1.2 1.3 0.4 1.9 
7 0.6 1.2 1.4 1 0.6 0.4 0 1 0.8 0.8 1.2 0.6 
8 1 0.6 0.6 0.4 0.4 0.7 0.6 0 0.8 1.5 0.4 0.5 
9 0.2 0.9 1.1 0.6 1.5 1.2 1.4 1 0 1.2 2 1.2 

10 0.4 1.2 0.7 1.5 0.5 0.3 1 0.4 0.7 0 0.4 0.6 
11 0.4 1.2 2 0.4 1.2 0.8 0.6 1.2 0.8 1 0 0.2 
12 1 0.7 0.3 0.4 0.4 0.8 0.6 1.4 1 1.5 0.5 0 
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Table 3 
Tool-hole combinations considered in the application example. 

J GP1-GP4 GE1-GE4 PR1-PR4 C1-C4 C1''-C4'' P1-P4 EB1-EB6 ES1-ES2 

mj 6-8-11 6-7 6-10 4-9 1 5-12 3 2 
 
Table 3 corresponds to different combinations of tools necessary for machining of an individual hole to 
its final size as shown in Fig. 2. For example, holes GP1, GP2, GP3, GP4 require tool number 6 as initial 
tool, tool number 7 as intermediate tool and tool number 11 and a reamer to achieve the final size hole. 
Similarly, other holes involve a tool or different combinations of tools to achieve the final size hole. As 
given in Table 3, 56 machining operations are required for the example shown in Fig. 2. Process 
parameter assumed for this application example are, Y=$1/min, a=$0.0008/mm and b=$1/min. 
 
5. Results and Discussion 
 
For computational experiments, a Windows 8 PC with Intel core i3 CPU @ 1.90 GHz and Code blocks 
C compiler were used. In order to compare the results of PSO with those obtained using tabu search 
method developed by Kolahan and Liang (2000), for the application example considered in section 4, the 
following two cases are considered: 
 
Case 1: Considering tool switch times given in Table 2, 
Case 2: Considering tool switch times 50% of those given in Table 2, 
Case 1: Following algorithm specific parameters for particle swarm optimization are obtained through 
various computational experiments. 
C1=1.5,   
C2=2.0,   
w=0.5,   
Number of iterations =500, 
Number of particles=100. 
 
For the above parameter setting, the results of optimization for case 1 using PSO are given in Table 4. 
 
Table 4 
Results of optimal sequence of operation and associated cutting speeds for Case 1 using PSO 

mj 6-GE2 6-GP2 6-PR2 6-PR1 6-GP1 6-GE1 6-GE3 6-GP3 6-PR3 

Umj  33.016 33.016  33.016   33.016   33.016 33.016   33.016   33.016   33.016  
mj 6-PR4 6-GE4 6-GP4 8-GP4 8-GP3 8-GP2 8-GP1 11-GP1 11-GP2 

Umj  33.016   33.016   33.016   44.876   44.876   44.876   44.876  9.761   9.761 
mj 11-GP3 10-PR3 10-PR4 10-PR1 10-PR2 7-GE3 7-GE2 7-GE1 1-C4'' 

Umj   9.761  9.622  9.622  9.622 9.622  49.675   49.675   49.675  36.372 
mj 4-C4 9-C4 5-P4 5-P1 4-C1 4-C2 1-C2'' 1-C1'' 9-C1 

Umj  36.177  11.13  30.464  30.464  36.177  36.177  36.372  36.372  11.13 
mj 9-C2 5-P2 5-P3 12-P4 12-P3 12-P2 12-P1 7-GE4 11-GP4 

Umj  11.13  30.464  30.464  3.642  3.642  3.642  3.642  49.675    9.761 
mj 4-C3 1-C3'' 9-C3 3-EB5 3-EB1 3-EB3 3-EB2 3-EB4 3-EB6 

Umj  36.177  36.372   11.13  39.444   39.444   39.444   39.444  39.444   39.444 
mj 2-ES2 2-ES1        

Umj  40.406   40.406        
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Table 4 corresponds to the optimal sequence of operations and associated cutting speeds of Case 1 that 
are obtained using PSO. This sequence results into overall processing cost of $66.78 including $45.2 
machining and tool costs, $10.48 non-productive travelling cost, and $11.1 tool switch cost. 

 

 
Fig. 3.a. Convergence of overall processing costs ($) of Case 1 using PSO 

 
Case 2: The following algorithm specific parameters for particle swarm optimization are obtained 
through various computational experiments. 
 
C1=1.65,  
C2=1.75,  
w=0.65,  
Number of iterations =600, 
Number of particles=100. 
 
Table 5 
Results of optimal sequence of operation and associated cutting speeds of Case 2 using PSO 

mj  3-EB2 3-EB3 3-EB4 3-EB6 3-EB5 2-ES2 2-ES1 6-PR1 6-GP1 
Umj  39.444   39.444   39.444   39.444   39.444   40.406 40.406   33.016  33.016 
mj  6-GE1 7-GE1 8-GP1 10-PR1 11-GP1 4-C1 1-C1'' 9-C1 5-P1 
Umj  33.016   49.675  44.876 9.622  9.761  36.177  36.372  11.13  30.464  
mj  5-P4 4-C4 6-GP4 8-GP4 1-C4'' 9-C4 12-P4 11-GP4 6-GE4 
Umj   30.464  36.177    33.016  44.876 36.372    11.13   3.642 9.761   33.016  
mj  7-GE4 6-GE3 6-PR3 6-PR4 10-PR4 10-PR3 7-GE3 6-GP3 8-GP3 
Umj  49.675   33.016 33.016   33.016 9.622    9.622   49.675 33.016  44.876  
mj  11-GP3 4-C3 1-C3'' 9-C3 5-P3 5-P2 12-P3 12-P2 4-C2 
Umj   9.761   36.177  36.372   11.13   30.464    30.464  3.642   3.642 36.177   
mj  1-C2'' 9-C2 6-GP2 6-GE2 6-PR2 7-GE2 8-GP2 11-GP2 10-PR2 
Umj   36.372   11.13   33.016  33.016 33.016   49.675 44.876  9.761   9.622   
mj  3-EB1 12-P1        
Umj   39.444  3.642         

 
Table 5 corresponds to the optimal sequence of operations and associated cutting speeds of Case 2 that 
are obtained using PSO. This sequence results into an overall processing cost of $60.45 from which $45.2 
is the tool cost and machining cost, $10.94 tool switch cost, and $4.31 tool travel cost.  
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Fig. 3.b. Convergence of overall processing costs ($) of Case 2 using PSO 

 
Table 6 shows comparison of results of application example obtained by using PSO algorithm and tabu 
search (Kolahan & Liang 2000).  
 
Table 6 
Comparison of results of optimization obtained by using PSO with those obtained by using tabu search 
Kolahan and Liang (2000) for Case 1 and Case 2 

Case 1 
 

Tooling and 
Machining Cost 

Cmj ($) 
Tool Travel Cost 

($) Tool Switch Cost ($) 
Overall Processing 

Cost ($) 

Tabu Search (Kolahan and Liang2000) 45.2 11 8.6* 64.8 

Tabu Search (Kolahan and Liang2000) 45.2 11 11.2** 67.4 

PSO 45.2 10.48 11.1 66.78 

Case 2     

Tabu Search (Kolahan and Liang 2000) 45.2 4.9 10.1* 60.2 

Tabu Search (Kolahan and Liang 2000) 45.2 4.9 13.15** 63.25 

PSO 45.2 4.31 10.94 60.45 
*Value wrongly calculated by Kolahan and Liang (2000). 
**Corrected values obtained by substituting the optimum result obtained by Kolahan and Liang (2000) in Eq. (4) 
 
The example of this application was originally solved by Kolahan and Liang (2000) using tabu-search 
approach in order to reduce the overall processing cost of hole-making operations. Sequence obtained 
using tabu-search for both cases is checked manually as given Eq. (4), it is observed that the actual tool 
switch cost for both cases is different than the results given by Kolahan and Liang (2000). Corrected 
results for both cases are given in Table 6. PSO results are compared with these corrected results given 
in Table 6. 
 
6. Conclusion 
 
Optimization of hole-making operations involves large number of hole-making operations sequences due 
to the location of hole and tool sequence constraint. To achieve this, proper determination operations 
sequence and associated cutting speeds which reduces the overall processing cost of hole-making 
operations are essential. In this paper, a methodology has been proposed to reduce the overall processing 
cost of hole-making operations of an application example using PSO algorithm. The obtained results 
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have been compared with those obtained using tabu-search approach reported by Kolahan and Liang 
(2000). It is observed that the results of optimization obtained by PSO algorithm were slightly better than 
tabu-search approach (Kolahan & Liang, 2000) since for both cases showing an improvement about 1.0% 
for Case 1 and 4.6 % for Case 2. However for the both cases, the sequence of operation to be performed 
shows significant changes with respect to results obtained using tabu-search approach (Kolahan & Liang 
2000).This clearly shows that PSO algorithm has potential to solve this problem. Also it is observed that 
PSO algorithm requires only 600 generations to converge to optimal solution. The improvement obtained 
by using PSO algorithm is thus significant and clearly indicates the potential of this method to solve real 
life problems related to hole-making for various industrial applications.  
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