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 This research discusses an integer batch scheduling problems for a single-machine with position-
dependent batch processing time due to the simultaneous effect of learning and forgetting. The 
decision variables are the number of batches, batch sizes, and the sequence of the resulting 
batches. The objective is to minimize total actual flow time, defined as total interval time between 
the arrival times of parts in all respective batches and their common due date. There are two 
proposed algorithms to solve the problems. The first is developed by using the Integer 
Composition method, and it produces an optimal solution. Since the problems can be solved by 
the first algorithm in a worst-case time complexity O(n2n-1), this research proposes the second 
algorithm. It is a heuristic algorithm based on the Lagrange Relaxation method. Numerical 
experiments show that the heuristic algorithm gives outstanding results.  
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1. Introduction  
 

The classical theory of scheduling assumes that the processing time of a job is not affected by its position 
on a schedule (e.g. Morton & Pentico, 1993; Pinedo, 2002; Baker & Trietsch, 2009). However, there are 
situations where the processing time of a job scheduled at a position can be faster or slower than that at 
the previous position due to learning and forgetting effects (Wang & Cheng, 2007; Cheng, et al., 2010; 
Lai & Lee, 2013). Some researchers, i.e. Yang and Chand (2008), and Ji and Cheng (2010) show that 
one of the crucial factors leading to the learning and forgetting effects is when operators or machines 
process jobs in batches. The learning effect is caused by the increase of the operator's competence after 
producing the same parts in a batch repeatedly. Meanwhile, the forgetting effect occurs during a break 
time between two consecutive batches so that the operator has to learn the operation again when 
beginning to process the parts in the next batch. Keachie and Fontana (1966) discuss both the effects of 
learning and forgetting on Economic Order Quantity (EOQ) model. Steedman (1970) proves that the 
optimal batch sizes in traditional EOQ model have smaller value than that on Keachie and Fontana. 
Meanwhile, Jaber and Salameh (1995) propose optimal batch sizes based on Economic Production 
Quantity (EPQ) model by considering learning situation. Other researchers in the same field are Cheng 
(1991), Cheng (1994), Li and Cheng (1994), Chiu (1997), Chiu et al. (2003), Chiu and Chen (2005), 
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Chen et al. (2008), Teyarachakul et al. (2008), and Teyarachakul et al. (2011). Although the researchers 
have found a method to determine the batch sizes, they have not considered on how to schedule the 
resulting batches on a machine. 
 
Gaweijnowics (1996) and Biskup (1999) are pioneers who discuss job scheduling problems on a machine 
by considering the learning effect. They assume that job processing time is not a constant value. It may 
change due to learning and/or deterioration effects. Gaweijnowics (1996) discusses a single-machine 
scheduling problem to minimize makespan and shows that the optimal schedule should be obtained by 
scheduling jobs in accordance with the Shortest Processing Time (SPT) rule. In the meantime, Biskup 
(1999) proves the polynomial solutions for similar problems to that of Gaweijnowics (1996) for two 
objectives, i.e. minimizing the interval time between completion times of jobs and their common due 
date, and minimizing the sum of flow times.  
 
Biskup (1999) classifies the learning function into two models, i.e. the position-based learning and the 
sum-of-processing-times-based learning. The position-based learning assumes that the learning effect 
increases due to machine-driven and has no or near to zero human interference. The increase of learning 
effect depends on the position of jobs in a schedule (Cheng et al., 2011). However, the sum-of-
processing-times-based learning model assumes that the learning effect increases in line with the number 
of jobs that the operator has previously completed (Cheng et al., 2009). Kuo and Yang (2006), Anzanello 
and Foglianto (2010), and Cheng et al. (2013) propose a learning model that combines the sum-of-
processing-times-based model and the position-based learning model. Meanwhile, Janiak et al. (2011) 
propose an operator experience-based learning model and conclude that the learning effect should be 
restricted by a minimum job processing time called as learning threshold. The readers may get better 
understanding of learning function models in Janiak et al. (2011), Teyarachakul et al. (2011), and Lai 
and Lee (2013). 
 
The learning effect is always followed by forgetting effect (Jaber & Bonney, 1996; Jaber, 2011; 
Nembhard & Uzumeri, 2000). Arzi and Shtub (1997) discuss that any interruption in the course of the 
learning process generates a forgetting effect. There are various forgetting function models, some of them 
can be found in Jaber and Boney (1996) and Teyarachakul et al. (2011). Currently, the research on the 
simultaneous effects of learning and forgetting in the area of scheduling has become an interesting topic 
for researchers, such as Lai and Lee (2013) and Wu et al. (2014). The researchers deal with single-
machine scheduling problems with different objectives. Their research results reveal that in order to 
minimize both makespan and total completion time, an optimal schedule should be obtained by 
scheduling jobs in accordance with the SPT rule. Meanwhile, minimizing total weighted completion time 
can be obtained by arranging jobs in accordance with the Weighted Shortest Processing Time (WSPT) 
rule. In other case, i.e. to minimize the minimum lateness, maximum tardiness, and total tardiness, the 
jobs must be sequenced by adopting the Early Due Date (EDD) rule.  
 
This research deals with batch scheduling problems for a single-machine that produces discrete parts 
where the processing time is affected by learning and forgetting effects simultaneously under a Just-In-
Time (JIT) production system. The motivation of research is from a real-life situation, i.e. in the step of 
inserting components to Printed Circuit Board (PCB). There are several components inserted into PCB 
by an operator, and then the completed product is placed in a rack. The operator will stop processing and 
transfer the rack to a temporary warehouse when the number of parts in the rack reaches a certain 
quantity. After the operator delivers the parts, the operator prepares the process again such as to take the 
number of new materials from the previous step. The number of parts in one rack can be considered as a 
batch size. It can also be considered that the interval time when the operator prepares the process as a 
setup batch. The learning effect occurs because the operator processes the parts repeatedly. Meanwhile, 
a setup time leads to the forgetting effect. 
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This research assumes that the arrival time of parts in all batches can be arranged at the time when the 
machine starts to process, and all finished parts must be delivered exactly at the time coinciding with 
their common due date. It also assumes that there is a setup time between two consecutive batches. The 
objective is to minimize the total actual flow time of parts in all batches, as defined by Halim et al. (1994) 
as the total interval times between the arrival times of parts in all respective batches and their common 
due date. Halim and Ohta (1994) prove that total actual flow time is effective to minimize total inventory 
cost and satisfy the due date simultaneously in a Just-In-Time production system. Due to the actual flow 
time adopt a backward scheduling approach, then the learning effect in this research is shown by the 
shorter processing time of parts in a batch scheduled at a position than that in another batch scheduled at 
the next position. On the contrary, the forgetting is shown by longer processing time. The decision 
variables are the number of batches, batch sizes and the sequence of the resulting batches. 
 
The structure of this paper is as follows. The next section presents a single-machine batch scheduling 
problems with learning and forgetting effects. The third section shows the problem formulation. The 
fourth section discusses the solution method and several numerical experiments. Finally, the last is the 
concluding remarks. 
 

2. Batch Scheduling Problems with Learning and Forgetting Effects  

2.1 Batch Scheduling Problems for a Single Machine  
Dobson et al. (1987) describe that flow time criteria can be used in batch scheduling problems to 
minimize setup cost and inventory cost, simultaneously. Flow time in Dobson et al. (1987) is based on 
the so-called a forward scheduling approach. The researchers assume that all parts have been available 
since the beginning of the scheduling period (time zero), and all parts in respective batches should be 
delivered at the completion time of the batches. These assumptions are not always true in many real 
situations such as in a JIT production system. There are conditions where the completed parts must be 
delivered exactly at the time coinciding with a due date, and the company is capable of arranging the 
arrival of parts at the time which the machine starts to process. Halim et al. (1994) propose an objective 
of actual flow time. The total actual flow time of all parts in a batch is calculated by multiplying the 
number of parts in a batch with the time interval between the common due date and the arrival time of 
parts in the batch. For single-machine batch scheduling problems, the constraints that should be 
considered are as follows: the number of all parts produced equals the demands; the completion time of 
all batches should not exceed the available time (the interval time from time zero to the due date); the 
completion of the batch scheduled in the first order (backwardly) must be delivered exactly at the time 
coinciding with the due date; the batch sizes should be positive value and the number of batches is a 
positive integer. The decision variables of the research are the number of batches, the number of parts in 
batches and the sequence of the resulting batches. Halim et al. (1994) solve the problems using the 
Lagrange Relaxation method. The result shows that the minimum actual flow time is obtained by 
sequencing the resulting batches in the LPT rule in a backward scheduling approach.  
 
 

2.2. Processing Time with Learning Effect   
A learning effect can be explained as a phenomenon where the processing time of a job at a certain 
position is shorter than that at the earlier position. It is because the operator’s experience increases in line 
with the number of jobs that the operator has previously completed. Wright (1936) is the pioneer who 
discusses a learning model the so-called Cumulative Average Power (CAP). The equation of CAP model 
is as follows.   

[ ] [ ]1
m

xT T x−=          

( ) ( )where log / log 2m δ= −  

(1) 
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It is notated that T[x] is the processing time when producing x-units, T[i] is the initial processing time or 
the processing time for the unit firstly processed, δ is learning rate and m is learning slope. The δ values 
are between 0<δ<1. However, in manufacturing system, it is between 0.7 and 0.9 (see Jaber & Bonney, 
1996).The lower of δ, the greater of the learning effect. 
 
This paper adopts the backward scheduling approach so that the learning effect is shown by a shorter or 
equal processing time of parts in a batch scheduled at a position than that in another batch scheduled at 
the next position. The learning function is developed from learning function by Janiak et al. (2011) and 
CAP model. The batch processing time is calculated on the basis of the maximum values of the learning 
function and learning threshold as shown in Eq. (2). 

[ ] [ ]( ){ }1max 1 ,
mN

i kk i
T p Q v

−

+=
= +∑   

where  log / log 2,  =1,2,..,m i Nδ= −       

(2) 

It is assumed that there are N batches, all of which are scheduled on a machine by using the backward 
scheduling approach. The number of parts in a batch (the batch size) is Q[i] and p stands for the initial 
processing time, i.e. the processing time of those parts scheduled at the last batch (Q[N]). The value of 
learning rate (δ) determines learning slope (m) according to the formula of Cumulative Average Power 
(CAP) model. It is also considered that there is a minimum processing time or learning threshold (v) so 
that the processing time will be constant after having reached a minimum processing time value.  
 

2.3. Processing Time with a Forgetting Effect  
A forgetting effect is defined as an increase of job processing time after an interruption during the specific 
time. It is because an operator must re-learn a process again when he starts to process job after the 
interruption. Carlson and Rowe (1976) carry out the calculation of processing times with some forgetting 
effect, well known as a power model as shown in the following equation.  

[ ] [ ]1
ˆ ˆ f

xT T x=      
(3) 

It is notated that [ ]ˆ xT  is a processing time for the x-th unit affected by some forgetting effect, T[i] is the 
initial processing time or the processing time for the first processed unit, x is the total accumulation of 
unit that can be produced during interruption time if there is no forgetting effect, and f is a forgetting 
slope. Jaber and Bonney (1996) assume that an operation process will be interrupted after the operator 
has produced q number of parts. It is assumed that forgetting parameter is affected by learning slope (m) 
so that since the operator experience increase in each batch, the forgetting parameter will continuously 
change too. Jaber and Bonney (1996) put forwards a formula for computing f values as shown in the 
following equation. 

( ) ( ) ( )1 log log 1 ,  f m m q C= − +        (4) 
where   = log /log2,  m δ−      
            / , B pC t t=   

[ ] ( )( ) ( ) ( )1 1
1            / 1m m

Bt T q R u m− − = + − −  
  

( ) [ ]
( ) ( )1

1            / 1m
pt t q T q m−= = −   

The forgetting effect in this research is shown by a longer or equal processing time of parts in a batch 
scheduled at a position than that in another batch scheduled at the next position in the backward 
scheduling approach. This paper develops forgetting function for batch processing time based on the 
Power model in Carlson and Rowe (1976), and assumes that there is a forgetting threshold that restricts 
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the forgetting effect. The formula for calculating batch processing times considers forgetting effect as 
follows. 

[ ] [ ] [ ]
[ ]{ }min 1 ,
ifN

i k ik i
T p X Y w

=
 = + ∑        

[ ] [ ] [ ] [ ]1 1where   / ,  /Bi i i iX s T Y t T+ +
   = =         

(5) 

Suppose, n units of demand are divided into N batches (i = 1, .., N). T[1] is the processing time of the i-th 
batch. The initial processing time is p, i.e. the processing time of those parts in the batch scheduled in the 
N-th position using backward scheduling approach, w is the maximum batch processing time or forgetting 
threshold, f is the forgetting parameter. The forgetting effect occurs due to time break in the form of setup 
between two consecutive batches. It causes the operator could potentially lose a chance of producing X 
number of parts. If it is assumed that such interruption takes place during tB units of time, the operator 
will undergo a maximum forgetting effect and potentially lose his chance of producing Y number of parts. 
Thus, the forgetting effect in the time of X should be divided by Y.  This paper assumes that an interruption 
takes place during setup time, so the value of C is equal to X number of parts. It can be formulated as 
follows. 

[ ] [ ]1/i iC X s T +
 = =       

(6) 

Applying Eq. (4) and Eq. (6) simultaneously yields. 
 

[ ]
( ) [ ]( ) [ ]( )1 11 log / log 1 / ,   1,2,..., 1 

0,   

i i
i

m m Q s T i Nf
i N

+ +

  − + = −  =  
 =

  
(7) 

 

2.4. Processing Time with Simultaneous Effect of Learning and Forgetting 
Jaber and Bonney (1996), and Arzi and Shtub (1997) show that an interruption of learning process results 
forgetting effect. It indicates that both learning and forgetting phenomena may happen simultaneously. 
Based on Eq. (2) and Eq. (5), the model of learning-forgetting functions is shown as follows. 

[ ] [ ]( ) [ ] [ ]( ) [ ]

1min max 1 1 1 , ,
im fN N

i k k ik i k i
T p Q X Y v w

−

+= =

   = + + + −    
   

∑ ∑   
(8) 

The trend of batch processing time depends on the height of effect of learning or forgetting. If the learning 
effect is higher than the forgetting effect, the trend increases. On the contrary, if the forgetting effect is 
higher than learning effect, the trend decreases. 
 
3. Problem Formulation 

There is a single machine that processes n number of parts in N batches, and that needs a setup time 
between two consecutive batches. It is assumed that a company can arrange the arrivals of the parts as 
required and deliver the completed parts at the time that is exactly with the common due date. The 
processing time of parts in a batch depends on its position in the schedule due to the simultaneous effect 
of learning and forgetting. The objective is to minimize actual flow time. It is then modeled by using the 
following notations: 

Decision variables 
N   = number of batches  
Q[i] = the size of batches scheduled at the i-th position, where i=1, ..,N  

Parameters  
d  = due date 
n  = number of demands 
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s  = setup time of batch 
p  = processing time of N-th batch (initial processing time) 
δ    = learning rate 
m   = learning parameter or learning slope 
f     = forgetting parameter or forgetting slope  
v   = minimum processing time 
w   = maximum processing time 
tB   = maximum interruption time that results maximum forgetting effect 

Dependent variables 
 

T[i] = batch processing time scheduled in the i-th position, i=1, .., N 
B]i] = starting time of batch scheduled in the i-th position, i=1, .., N  
X[i] = number of parts potentially produced during a setup of batch (s) by a processing time of batch 

scheduled in the i-th position (T[i]), i=1, .., N 
Y[i] = number of parts potentially produced during a maximum interruption time (tB) by a processing 

time of batch scheduled in the i-th position (T[i]), i=1, .., N 

The Objective Function 
 

Fa  = actual flow time 
 
The mathematical model of the problems can be written as follows. 

min [ ] [ ]( ) [ ]
1 1

 =
N i

a
ij j

i j
F s T Q s Q

= =

 
+ − 

 
∑ ∑   

(9) 

subject to:       

[ ]1
,N

ii
Q n

=
=∑      

 
(10) 

[ ] [ ] ( )1
1 ,N

i ii
T Q N s d

=
+ − ≤∑      (11) 

[ ] [ ] [ ]1 1 1 ,B T Q d+ =        (12) 

[ ] 1 and integer,iQ ≥         (13) 

1  and integer,N n≤ ≤         (14) 

It is stated in Eq. (9) the objective is to minimize total actual flow time where batch processing time 
affected by learning and forgetting effects simultaneously. It is explained in Constraint (10) that the 
produced number of all parts must be equal to demands. It is shown in Constraint (11) that all parts in 
the batches should be proceeded within the interval time from time zero to the due date. It is stated in 
Constraint (12) that the completion batch scheduled in the first order must be delivered exactly at the 
time coinciding the common due date. It is shown in Constraint (13) that batch sizes should be larger 
than or equal to one and integer. It is explained in Constraint (14) that the number of batches is a positive 
integer between 1 and the number of demands.  

4. The Solution Method 

4.1 The Optimal Solution  
This research proposes the optimal algorithm based on the Integer Composition method. The solution of 
the algorithm is searching the optimal solution of total actual flow time for all possible integer batch-size 
combinations. There are two steps to generate the combinations. The first step is to generate the basic 
combinations by using the Integer Partition method and then to re-arrange them into a one-to-one 
correspondence with itself by the Permutation method in the last step. For example, if there is a demand 
equal to five units, the combinations of batch sizes are showed in Table 1 as follows. 

http://mathworld.wolfram.com/One-to-OneCorrespondence.html
http://mathworld.wolfram.com/One-to-OneCorrespondence.html
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Table 1  
The Integer Composition Method Results 

Number of 
batches 

Basic Combinations 
(First Step) 

Integer batch-size Combinations 
(second Step) 

Quantity of 
Combinations 

Quantity of 
Elements 

1 [5] [5] 1 1 
2 [4,1], [3,2] [4,1], [1,4], [3,2], [2,3] 4 8 
3 [3,1,1], [2,2,1] [3,1,1], [1,3,1], [1,1,3], [2,2,1], [2,1,2], 

[1,2,2] 
6 18 

4 [2,1,1,1], [2,1,1,1], [1,2,1,1], [1,1,2,1], [1,1,1,2] 4 16 
5 [1,1,1,1,1] [1,1,1,1,1] 1 5 

                                   Total 16 48 
 

Table 1 shows for 5 unit demands, there are 16 integer batch-size combinations and 48 elements. Shen 
and Evan (1996) have proved that n units demand will produce 2n-1 number of combinations and (n+1)2n-

2 number of elements. Table 2 shows the examples of the total quantity of batch sizes combinations and 
total quantity of elements for some number variety of demands.  
 
Table 2  
Testing Results for the number variety of demands 

Demands (n) The total quantity of combinations (f(n)) The total quantity of elements 
1 1 1 
2 2 3 
3 4 8 
4 8 20 
5 16 48 

10 512 2,816 
15 16,384 131.072 
20 524,288 5.505.024 
N 2n-1 (n+1)2n-2 

 
Table 2 shows that both of the number of combinations and the number of elements increase in line with 
the increase of the number of demands. Based on Integer Composition method, It is proposed optimal 
algorithm (P-Algorithm) to solve the problems as follows. 

[P-Algorithm] 
Step 1: Input parameters n, d, p, s, δ, v, w, and tB. Continue to Step 2. 
Step 2: Generate sets of all integer batch-size combinations by using the Integer Composition 

Algorithm. Continue to Step 3. 
Step 3: For each of the alternative solution batch sizes:   

Step 3.1:  Calculate the processing time of batch (T[i]) using Eq. (8). Continue to Step 3.2 
Step 3.2:  Compute total actual flow time by using Eq. (9) with the constraints which are Eq. 

(10)-(14). Continue to Step 4. 
Step 4: Find the solution that given minimum total actual flow time. STOP.  
 
Numerical experiment for a model was conducted by giving the following input data parameters: n = 5, 
d = 12, p = 0.5, s = 1, δ = 0.9, v = 0.1, w = 1.1, tB = 100. Table 3 presents the solution of the algorithm. 
Table 3 shows there are 16 number of integer batch-size combinations. The minimum of total actual flow 
time is 10.35. 
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Table 3  
Testing Results of the P-Algorithm 

N   Q[i]  T[i] B[i] Fa Total Fa 

1 [5] [0.5] [9.5] [12.5] 12.5 
2 [4,1] [0.45, 0.5] [0.2, 8.7] [7.2, 3.3] 10.5 
 [1,4] [0.39, 0.5] [11.61, 8.6] [0.39, 13.57] 13.96 
 [3,2] [0.42, 0.5] [10.73, 8.73] [3.81, 6.54]   10.35* 
 [2,3] [0.41, 0.5] [11.19, 8.69] [1.62, 9.93] 11.56 

3 [3,1,1] [0.42, 0.45, 0.5] [10.73, 9.28, 7.78] [3.81, 2.73, 4.22] 10.75 
 [1,3,1] [0.39, 0.45, 0.5] [11.61, 9.26, 7.76] [0.39, 8.23, 4.24] 12.86 
 [1,1,3] [0.39, 0.41, 0.5] [11.61, 10.2, 7.7] [0.39, 1.8, 12.89] 15.08 
 [2,2,1] [0.41, 0.45, 0.5] [11.19, 9.29, 7.79] [1.62, 5.42, 4.21] 11.26 
 [1,1,2] [0.39, 0.42, 0.5] [11.61, 9.76, 7.76] [0.39, 4.48, 8.48] 13.35 
 [1,1,2] [0.41, 0.42, 0.5] [11.19, 9.77, 7.77] [1.62, 2.23, 8.47] 12.32 

4 [2,1,1,1] [0.41, 0.42, 0.45, 0.5] [11.19, 9.77, 8.32, 6.82] [1.62, 2.23, 3.68, 5.18] 12.72 
 [1,2,1,1] [0.39, 0.42, 0.45, 0.5] [11.61, 9.76, 8.31, 6.81] [0.39, 4.48, 3.69, 5.19] 13.75 
 [1,1,2,1] [0.39, 0.41, 0.45, 0.5] [11.61, 10.2, 8.3, 6.8] [0.39, 1.8, 7.39, 5.2] 14.78 
 [1,1,1,2] [0.39, 0.41, 0.42, 0.5] [11.61, 10.2, 8.78, 6.78] [0.39, 1.8, 3.22, 10.44] 15.85 

5 [1,1,1,1,1] [0.39, 0.41, 0.42, 0.45, 0.5] [11.01, 10.2, 8.78, 7.33, 5.83] [0.39, 1.8, 3.22, 4.67, 6.17] 16.25 
      *: the optimal solution  

The optimal number of batches (N) is 2, and batch sizes (Q[i]) are 3 and 2. Although the algorithm can 
generate an optimal solution, it will take a long time to compute and also needs higher physical memory 
when the results are reported by computer. It is because the problems are solved in polynomial time 
complexity. The proof which is shown by Lemma and Proposition as follows.  
 
Lemma 1. All feasible integer batch-size combinations in Step 2 can be solved in running time n2n-1.  

Proof. Suppose there are n unit demands has 2n-1 integer batch-size combinations. It is proved by Shen 
and Evan (1996) that the total number of combinations can be solved in running time T(n)=n2n-1.  □ 

Lemma 2. Batch processing time with simultaneous effect of learning and forgetting in Step 3.1 can be 
solved in running time T(n)= (n+1)2n-2. 

Proof. Shen and Evan (1996) prove there are (n+1)2n-2 elements of integer batch sizes. Batch processing 
time with simultaneous effects of learning and forgetting can be solved in one-time complexity for each 
element. Thus, all element batch sizes can be solved in running time T(n)= (n+1)2n-2. □ 

Lemma 3. The quantity of total actual flow time for all combinations in Step 3.2 can be solved in running 
time T(n)=2n-1.  

Proof. Since the total number of integer batch-size combinations is equal with 2n-1, the total actual flow 
time for all combinations can be solved in running time T(n)=2n-1.  □  

Lemma 4. The optimal solution of total actual flow time in Step 4 can be achieved in running time 
T(n)=2n-1.  

Proof. Since the quantity of total actual flow time for all combinations is equal with  2n-1, searching the 
optimal solution of total actual flow time can be solved while running time T(n)=1. □ 

Proposition 1. The running time of batch scheduling problems for a single machine with the 
simultaneous effects of learning and forgetting to minimize total actual flow time can be calculated using 
formula ( ) ( )( ) ( )( )1 21 2 1 2 1n nT n n n− −= + + + +  and it can be solved in a worst-case polynomial time 
complexity ( )12nO n − . 



R. Yusriski et al. / International Journal of Industrial Engineering Computations 6 (2015) 
 

373 

Proof. Based on Lemma 1, Lemma 2, Lemma 3, and Lemma 4, the running time of the problems can be 
formulated as follows. 

( ) ( ) ( )( ) ( )1 2 12 1 2 2 1n n nT n n n− − −= + + + +    

T(n) = O(g(n)) if and only if there is a positive real number c and a real number n0 such that: 

( ) 12nT n c n −≤  where 0n n≥ .  

Thus, the Big-O proved in the following condition as follows. 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1 2 2 1 1 2 2 1

1 1 1 1 1 1

 2 2 2 2 1 2 2 2 2 1

                                                            2 2 2 2 2 5 2

n n n n n n n n

n n n n n n

n n n n

n n n n n n

− − − − − − − −

− − − − − −

+ + + + ≤ + + + +

≤ + + + + ≤  
 

 

If 0 1n =  then there is exists a positive real number c, that is 5c =  for all 0n n≥  □ 
 

4.2 The Heuristic Solution 
Since the problems proved by using Preposition 1, then it can be solved in a worst-case polynomial time 
complexity O(n2n-1), this research develops the heuristic solution based on the Lagrange Relaxation 
method. The decision variables are the number of batches, batch sizes and the sequence of the resulting 
batches. 

4.2.1. Determining Batch Sizes 
The current research assumes that the batch sizes are integer. It is also considered that the processing 
time of parts in a batch scheduled at a position is different from that at the next position in backward 
scheduling approach. The learning and forgetting effect are started from the last position of batches to 
the first. It is proposed a backward computation for determining the batch sizes, that is, the calculation 
of the batch sizes are started from the last number of index to the first (i=N,..,1).  
 
Halim et al. (1994) propose the formula for calculating the optimal batch sizes for single machine 
problems by using the Lagrange Relaxation as follows. 

( ) ( )( )( ) ( )[i] / 1/ 2 1 / / ,     1,...,Q n N N s t s t i i N= + + − =   (15) 

Eq. (15) can be re-written by using the backward computation as shown in the following equation. 

( )( )( ) ( )[i]
1

/ 1/ 2 1 / / ,     ,...,1
N

k
k i

Q n Q i i s t s t i i N
= +

 = − + + − = 
 

∑   
(16) 

Substitute  t  in Eq. (16) by T[i] in Eq. (8) yields: 

( )( ) [ ]( ) [ ]( )[i]
1

/ 1/ 2 1 / / ,     ,...,1
N

k i i
k i

Q n Q i i s T s T i i N
= +

 = − + + − = 
 

∑   
(17) 

[ ] [ ]( ) [ ] [ ]( ) [ ]

1where    min max 1 1 1 , ,
im fN N

i k k ik i k i
T p Q X Y v w

−

+= =

   = + + + −    
   

∑ ∑  
 

Applying Constraint (13) and Eq. (17) simultaneously yields:  

( )( ) [ ]( ) [ ]( )[i]
1

max  / 1/ 2 1 / / ,  1 ,     ,...,1
N

k i i
k i

Q n Q i i s T s T i i N
= +

    = − + + − =   
    

∑   
(18) 



374  

    

4.2.2 Determining the Maximum Number of Batches  
The optimal number of batches cannot be determined precisely because batch processing time depend on 
its position on a schedule. The maximum number of batches can be calculated by assuming that all parts 
in all batches are processed on a machine by the minimum value of batch processing time. According to 
Constraints (11) and (14), the maximum number of batches (Nmax) can be calculated as follows. 

( ){ }minmax min / 1,N d nT s n= − +     (19) 

T minimum can be relaxed using the formula: 
 

( ){ }min max 1 ,mT p n v−≈ +   (20) 

Eq. (20) shows that minimum batch processing time is found when all parts are proceeded together and 
no forgetting effect. Substitute Tmin in Eq. (19) by Eq. (20) yields: 

( ){ }( )( ){ }max min max 1 , 1 ,mN d n p n v s n− = − + +  
  

(21) 

Based on Eq. (14) and Eq. (21), it also can be observed that the optimal value of total actual flow time is 
within the closed interval [1, Nmax]. Lemma says as follows. 

Lemma 5. If the objective function of total actual flow time is convex in a closed interval [1, Nmax], 
then the optimal value of total actual flow time is within the interval. 

Proof. The optimal number of batches should be convex in a closed interval [1, Nmax] if and only if 
Hessian Matrix is a definite positive. f: Rn→R convex function ↔ Hf (x) is a definite positive. 

Based on Eq. (8), T[i] is the function of Q, s, tB, f, and δ. It is defined dependent variable T[i] as a parameter, 
i.e T[i] as t.  Eq. (10) can be re-written as follows. 

            ( ) [ ] ( ) [ ] ( ) [ ] [ ]

2
2

1 1 1 1
1/ 2 1/ 2

N N N N
a

i i i i
i i i i

f x F s iQ t Q t Q s Q
= = = =

 = = + + − 
 

∑ ∑ ∑ ∑    

Gradient:  [ ] [ ]
1

/
N

i i
i

F Q si tQ t Q s
=

 ∂ ∂ = + + − 
 
∑  

 

                  [ ] ( ) [ ] [ ]
2/ 1/ 2N N NF N sNQ tQ sQ∂ ∂ = + −   

Hessian Matrix: ( ) ( )
[ ]

2
0

0f
N

t
H x f x sQ

 
= ∇ =   

 
 

 

Using Silvester Criterion yields:  
[ ]

[ ]

0
det 00 N

N

t
tsQsQ → >  

 

Hessian Matrix is a definite positive. Therefore, the objective function is convex. The optimal number of 
batches is within the interval of [1, Nmax]. □ 

4.2.3 Determining Sequence of the Resulting Batches  

Proposition 2. Minimizing total actual flow time in batch scheduling problems on single-machine with 
processing time affected by simultaneous effects of learning and forgetting can be obtained by 
sequencing the resulting batches by using the LPT rule in the backward scheduling approach. 
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Proof. There are two feasible schedules for N batches. The first schedule places batch of (i)-th position 
at the (i)-th position and batch of (i+1)-th position to the (i+1)-th position. The last schedule is only 
different from the first schedule in batch of (i)-th position at the (i+1)-th position and batch of (i+1)-th 
position at the (i)-th position. Both of them are arranged by using backward scheduling approach. If Fa1 
and Fa2 are the value of total actual flow time for the first schedule and the second respectively, the 
following is obtained 

            [ ]( ) [ ]( )1 2
[ ] [ 1] [ 1] [ 1] [ ] [ ]1

a a
i i i i i ii iF F T Q Q sQ T Q Q sQ+ + ++− = + − +

  
 

The value of total actual flow time at the first schedule will be less than or equal to that value at the 
second schedule if only if 

            [ ]( ) [ ]( ) [ ] [ ][ ] [ 1] [ 1] [ ] [ ] [ 1]1 1 or / /i i i i i ii i i iT Q s Q T Q s Q T s Q T s Q+ + ++ ++ ≤ + + ≤ +   
 

The value of total actual flow time at the left side will be less than the right side if the batch size at the 
left side is greater than the right side. Therefore, minimizing total actual flow time can be obtained by 
arranging the batches in order to the LPT rule in the backward scheduling approach. 

            [ ]( ) [ ]( ) [ ]( )[1] [1] [2] [2] [ ] [ ]1 2/ / ... /N NNT Q s Q T Q s Q T Q s Q+ ≤ + ≤ ≤ +
.□   

Based on the Lagrange Relaxation method, it is proposed heuristic algorithm (H-Algorithm) to solve the 
problems as follows. 
 
[H-Algorithm] 
Step 1: Input parameters n, d, p, s, δ, v, w, and tB. Continue to Step 2. 
Step 2: Find Nmax by Eq. (21). Determine j as an index for the number of batches (j= 1, …, Nmax). 

Continue to Step 3.  
Step 3: Begin with j = 1. Determine Q[1] = n, T[1] = p. Continue to Step 4. 
Step 4:   Calculate the value of M = np. If M ≤ d, then continue to Step 5, otherwise STOP because the 

demand cannot be scheduled.    
Step 5: Calculate total actual flow time for j =1 by Eq. (9). Determine the value of F[1] as F*. Continue 

to Step 6. 
Step 6: Determine the index of the number of batches j=j+1. If j <Nmax, continue to Step 7, otherwise 

determine F* as the best solution and then STOP. 
Step 7: Determine N=j. Set Q[N+1]=0, T[N+1]=0. Continue to Step 8.  
Step 8: Calculate the processing time of batch (T[i]) using Eq. (8) and the batch sizes (Q[i]) using Eq. 

(18). Continue to Step 9. 
Step 9: Based on Proposition 2, sequence the resulting batches in a non-increasing size of Q[i] in 

backward scheduling approach. Continue to Step 10. 
Step 10: Calculate M = [ ] [ ] ( )1

1N
i ii

T Q N s
=

+ −∑ . If M ≤ d, continue to Step 11, otherwise determine F* as 
the best solution and then STOP. 

Step 11: Compute total actual flow time for j by Eq. (9). Continue to Step 12. 
Step 12:  Compare the value of total actual flow time F[j] and F*. If F[j] < F*, determine F[j] as F* and 

then return to Step 6, otherwise determine F* as the best solution and then STOP.  
 
Numerical experiment test was conducted by giving the following input data parameters: n = 5, d = 12, 
p = 0.5, s = 1, δ = 0.9, v = 0.1, w = 1.1, tB = 100. The result of processing by the proposed algorithm 
yields Nmax = 5. Table 4 presents the solution of the algorithm. Table 4 shows that the solution searching 
method begins with the number of batches (N) that equals 1. The result of total actual flow time is 12.5. 
The search of the solution is increased for N=2. The result of the total actual flow time is 10.35. The total 
actual flow time for N=2 is compared with N=1, and it is found that the total actual flow time for N=2 is 
smaller than N=1. 
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Table 4  
Testing Results of the H-Algorithm 

N i Q[i] T[i] B[i] Total Fa 
1 1 5 0.5 9.5 12.5 
2 1 3 0.42 10.73 10.35* 
 2 2 0.5 8.73  
3 1 3 0.42 10.73 10.75 
 2 1 0.45 9.28  
 3 1 0.5 7.78  

      *: the best solution  

Thus, the total actual flow time for N=2 is temporarily best solution. The search of the solution continues 
for N=3. The result of the total actual flow time is 10.75. The total actual flow time for N=3 is compared 
with N=2, and it is found that the total actual flow time for N=2 is smaller than N=3. Thus, the algorithm 
is stopped by determining that the total actual flow time is 10.35 as the best solution obtained at N=2. 
For this case, the best solution of the H-Algorithm is equal to the optimal solution of the P-Algorithm.  

4.3 Comparison test 
The tests are continued by testing the optimality of both proposed algorithms. They are carried out by 
comparing the solution of the P-Algorithm and the H-Algorithm. The P-Algorithm and the H-Algorithm 
are coded in C++, and the results are reported by using computer processor Intel Core i3 with 6 GB of 
Random Access Memory (2 GB usable in 64-bit of platform) and 1 GB of Graphical Processor Unit. The 
comparison tests have been done on more than 100 problems. The results of comparison test show that 
the H-algorithm works adequately for any numbers of demands. However, it does not guarantee to 
produce an optimal solution. Meanwhile, the P-Algorithm guarantee to produce the optimal solution but 
it is only adequate for demands less than 23 units (small size problems). If there are more than 23 unit 
demands, the solution can not be found because of out-of-memory (o.o.m). In order to make well 
understanding of the behavior of comparison tests, Table 5 shows the examples of comparison tests for 
10 problems where input parameters are generated randomly. 
 
Table 5  
The result of comparison test between the H-Algorithm and the P-Algorithm  

   Problems H-Algorithm P-Algorithm 

No Demand 

Total 
Actual 

Flow Time 
minimum 

Time to 
compute 
(minute) 

Memory 
usage 

Optimal 
Sequencing 

Rule 

Total 
Actual 

Flow Time 
minimum 

Time to 
compute 
(minute) 

Memory 
usage 

Optimal 
Sequencing 

Rule 

1 4 10.956 < 0.1 1 KB LPT 10.956 < 0.1 4 KB LPT 
2 6 26.219 < 0.1 2 KB LPT 26.219 < 0.1 13 KB LPT 
3 8 53.939 < 0.1 2 KB LPT 53.939 < 0.1 56 KB LPT 
4 10 70.179 < 0.1 3 KB LPT 70.179 < 0.1 244 KB LPT 
5 13 74.992 < 0.1 8 KB LPT 74.970 < 0.1 2.2 MB LPT 
6 16 167.152 < 0.1 2 KB LPT 167.152 0.52 20 MB LPT 
7 18 206.009 < 0.1 5 KB LPT 206.009 0.9 85 MB LPT 
8 20 191.752 < 0.1 9 KB LPT 191.752 0.42 370 MB LPT 
9 22 218.225 < 0.1 6 KB LPT 218.225 1.79 1.57 GB LPT 

10 24 320.485 < 0.1 2 KB LPT N.a.N N.A o.o.m LPT 
 Average variance solution of total actual flow time                                 0.2% 

Table 5 shows that for some cases, the total actual flow time of the H-Algorithm has different results 
from the optimal solutions produced by the P-Algorithm. The average difference is about 0.2%. It proves 
that the H-Algorithm does not guarantee to produce an optimal solution. However, the H-Algorithm is 
very useful to solve the problems. In addition, the optimal solution that is generated by the P-Algorithm 
and the H-Algorithm becomes the proof of the Proposition 2 that the minimum of total actual flow time 
can be obtained by sequencing the resulting batches using the LPT rule in the backward scheduling 
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approach. It also shows that the H-Algorithm takes time to compute, and uses memory less than the P-
Algorithm.  
 

5. Concluding Remarks 
 
The current research deals with single-machine batch scheduling problems with the simultaneous effect 
of learning and forgetting to minimize total actual flow time. The problems are proved by using the 
Integer Composition method can be solved in a worst-case polynomial time complexity O(n2n-1). This 
paper proposes two algorithms to solve these problems. The first algorithm produces  the optimal solution 
that is developed by using the Integer Composition method. The second algorithm is the heuristic 
algorithm that is developed based on the Lagrange Relaxation method. Although the heuristic algorithm 
does not guarantee to produce an optimal solution, numerical experiments on randomly generated 
examples show that the heuristic algorithm gives outstanding results. The model introduced in this paper 
can be extended to discuss batch scheduling problems with learning and forgetting effects, as well as 
deterioration simultaneously. In a real system, it is also known that the changes in processing times occur 
not only on the operators but also on the machines.  
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