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 This paper addresses the scheduling problem in a Permutation Flow Shop (PFS) environment, 
which is associated with many types of industries such as chemical, petrochemical, automobile 
manufacturing, metallurgical, textile, etc. Thus, this work intends to solve a PFS scheduling 
problem in order to minimize the total weighted tardiness, since it is an important sequencing 
criterion not only for on time delivery jobs but also for customer satisfaction. To solve the 
problem, GRASP (Greedy Randomized Adaptive Search Procedure) metaheuristic is proposed 
as a solution, which has shown competitive results compared with other combinatorial problems. 
In addition, two utility functions called Weighted Modified Due Date (WMDD) and Apparent 
Tardiness Cost (ATC) are proposed to develop GRASP.  These are based on dynamic dispatching 
rules and also known for solving the problem of total weighted tardiness for single machine 
scheduling problem. Next, an experimental design was carried out for comparing the GRASP 
performance with both utility functions and against the WEDD dispatching rule results. The 
results indicate that GRASP-WMDD could improve the total weighted tardiness in 47.8% 
compared with WEDD results. Finally, the GRASP-WMDD performance for the PFS total 
tardiness problem was evaluated, obtaining a relative deviation index of 13.89% and ranking the 
method over 26 heuristics and metaheuristics. 
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1. Introduction  
 

 
Production scheduling seeks optimal sequencing of jobs or tasks for maximum use of limited resources 
to fulfill the organizations’ objectives and policies (Proth, 2007; Pinedo, 2012). This work studies the 
production schedule in one of the most common environments in industry, Flow Shop (FS) environment. 
This environment can be found in chemical, metal processing, food, and assembly industries (Li et al., 
2015). In the FS, a set of n jobs (J1,..., Jn) is processed on m machines (M1,..., Mm). All jobs must go 
through the machines in the same order, which means all jobs have to be processed first on M1, M2 
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machines and so on until machine Mm. This results in a set of (N!)m different candidate solutions. A 
common constraint in FS environment is that the processing sequence of jobs is the same for all machines. 
In this case, a candidate solution can be represented as a permutation of the jobs and, therefore, there are 
n! possible outcomes. This sequence is called Permutation Flow Shop (PFS), which implies that a job is 
selected to process on each machine according to the rule first in, first out (FIFO). This is often 
appropriate for real-world applications, given that in-process storage of products is very limited in most 
situations (Ciavotta et al., 2013). Examples of this situations are factories with conveyors between 
machines for materials transfer and assembly lines that perform the final assembly of bulky products 
(Kim, 1995). 

In FS literature there are many studies for the PFS and FS problems that minimize the makespan (Ruiz 
& Stützle, 2008) or the total flowtime (Pan & Ruiz, 2013). Although, there is another important objective 
that is receiving more attention in literature nowadays due to its applicability to industries, called the on 
time delivery of jobs (Swaminathan et al., 2007; Vallada et al., 2008). Likewise, late deliveries cause 
penalties that the company has to assume. Although for many companies it is important to reduce these 
extra costs. One way to make it happen is not only by delivering all jobs on time but also customer 
satisfaction (Xiao et al., 2012). This is why in this research the objective is to minimize the total time of 
late deliveries depending on the importance of customers (Jobs weight). It means to minimize the Total 
Weighted Tardiness (TWT) in a PFS, which notation corresponds to FS|prmu|∑wjTj. 

Due to the NP-hardness, in the strong sense of the PFS problem that minimizes tardiness (Du & Leung, 
1990), heuristic and metaheuristic methods have been widely used to solve them, considering that exact 
methods are impractical for medium and large instances (Sayadi et al., 2010; Gupta & Chauhan, 2015). 
Genetic Algorithm (GA) is the most commonly used metaheuristic to solve the PFS problem for tardiness 
minimization (Li et al., 2015). Nevertheless, few researches have used Greedy Randomized Adaptive 
Search procedures (GRASP) to solve this kind of problem although it has shown good results in some 
scheduling problems. For instance, Caballero-Villalobos and Alvarado-Valencia (2010) and Vega-Mejía 
and Caballero-Villalobos (2010) used GRASP to minimize TWT in a single machine environment. 
Similarly Armentano and Araujo (2006) minimized total tardiness considering setup times and 
Armentano and de França Filho (2007) also used for a parallel machine problem. Moreover, Arroyo and 
de Souza Pereira (2010) and Shahul Hamid Khan et al. (2007) solved multi-objective PFS problems and 
Rajkumar et al. (2011) solved a flexible job shop problem. Therefore, this research proposes the use of 
GRASP metaheuristic to solve the FS|prmu|∑wjTj. The proposed GRASP was implemented with two 
different utility functions that are adaptations of two well-known dispatching rules: Weighted Modified 
Due Date (WMDD) and Apparent Tardiness Cost (ATC). Later on, the method was tested on 540 
instances proposed by Vallada et al. (2008). For each instance the jobs weights (wj) were generated, due 
to Vallada et al. (2008) research evaluated only Total Tardiness objective. Moreover, the performance of 
GRASP was determined through the comparison between the results given by both utility functions in 
relation with the solutions obtained by sequencing the jobs under Weighted Earliest Due Date (WEDD) 
dispatching rule. Finally, the GRASP with the utility function that gave the best results for the 
FS|prmu|∑wjTj was selected to solve  the initial problem proposed by Vallada et al. (2008) for assigning 
a weight wj=1 for all jobs. This allowed ranking the proposed GRASP versus the 40 methods tested by 
the authors for the FS|prmu|∑Tj problem. 

The remainder of this paper is as follows, in Section 2 the literature review is presented, and in Section 
3 a Mixed Integer Programing (MIP) model formulation for the problem is given. Section 4 describes the 
proposed GRASP procedure. Section 5 shows the computational results and the corresponding analysis, 
and finally the conclusions and future research are suggested in Section 6. 

2. Literature Review 
 

The FS environments goes back to the fifties with the publication of Johnson's rule that solved the 
problem of two and three machines (Johnson, 1954). Since then, numerous approaches have been 



 L. P. Molina-Sánchez  and E. M. González-Neira / International Journal of Industrial Engineering Computations 7 (2016) 
 

163 

proposed for the FS in different areas. Among different methods, we can highlight the algorithms 
proposed by Palmer (1965), Campbell et al. (1970) and Nawaz et al. (1983). 

Table 1  
State of the art in FS and PFS (by the authors) 

Reference Environment Constraints / 
Characteristics 

Algorithm Objective function to minimize 

Prabhaharan et al.  
(2005)  

FS NA GRASP Makespan 

Ruiz et al. (2005)  FS Sequence dependent  
setup times (SDST) 

GA Makespan 

Liao et al. (2006)  PFS NA Tabu search Due-time, total tardiness and total 
weighted tardiness 

Laha and Chakraborty 
(2007)  

PFS NA Various Heuristic Total flowtime  

Ruiz and Stützle (2007)  FS SDST Greedy Makespan, weighted tardiness 

Shahul Hamid Khan et 
al. (2007)  

FS Multi-objective GRASP Makespan, maximum tardiness 

Swaminathan et al. 
(2007)  

PFS Uncertain processing 
times 

GA Total weighted tardiness 

Framinan and Leisten 
(2008)  

PFS Due date Greedy Total Tardiness 

Chandra et al. (2009)  PFS Due date Heuristic Earliness and Tardiness 
Wu and Lee (2009)  PFS Learning effects Heuristics 

Branch and Bound 
Total Flow Time 

Arroyo and de Souza 
Pereira (2010)  

PFS Multi-objective GRASP Makespan, maximum tardiness, 
and total flowtime 

Sayadi et al. (2010) PFS NA Discrete firefly metaheuristic Makespan 
Anandaraman (2011) FS NA Improved sheep flock heredity algorithm 

named 
Makespan 

Araújo and Nagano 
(2011) 

FS No-wait, SDST Constructive heuristic Makespan 

Dubois-Lacoste et al. 
(2011)  

FS Multi-objective Two- phase local search Makespan, maximum tardiness, 
and completion times 

Liu et al. (2011)  PFS NA GA Completion time, makespan 
Vallada and Ruiz (2011)  PFS NA GA and Path relinking Total Tardiness 

Babaei et al. (2012) FS SDST 
Lot sizing 

GA 
Imperialist Competitive Algorithm 

Setup, inventory, production and 
backlogging costs 

Bank et al. (2012)  2-machine 
FS 

Deteriorating jobs Branch and bound Total Tardiness 

Bhongade and Khodke 
(2012) 

FS Skipping operations Three heuristics Makespan 

El-Bouri (2012)  FS Dynamic FS Cooperative dispatching rules Mean Tardiness 
Khalili and Tavakkoli-

Moghaddam (2012)  
FS Skipping jobs Electromagnetism algorithm Makespan and Total Weighted 

Tardiness 
Naderi-Beni et al. 

(2012) 
FS No-wait, SDST, release 

times 
Two-phase fuzzy programming Bi-objective: Weighted Mean 

Tardiness and Makespan 
Baker (2013)  PFS NA Mixed-integer programming approach Total Tardiness 

Ciavotta et al. (2013)  PFS Multi-objective, SDST Restarted Iterated Pareto Greedy Multi-Objective SDST 
Lee and Chung (2013)  PFS Learning effects Branch and Bound Total Tardiness 

Shahsavari Pour et al. 
(2013) 

FS NA GA Multi-objective: Makespan, Total 
Waiting Time and Total 
Tardiness 

Schaller and Valente 
(2013)  

PFS Due date GA Total Earliness and Tardiness 

Tasgetiren et al. (2013)  PFS Idle time is not allowed 
on machines 

Discrete artificial bee colony algorithm Total Tardiness 

M’Hallah (2014)  FS NA Variable neighborhood search with 
Mixed integer programming 

Earliness and tardiness 

Lee et al. (2014)  PFS Deterioration 
consideration 

Branch & Bound, Particle swarm 
optimization, Simulated annealing 
algorithm 

Total Tardiness 

Gupta and Chauhan 
(2015) 

FS NA Heuristic Makespan 

 

Ruiz and Maroto (2005), Vallada et al. (2008) and Pan and Ruiz (2013) presented extensive reviews for 
FS and PFS problems with single objective functions, while Sun et al. (2010) and Yenisey and Yagmahan 
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(2014) applied it for multi-objective FS problems. Although, Ruiz and Maroto (2005) evaluated 25 
heuristics and metaheuristics for makespan minimization. They concluded that NEH was the best 
heuristic and iterated local search and genetic algorithms are the metaheuristics that have the best 
performances. In addition, Vallada et al. (2008) considered the tardiness minimization. They 
implemented 40 heuristic and metaheuristic methods presented by different authors in the past and 
compared them using 540 instances of different sizes. According to the authors, the heuristic methods 
based on job insertion or job interchanges were those that presented the best results. At the end it was 
found that simulated annealing outperformed the other ones. Also Pan and Ruiz (2013) compared 22 
existing heuristics to minimize the flowtime and proposed five new methods to solve the problem. On 
the other hand, the reviews of Sun et al. (2010) and Yenisey and Yagmahan (2014), in spite of presenting 
a multiobjective FS literature survey, mentioned few works dealt with weighted tardiness as one of the 
objectives assessed and also no review was found in TWT minimization. Table 1 shows the state of art 
for the reviewed literature that develops the FS and PFS environments during the last decade, since 2005 
to nowadays. In this table the problem, its characteristics, solution method and objective function are 
presented. 

3. Mixed Integer Programming mathematical model 
 

Here, we present a Mixed Integer Programming (MIP) mathematical model for the FS| prmu |ΣwjTj. In 
first instance, it is necessary to present the following notations to understand the model:  

Sets: 

𝐌𝐌:𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 {1, … ,𝑚𝑚} 

𝐉𝐉 ∶ 𝐽𝐽𝐽𝐽𝐽𝐽𝑖𝑖 {1, … ,𝑖𝑖} 

𝐋𝐋 ∶ 𝑃𝑃𝐽𝐽𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝐽𝐽𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑃𝑃ℎ𝑖𝑖 𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖 {1, … ,𝑖𝑖} 

Parameters: 

𝑑𝑑𝑗𝑗 due date of job 𝑗𝑗,∀𝑗𝑗 ∈ 𝐉𝐉 

𝑝𝑝𝑖𝑖𝑗𝑗 processing time of job 𝑗𝑗 in machine 𝑖𝑖,∀𝑗𝑗 ∈ 𝐉𝐉,∀𝑖𝑖 ∈ 𝐌𝐌 

𝑤𝑤𝑗𝑗 Weight of job 𝑗𝑗,∀𝑗𝑗 ∈ 𝐉𝐉 

𝐽𝐽 Big positive number 

Decision variables  

𝑋𝑋𝑗𝑗𝑗𝑗 = �1, if job 𝑗𝑗 is procesed in the 𝑙𝑙 position of the sequence,∀𝑗𝑗 ∈ 𝐉𝐉,∀𝑙𝑙 ∈ 𝐋𝐋
0, otherwise  

𝑆𝑆𝑖𝑖𝑗𝑗 Starting time of job 𝑗𝑗 at machine 𝑖𝑖,∀𝑗𝑗 ∈ 𝐉𝐉,∀𝑖𝑖 ∈ 𝐌𝐌 

𝐶𝐶𝑖𝑖𝑗𝑗 Completion time of job 𝑗𝑗 at machine 𝑖𝑖,∀𝑗𝑗 ∈ 𝐉𝐉,∀𝑖𝑖 ∈ 𝐌𝐌 

𝑇𝑇𝑗𝑗 Tardiness of job 𝑗𝑗,∀𝑗𝑗 ∈ 𝐉𝐉 

The objective function is: 

𝑚𝑚𝑖𝑖𝑖𝑖�𝑤𝑤𝑗𝑗𝑇𝑇𝑗𝑗
𝑗𝑗∈𝐉𝐉

 (1) 

subject to: 
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�𝑋𝑋𝑗𝑗𝑗𝑗
𝑗𝑗∈𝐉𝐉

= 1, ∀𝑙𝑙 ∈ 𝐋𝐋 (2) 

�𝑋𝑋𝑗𝑗𝑗𝑗
𝑗𝑗∈𝐋𝐋

= 1, ∀𝑗𝑗 ∈ 𝐉𝐉 (3) 

𝐶𝐶𝑖𝑖𝑗𝑗 ≥ 𝐹𝐹𝑖𝑖𝑗𝑗 + 𝑝𝑝𝑖𝑖𝑗𝑗 , ∀𝑗𝑗 ∈ 𝐉𝐉,∀𝑖𝑖 ∈ 𝐌𝐌 (4) 

𝑆𝑆(𝑖𝑖+1)𝑗𝑗 ≥ 𝐶𝐶𝑖𝑖𝑗𝑗 , ∀𝑗𝑗 ∈ 𝐉𝐉,∀𝑖𝑖,𝑚𝑚 ∈ 𝐌𝐌, 𝑖𝑖 < 𝐶𝐶𝑀𝑀𝐶𝐶𝑑𝑑(𝐌𝐌) (5) 

𝑆𝑆𝑖𝑖𝑗𝑗 + �1 − 𝑋𝑋𝑗𝑗(𝑗𝑗+1)� ∗ 𝐽𝐽 ≥ 𝐶𝐶𝑖𝑖ℎ −  (1 − 𝑋𝑋ℎ𝑗𝑗) ∗ 𝐽𝐽,
∀ℎ, 𝑗𝑗 ∈ 𝐉𝐉, ℎ ≠ 𝑗𝑗,∀𝑙𝑙 ∈ 𝐋𝐋, 𝑙𝑙 < 𝐶𝐶𝑀𝑀𝐶𝐶𝑑𝑑(𝐋𝐋),∀𝑖𝑖 ∈ 𝐌𝐌 

(6) 

𝑇𝑇𝑗𝑗 ≥ 𝐶𝐶𝑖𝑖𝑗𝑗 − 𝑑𝑑𝑗𝑗 , ∀𝑗𝑗 ∈ 𝐉𝐉,∀𝑖𝑖 ∈ 𝐌𝐌 (7) 

𝑇𝑇𝑗𝑗 ≥ 0, ∀𝑗𝑗 ∈ 𝐉𝐉 (8) 

𝑆𝑆𝑖𝑖𝑗𝑗 ≥ 0, ∀𝑗𝑗 ∈ 𝐉𝐉,∀𝑖𝑖 ∈ 𝐌𝐌 (9) 

𝑋𝑋𝑗𝑗𝑗𝑗 ∈ {0,1}, ∀𝑗𝑗 ∈ 𝐉𝐉,∀𝑙𝑙 ∈ 𝐋𝐋 (10) 

The objective function (1) is the minimization of the total weighted tardiness. Constraint sets (2) and (3) 
ensure that every job is sequenced in only one position and every position of the sequence is scheduled. 
With constraint (4) the completion time of every job in every machine is calculated as the sum of the 
starting and the processing time.  Continually set (5) indicates that the starting time of a job in a specific 
machine is greater and equal than its completion time on immediately preceding machine. Constraint set 
(6) controls the starting times of the jobs at the machines. Basically, if a job 𝑗𝑗 is assigned to machine 𝑖𝑖 
after job ℎ, its starting time 𝐹𝐹𝑖𝑖𝑗𝑗 must be greater or equal than the completion time of job ℎ, 𝐶𝐶𝑖𝑖ℎ. Sets (7) 
and (8) define the tardiness of every job. Set (9) defines the non-negative nature for jobs starting times. 
Finally, set (10) defines the binary variables. 

4. Greedy Randomized Adaptive Search Procedure (GRASP) 
 

GRASP metaheuristic is an iterative process for combinatorial problems that consists of two phases: 
construction and local search. At first, feasible solution is selected from a set of the best candidates 
(Restricted Candidate List - RCL). It is constructed in accordance with an established utility function to 
determine how good the chosen solution is. Then an item is randomly selected from the solution that was 
built from the RCL. In the second phase, this local search method performs small changes in the solution 
to find a better value of the objective function (Resende & Ribeiro, 2003). The elements from the RCL 
given in Eq. (11) can be chosen by including the parameter α [0, 1]. The more the value tends to 0, the 
greedier is the building list of candidates, which means that the target is not compromised, but still the 
best solutions can be discarded. If the parameter value approaches 1, the construction is more random 
and so the value of the utility function will be compromised, but we may find more possible solutions 
(Resende & Ribeiro, 2003). 

𝑅𝑅𝐶𝐶𝑅𝑅 = {𝑥𝑥 | 𝑅𝑅 ≤  𝑓𝑓𝑀𝑀(𝑥𝑥)  ≤  𝑅𝑅 + 𝛼𝛼(𝑈𝑈 − 𝑅𝑅)}. (11) 

Here 𝑓𝑓𝑀𝑀(𝑥𝑥) is the utility function from the 𝑥𝑥 element; 𝛼𝛼 is a number between 0 and 1; 𝑅𝑅 is the minimum 
value from the utility function found; 𝑈𝑈 is the maximum utility function value. Algorithm 1 presents the 
GRASP pseudo-code. 
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Algorithm 1  
GRASP Pseudocode 

Input Data:  
M: Machines {i=1,2,3,…,m} 
J: Jobs {j=1,2,3,…,n} 
L: Sequences positions. 
α: Value [0,1] for the selection of candidates to be sequenced. 
wj: Weight of job j.  
dj: Due date of job j. 
Pij: Processing time of job j on machine i. 
Sij: Start time of job j on machine i. 
Cij: Completion time of job j on machine i. 
eje: Number of executions for instance. 
seconds: Algorithm execution time. 
 
Variables: 
 
f(): Objective function. 
SQ: Solution.  
BS: Best solution. 
cont: Counter 
 
START PROCEDURE 

FOR k=1 until eje, DO 
Read de data from the problem (M,J, α, dj, wj) 
cont=1 
WHILE seconds ≤ (n*m*90)/1000 

3. SQ  Construction phase.  
4. SQ   Local search phase. 
5. IF f(SQ)< f(BS) THEN 

BS=SQ 
    END IF  
6. cont=cont+1 

END WHILE  
Return BS 

END FOR 
END PROCEDURE 

 

4.1 GRASP Construction Phase 
 

In this phase, a feasible solution is iteratively constructed with an element at a time. The GRASP 
probabilistic component is characterized by randomly choosing one of the top best candidates (Restricted 
Candidate List - RCL for its acronym), but not necessarily the best one. GRASP uses the utility function 
for the RCL construction, this function is calculated from all not selected elements yet, and arises to 
choose a sequence that minimizes the objective function. This technique allows the choice of different 
solutions to be obtained at each GRASP iteration, but does not necessarily compromise the power of the 
adaptive greedy component method. For this paper two different utility functions are used based on 
dispatching rules. Apparent Tardiness Cost (ATC) was developed by Vepsalainen and Morton (1987) 
and Weighted Modified Due Date (WMDD) was given by Kanet and Li (2004) for the proposed total 
weighted tardiness problem, but for a single machine. ATC rule for job j at the time t, is given by Eq. 
(12) as follows, 

𝐴𝐴𝑇𝑇𝐶𝐶𝑗𝑗 =  
𝑤𝑤𝑗𝑗
𝑃𝑃𝑗𝑗
𝑖𝑖𝑥𝑥𝑝𝑝�−𝑚𝑚𝑀𝑀𝑥𝑥{ 0,𝑑𝑑𝑗𝑗 −  𝑃𝑃𝑗𝑗 − 𝑃𝑃�/𝐾𝐾𝑃𝑃�), (12) 

where 𝑃𝑃� is the average of the total processing times of the total Jobs j that are under construction in that 
specific moment (waiting), t is the time where the previous job is expected to finish (the first job to be 
sequenced has a t = 0) and K is a scale parameter. The following method is used for selecting the K value 
Eq. (13): 

𝐾𝐾 = �4.5 + 𝑅𝑅, 𝑅𝑅 < 0.5
6 − 2𝑅𝑅, 𝑅𝑅 ≥ 0.5  (13) 

The R value is the Due Date Range, which in this case, the values are already inside the instances used 
from Vallada et al. (2008). The WMDD dispatching rule is given by Eq. (14): 
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𝑊𝑊𝑀𝑀𝑊𝑊𝑊𝑊𝑗𝑗 =  
1
𝑤𝑤𝑗𝑗
𝑚𝑚𝑀𝑀𝑥𝑥�𝑃𝑃𝑗𝑗 , �𝑑𝑑𝑗𝑗 − 𝑃𝑃�� (14) 

This rule can be interpreted as a combination of Weighted Shortest Processing Time (WSPT) and 
Weighted Remaining Allowance (WRA) and WSPT rule minimizes the weighted tardiness when all jobs 
are behind (Smith, 1956) and on the other hand, the WRA rule gives priority to work with larger weighted 
tardiness and few gaps. Both dispatching rules presented have 𝑃𝑃𝑗𝑗, 𝑑𝑑𝑗𝑗, 𝑤𝑤𝑗𝑗 and 𝑃𝑃 in common, where 𝑃𝑃𝑗𝑗 are 
the processing times, 𝑑𝑑𝑗𝑗 are the due dates or the deadlines for jobs submission, 𝑤𝑤𝑗𝑗 is the penalty cost or 
the jobs weight and 𝑃𝑃 is the expected time from the previous job. This time 𝑃𝑃 is dynamic, because as the 
jobs are sequencing, the time is changing every time it recalculates the utility function for the next job to 
be sequenced. As in this case the environment type presented is composed of various machines, then the 
𝑃𝑃𝑗𝑗 calculation is 𝑃𝑃𝑗𝑗  =  𝐶𝐶𝑗𝑗  −  𝑆𝑆𝑗𝑗, remembering that 𝐶𝐶𝑗𝑗 is the time when finishes the job j in the last machine 
and 𝑆𝑆𝑗𝑗 the time that starts job j in the first machine. At Algorithm 2, the Pseudo-code construction phase 
is shown. 
 
Algorithm 2  
GRASP Construction Phase Pseudocode 

Sets: 
M: Machines {i=1,2,3,…,m} 
J: Jobs {j=1,2,3,…,n} 
𝜃𝜃: Set of jobs not sequenced. 
L: Positions in the sequence. 
 
Parameters: 
dj: Due date for Job j.  
Pij: Processing time from job j in machine i. 
α: Value [0,1] for the candidate’s selection for the sequence. 
wj: Job weight j.  
 
Variables: 
cont: Counter. 
Sij: Start time of job j on machine i. 
Cij: Completion time of job j on machine i. 
time_mac(i): available time of machine i. 
WMDDj: Weighted Modifided Due Date utility function for job j. 
WMDDmin: Utility function WMDD minimum Value. 
WMDDmax: Utility function WMDD maximum Value.  
ATCj: Aparent Tardiness Cost utility function. 
ATCmin: Utility function ATC minimum Value. 
ATCmax: Utility function ATC maximum Value. 
SQ: Solution 
TWT: Total weighted tardiness. 
RCL: List of candidates for the solution.  
t: System time in a given time. 
k: Dependent constant for the Due date range from the ATC rule. 
P: Average processing time from the waiting Jobs from the ATC rule.  
 
START 
Assign all jobs j to the set of jobs not sequenced θ. Initialize the final sequence SQ = ∅. Also do 𝐶𝐶𝑖𝑖𝑗𝑗 = 0, 𝑆𝑆𝑖𝑖𝑗𝑗 = 
0, time_mac(i) = 0 ∀ i, cont = 0. 
Initialize TWT=0 
WHILE cont<n 
3. Evaluate the utility function in each job 𝑗𝑗 ∈ 𝜃𝜃. 
4. Construct the RCL from the jobs 𝑗𝑗 ∈ 𝜃𝜃 satisfying the following condition according to the utility function:  
 
ATCj ≥ ATCmax −  α (ATCmax −  ATCmin) 
WMDDj ≤ WMDDmin +  α (WMDDmax −  WMDDmin) 
 
5. Select randomly job j from the RCL. 
6. Include j selected at cont position from SQ and determine time_mac(i). Eliminate job j selected from 𝜃𝜃set. 
7. Calculate TWT. 
8. cont=cont+1 
END WHILE 
9. Return SQ solution 
END 
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4.2 Local Search Phase 
 

The local search used was proposed in 1958 by Croes, called 2-optimal and it was used to solve the 
traveling salesman problem. Besides, the main idea of the algorithm is to swap two jobs in the sequence 
(as shown in Fig. 1) and keep swapping if that change gets better results for the objective function. This 
exchange processes two jobs and compares them against the previous objective function value and this 
process is performed until all jobs are exchanged and it obtains the best objective function value. To 
explain the operation of this type of local search, we use the following example. For this example the 
sequence obtained from the construction phase is considered, in which the final sequence is SQ = {2,1}. 

 

Fig. 1. 2-opt example 
 

As shown in the example of Fig. 1, once the sequence (SQ) is obtained in the construction phase, the 
local search makes the exchange of each possible pair of jobs to find a sequence with better TWT. These 
exchanges are made until the maximum execution time is accomplished or until no improvement is found, 
that is a local optimum. However, only SQ is updated when the TWT is less in this exchange of two jobs. 
The jobs are exchanged in pairs until a better solution is found. The GRASP pseudo-code for this stage 
is shown in Algorithm 3. 

Algorithm 3 
GRASP Local Search Phase Pseudocode 

Parameters: 
M: Machines {i=1,2,3,…,mi} 
J: Jobs {j=1,2,3,…,nj} 
Max_it: Number of iterations.  
wj: Jobs weight j.  
dj: Due date for job j. 
Pij: Processing time for job j in machine i. 
 
Variables: 
f(): Objective function. 
SQ: Solution. 
SQ2: Solution that is constructed from the 2-optimal exchange. 
Cont1: Counter. 
Cont2: Counter. 
 
START 
cont1=0  
WHILE cont1< j 
  2. cont2=cont1+1 
   WHILE cont2< j+1 
   3. DO SQ2=SQ 
   4. Modify SQ2 exchanging Jobs from position cont1 and cont2. 
   5. Calculate the objective function f(SQ2). 
   6. IF f(SQ2)< f(SQ) THEN 
   SQ=SQ2 
   cont1 = 0 
   cont2 = cont1 + 1 
   IF NOT 
   cont2=cont2+1 
   END IF 
  END WHILE 
  7. cont1=cont1+1 
END WHILE 
8. Return SQ y f(SQ) 
END 
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5. Computational Results and Discussion 
 

For this study the instances proposed by Vallada et al. (2008) were used. However since the objective 
function was to minimize total tardiness, so in order to minimize TWT; we need to generate the jobs 
weights (wj) for those instances. This 𝑤𝑤𝑗𝑗 generation is performed according to Osman et al. (2009), where 
the weights of the jobs are uniformly distributed in the in [1,10] interval. Furthermore, Vallada et al. 
(2008) generated nine different set of the instances where each contains 60 problems. Considering 
combinations of the parameters T (tardiness factor) and R (Due date range), the following combinations 
are proposed: T = {0.2, 0.4, 0.6} and R = {0.2, 0.6, 1}, which results in nine combinations. In some cases, 
particularly for low T-values and big R-values, some Due Dates may be negative. When this happens, 
zero replaces the negative Due Dates. In terms of the number of jobs and machines, the following were 
selected: N = {50, 150, 250, 350} and m = {10, 30, 50}. In total, there are 108 combinations of n, m, T 
and R, each of which has 5 different instances. Therefore, it has a total of 540 instances of which are 
available on the website: http://soa.iti.es/files/Eva_Instances.zip1. In addition, GRASP was implemented 
in C + + and run on a computer with Intel ® Core ™ i5 2400 CPU 3.10de GHz processor and 4 GB of 
RAM memory installed. In order to make an equivalent comparison in all instances, the stopping criterion 
of all metaheuristics was established from a maximum CPU elapsed time similar to the one presented by 
Vallada et al. (2008). The stopped criterion here is defined as m × n × 90 ms, twice the value the authors 
used in their article since the objective function in this case is the Total Weighted Tardiness and requires 
more computational effort. 

5.1 Design of Experiments 
 

An experimental design was carried out to assess the quality of the proposed solutions compared with 
two different utility functions. The features of the experiment are presented: 

• Response Variable: GRASP percentage improvement in relation to the Weighted Earliest Due 
Date (WEDD) dispatching rule. WEDD (Weighted Earliest Due Date) indicates that jobs should 
be sequenced in ascending order by the ratio between the Due Date and the weights of the jobs. 
That is if 𝑑𝑑𝑗𝑗/𝑤𝑤𝑗𝑗  < 𝑑𝑑ℎ/𝑤𝑤ℎ then the job j must be sequenced before job h. The percentage 
improvement is calculated as Eq. (15): 
 

% Improvementk = �
TWTWEDDk − TWTGRASPk

TWTWEDDk
 � × 100% , (15) 

 

where 𝑇𝑇𝑊𝑊𝑇𝑇𝑊𝑊𝑇𝑇𝑊𝑊𝑊𝑊𝑘𝑘 is the total weighted tardiness of instance k jobs ordered under WEDD rule, 
and 𝑇𝑇𝑊𝑊𝑇𝑇𝑇𝑇𝑅𝑅𝐴𝐴𝑆𝑆𝑃𝑃𝑘𝑘 is the total weighted tardiness of the GRASP execution instance k. 

• Factors: The analyzed factors and respective levels are shown in Table 2.  

Table 2  
Design of Experiment Factors and its levels 
Factors Levels 
Number of Jobs 50 150   250  350 
Number of Machines 10 30 50 
Due Date Range (R) 0.2   0.6   1.0 
Tardiness Factor (R) 0.2   0.4   0.6 
Alphas 0.02  0.10 
Utility Function WMDD ATC 

1 Downloaded on March 2015 
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Multiple runs were executed with two utility functions and two alphas for each of the 540 instances, a 
total of 2160 executions were obtained. Table 3 presents the improvement percentage that was obtained 
with the GRASP in relation to the implementation of WEDD dispatching rule for each of the utility 
functions. Also it presents the percentage of solutions in which there was an improvement in the objective 
function. 

Table 3  
GRASP performance 

Utility Function Improvement percentage in TWT 
GRASP in relation to WEDD 

Instances percentage that obtained 
improvement in the algorithm 

ATC 10.96% 64.54% 
WMDD 47.80% 98.24% 

General Total 29.38% 81.39% 
 

Clearly, there is an improvement in the results presented by the proposed utility functions with both 
algorithms, which is greater when the utility function based on the dispatching rule called WMDD is 
used. Formerly the assumption of normality of residuals was tested with Kolmogorov-Smirnov, the 
variances homogeneity through the Levene test, and independence through the run test. The tests were 
given with a confidence level of 95% and the results obtained were: the tests of normality of residuals 
and variances homogeneity were rejected with a p-value <0.01, while the test of independence was not 
rejected with p = 0.66. While there are two assumptions that are no accomplished, it is necessary to 
calculate the non-parametric Tamhane test to analyze the differences between means and corroborate the 
ANOVA results. However the R-Square achieved from the ANOVA was 84.21% and the adjusted R-
Square is 80.27%, indicating that the variables used adequately to explain the GRASP improvement 
percentage in relation to WEDD dispatching rule.  

Once the Tamhane tests is used, we obtained the same conclusions from the results previously obtained 
at the ANOVA, in terms of the factors and interactions that are meaningful. The conclusions obtained 
from the main effects plot (Fig. 2) and Tamhane non-parametric tests are presented in Table 4. 

Table 4  
Principal Factors Conclusions 

Principal Factor P-value Conclusion 
Utility Function <0.001 The GRASP-WMDD, has an average improvement over the WEDD dispatching rule in 

47.8%, while the GRASP-ATC has a 10.96% average improvement over the 
implementation WEDD rule. This corroborates that GRASP is a very good metaheuristic 
if the utility function chosen it is adequate, in this case is the adaptation of the WMDD rule. 

Alpha 0.13 There is no significant difference between the GRASP average performance, using alpha 
of 0.02 and 0.1, so the GRASP has a statistically similar improvement rate over the WEDD 
rule with either alphas. 

Number of Jobs <0.001 In the 150 jobs instance is where the proposed GRASP has the highest improvement 
percentage over the WEDD rule. 

Number of 
Machines 

<0.001 In the 10 machines instance is where the proposed GRASP has the highest improvement 
percentage in relation to the WEDD dispatching rule. 

Tardiness Factor <0.001 In instances of 0.2 Tardiness Factor is where the proposed GRASP has the highest 
improvement percentage over the WEDD rule. 

Due Date Range <0.001 The instances with 0.2 and 0.6 Due Date Range have the highest improvement percentage 
in relation to the WEDD rule. 

 

Fig. 3 shows all the double interactions effects plots. From these plots, from the Tamhame non-parametric 
tests and from the ANOVA, we can complete analysis of the best performance in terms of the interactions 
effects (Observe Table 5). 
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Fig. 2. Main Effects Plots Fig. 3. Double Interactions Effects Plots 

 
Table 5  
Double Interactions Conclusions 

Interaction P-value Conclusion 

Number of jobs- 
Number of machines 

<0.001 Both double interactions between 50 jobs with 10 machines as the interaction between 150 jobs with 10 
machines are the instances when the proposed GRASP has the highest improvement percentage over 
the WEDD rule. 

Number of jobs - 
Due Date Range 

<0.001 Both double interactions between 150 jobs with 0.6 Due Date Range as the interaction between 150 
jobs with 1.0 Due Date Range are the instances when the proposed GRASP has the highest 
improvement percentage over the WEDD rule. 

Number of jobs - 
Tardiness Factor 

<0.001 The instances with the double interactions between 150 jobs and 0.2 Tardiness Factor have the highest 
improvement percentage in relation to the WEDD rule. 

Alpha- Number of 
jobs 

<0.001 Both double interactions between 150 jobs with Alpha of 0.02 and Alpha of 0.1 are the instances when 
the proposed GRASP has the highest improvement percentage over the WEDD rule.  

Utility Function- 
Number of jobs 

<0.001 The instances with the double interactions between the WMDD utility function and 150 jobs are the 
ones that have the highest improvement percentage in relation to the WEDD rule. 

Number of machines 
- Due Date Range 

0.16 In this case three double interactions have the highest percentage of improvement over the WEDD rule. 
The first one is the double interaction between 10 machines and 0.6 Due Date Range, the next one is 
the double interaction between 10 machines and 0.2 Due Date Range, and finally between 30 machines 
and 0.6 Due Date Range. 

Number of machines 
- Tardiness Factor 

<0.001 The instances with the double interactions between 10 machines and 0.2 Tardiness Factor are the ones 
that have the highest improvement percentage in relation to the WEDD rule. 
 

Alpha- Number of 
machines 

<0.001 The instances with the double interactions between alpha of 0.1 and 10 machines are the ones that have 
the highest improvement percentage in relation to the WEDD rule. 

Utility Function- 
Number of machines 

<0.001 The instances with the double interactions between WMDD utility function and 10 machines are the 
ones that have the highest improvement percentage in relation to the WEDD rule. 

Tardiness Factor- 
Due Date Range 

<0.001 In this case three double interactions have the highest percentage of improvement over the WEDD rule. 
The first one is the double interaction between 0.2 Tardiness Factor and 0.2 Due Date Range, the next 
one is the double interaction between 0.2 Tardiness Factor and 0.6 Due Date Range, and finally 
between 0.2 Tardiness Factor and 1 Due Date Range. 

Alpha- Due Date 
Range 

0.20 The instances with the double interactions between alpha of 0.1 and 0.6 Due Date Range are the ones 
that have the highest improvement percentage in relation to the WEDD rule. 

Utility Function- 
Due Date Range 

<0.001 The instances with the double interactions between WMDD utility function and 0.6 Due Date Range 
are the ones that have the highest improvement percentage in relation to the WEDD rule. 

Alpha- Tardiness 
Factor 

<0.001 Both double interaction between 0.2 Tardiness Factor and with Alpha of 0.02 and Alpha of 0.1 are the 
instances when the proposed GRASP has the highest improvement percentage over the WEDD rule. 

Utility Function- 
Tardiness Factor 

<0.001 The instances with the double interactions between WMDD utility function and 0.2 Tardiness Factor 
are the ones that have the highest improvement percentage in relation to the WEDD rule. 

Utility Function- 
Alpha 

<0.001 The instances with the double interactions between WMDD utility function and Alpha of 0.02 are the 
ones that have the highest improvement percentage in relation to the WEDD rule. 

 

5.2 Performance of proposed GRASP-WMDD for FS|prmu|∑Tj 
 

The GRASP-WMDD performance was also established for the problem FS|prmu|∑Tj, in which there are 
best known and worst known solutions reported by Vallada et al. (2008). Therefore, the GRASP-WMDD 
was executed for the same 540 instances mentioned in the previous section, but in this case weights for 
jobs were not generated. In return, all job weights were set as wj=1, i.e. it means to solve the FS|prmu|∑Tj 
problem. Consequently, GRASP–WMDD could be compared with 40 heuristic and metaheuristic 
methods evaluated by Vallada et al. (2008). Lastly, each instance was executed five times, as the authors 
did. Also we have used the same maximum time fixed by the authors (n×m/2×90ms). Table 6 presents 
the average and standard deviation of Relative Deviation Index (RDI), the percentage of best solutions 
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found by GRASP-WMDD, and the percentage of solutions with a RDI ≤ 10%. The RDI given in Eq. (16) 
measures the quality of the solutions compared with the best and the worst known values for each 
instance. Hence, a value near to 0 represents a good solution, and a value close to 100% is the opposite. 

𝑅𝑅𝑖𝑖𝑙𝑙𝑀𝑀𝑃𝑃𝑖𝑖𝑅𝑅𝑖𝑖 𝑊𝑊𝑖𝑖𝑅𝑅𝑖𝑖𝑀𝑀𝑃𝑃𝑖𝑖𝐽𝐽𝑖𝑖 𝐼𝐼𝑖𝑖𝑑𝑑𝑖𝑖𝑥𝑥 (𝑅𝑅𝑊𝑊𝐼𝐼) =
𝑀𝑀𝑖𝑖𝑃𝑃ℎ𝐽𝐽𝑑𝑑𝑠𝑠𝑠𝑠𝑗𝑗 − 𝐵𝐵𝑖𝑖𝑖𝑖𝑃𝑃𝑠𝑠𝑠𝑠𝑗𝑗
𝑊𝑊𝐽𝐽𝐶𝐶𝑖𝑖𝑃𝑃𝑠𝑠𝑠𝑠𝑗𝑗 − 𝐵𝐵𝑖𝑖𝑖𝑖𝑃𝑃𝑠𝑠𝑠𝑠𝑗𝑗

× 100% (16) 

Table 6  
RDI and percentage of best solutions given by GRASP for each instance size 

Jobs Machines Average RDI % best solutions % solutions 
with RDI≤10% 

 10 2,92% 21,8% 100,0% 
50 30 6,95% 0,0% 98,7% 
 50 7,83% 0,0% 93,8% 
 10 5,89% 24,0% 70,2% 

150 30 9,08% 1,3% 74,2% 
 50 10,56% 0,0% 64,0% 
 10 10,07% 23,1% 57,3% 

250 30 21,72% 5,8% 12,9% 
 50 25,94% 0,0% 0,9% 
 10 11,32% 22,2% 51,6% 

350 30 24,64% 11,1% 22,2% 
 50 29,78% 0,0% 5,3% 

Total general  13,89% 9,1% 54,3% 
 

From the previous analysis, GRASP presents better results for instances with ten machines for different 
jobs combination. Nevertheless, the average RDI for GRASP-WMDD is 13,89% and gives the 15th 
position in the rank over 26 different methods compared by Vallada et al. (2008). It can be highlighted 
that for instances of 50 jobs in comparison to the 17 metaheuristics evaluated by the mentioned authors, 
GRASP-WMDD is ranked 2nd, outperforming 16 metaheuristics that includes GA, Simulated Annealing, 
TS and variants of them. 

6. Conclusions and Future Research 
 

This research has addressed the problem of minimizing the total weighted tardiness in a Permutation 
Flow Shop scheduling environment with deterministic processing times. For this purpose, a GRASP 
metaheuristic model algorithm was developed evaluating two utility functions (ATC and WMDD). With 
the statistical analysis, it was determined the best performance for all factors and double interactions 
evaluated according to the improvement percentage of improvement of the TWT in relation to the WEDD 
dispatching rule.  

According to these analyzes, it was obtained that GRASP with the utility function based on the WMDD 
dispatching rule, the proposed method presented an average improvement of 47.8% over the WEDD 
dispatching rule. While GRASP with utility function based on the ATC dispatching rule has maintained 
an average improvement of 10.96% according to the WEDD rule. Also, for the five double interactions 
analysis, in which the utility function interacts with other factors, it was obtained for all cases that 
WMDD dispatching rule maintained the highest improvement percentage over the WEDD dispatching 
rule. 

Likewise, the number of jobs factor in the double interactions obtained that the amount of jobs that has 
the highest improvement percentage in relation to the WEDD rule, are 150 jobs. When we performed the 
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same analysis with the number of machines factor, we found that 10 machines had the highest 
improvement percentage according to the WEDD dispatching rule. Likewise, GRASP-WMDD was used 
to solve the total tardiness problem in order to compare it with other 40 heuristic and metaheuristic 
methods presented by Vallada et al. (2008). Results located GRASP in the 15 rank among those methods 
with a RDI of 13.89% and obtaining a 9% of best known solutions. Besides, GRASP shows again that 
its best performance was for instances with ten machines. 

With the previously obtaining results, it is suggested to use a stopping criterion as the one used at this 
research. But, for instances with more jobs (250 and 350 jobs) and higher number of machines (50 
machines), it requires a longer elapsed time. This ensures that at the GRASP local search phase, in this 
longer time it can make as many 2-optimal exchanges as it is possible in this additional time and it will 
achieve better results. That is the reason why it can be explained the best performance of the algorithm 
with the instances that are composed with fewer number of jobs and machines. 
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