

International Journal of Industrial Engineering Computations 7 (2016) 147–160

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Simultaneous selection and scheduling with sequence-dependent setup times,
lateness penalties, and machine availability constraint: Heuristic approaches

Mohammad Hossein Zareia, Mehdi Davvarib, Farhad Kolahanc and Kuan Yew Wongd*

aEscuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/Jose´ Gutie´rrez Abascal, 2, 28006 Madrid, Spain
bDepartment of Automotive Engineering, Islamic Azad University, Khomeini Shahr Branch, Isfahan, Iran
cDepartment of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
dDepartment of Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
C H R O N I C L E A B S T R A C T

Article history:
Received April 22 2015
Received in Revised Format
June 29 2015
Accepted June 30 2015
Available online
July 2 2015

 Job selection and scheduling are among the most important decisions for production planning in
today’s manufacturing systems. However, the studies that take into account both problems
together are scarce. Given that such problems are strongly NP-hard, this paper presents an
approach based on two heuristic algorithms for simultaneous job selection and scheduling. The
objective is to select a subset of jobs and schedule them in such a way that the total net profit is
maximized. The cost components considered include jobs' processing costs and weighted
earliness/tardiness penalties. Two heuristic algorithms; namely scatter search (SS) and simulated
annealing (SA), were employed to solve the problem for single machine environments. The
algorithms were applied to several examples of different sizes with sequence-dependent setup
times. Computational results were compared in terms of quality of solutions and convergence
speed. Both algorithms were found to be efficient in solving the problem. While SS could provide
solutions with slightly higher quality for large size problems, SA could achieve solutions in a
more reasonable computational time.

© 2016 Growing Science Ltd. All rights reserved

Keywords:
Job selection
Job scheduling
Earliness
Tardiness
Lateness
Sequence-dependent setup time
Scatter search
Simulated annealing

1. Introduction

When several jobs or projects are put forward, a manufacturing company may logically tend to choose
the ones which deliver the highest return. However, selecting the jobs solely according to their revenues
does not guarantee the company’s profitability. Selected jobs must be scheduled with respect to the
limited resources of the firm such that the deadlines are met and the lateness penalties are avoided or
minimized. Therefore, the methods that can consider different scheduling combinations of jobs at the
time of selection are crucial. Such methods enable the managers to choose the best subset of jobs with
the consideration of their due dates and also provide a resolution to investigate two interrelated problems
in a single context.

* Corresponding author. Tel: +607-5534691
E-mail: wongky@fkm.utm.my (K. Y. Wong)

© 2016 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2015.7.001

mailto:wongky@fkm.utm.my
http://www.orcid.org/0000-0001-5025-4082

148

Lateness is usually defined as the algebraic difference between the due date and actual completion time
of a job, regardless of their mathematical sign. It is either in the form of tardiness, which considers only
positive difference (completion after due date), or earliness, which corresponds to negative deviation
from completion time (ahead of due date) (Conway et al., 2012). According to the just-in-time (JIT)
philosophy, a product or service should be produced at the time needed and in the quantities required;
otherwise a penalty is incurred in proportion to the amount of lateness (Shingo, 1989). Assigning such
penalties prevents extra costs to be imposed to the company by decreasing the amount of inventory of
finished products (for earliness) as well as avoiding the loss of goodwill and customer dissatisfaction (for
tardiness) (Behnamian & Zandieh, 2013).

Setup time is an integral part of processing time which is defined as the period of time that it takes to
unload a job from the machine, adjusting the machine for processing the next job, and installing the next
job on the machine (Kolahan & Liang, 1998). For simplification purposes, the setup times are considered
to be sequence-independent in many studies. In reality, however, a large percentage of production
schedulers reported that they have frequently encountered sequence-dependent setup times (Luo & Chu,
2007). Hence, managing the jobs with sequence-dependent setups is a critical factor in enhancing the
performance of manufacturing systems.

Solving the sole problem of selection or scheduling has been the purpose of numerous studies. For the
selection problem, most of the studies have taken advantage of exact methods such as integer
programming (Yavuz & Captain, 2002), scoring methods (Henriksen & Traynor, 1999), and multiple
criteria decision making tools such as analytic network process (Meade & Presley, 2002). The scheduling
problem for single machine has been addressed using both exact and heuristic approaches. In a study by
Chen et al. (2007), the makespan of a single machine together with the delivery time to a single customer
area are minimized using a two-phase integer programming approach. A branch-and-bound algorithm
has been presented by Luo and Chu (2007) that could deal with the problem of scheduling N jobs on a
single machine with sequence-dependent setup times to minimize the maximum tardiness. They have
implemented their approach on different instances of jobs to evaluate its efficiency. The main
shortcoming of their method was that it considerably lost its credibility in solving large size problems
(97.3% solved for 15-job instances and only 37.3% solved for 30-job instances).

Most enumeration methods trying to solve large scale scheduling examples encounter the same problem
as the previous study. Since the problem of scheduling jobs on a single machine with sequence-dependent
setups to minimize the lateness is shown to be strongly NP-hard (Du & Leung, 1990; Low et al., 2008;
Baker, 1974), classical methods such as integer programming or branch-and-bound are unable to achieve
an optimal solution in a reasonable running time for such problems. Consequently, application of
heuristic optimization algorithms that can produce optimal (or near-optimal) solutions at a considerably
lower computational time has become widespread in the past decades. In the study of Chen et al. (2007),
after proposing the integer programming approach, two heuristic algorithms have been presented to solve
the problem. The authors have concluded that for large size problems their heuristics are more efficient
compared to their proposed integer programming model. A comprehensive review of the literature about
the scheduling problem with setup times or costs constraints can be found in Allahverdi et al. (2008).

Few studies have been conducted on the combined problem of selection and scheduling. Kyparisis and
Douligeris (1993) were the first who have taken these two problems into account simultaneously. They
have extended the branch-and-bound scheduling algorithm of Emmons (1975) to include the optimal
selection of jobs. The objective of their study was to minimize the total flow time with minimum number
of tardy jobs. The problem with their modified branch-and-bound was that it could not be applied once
the maximum number of non-tardy jobs exceeds the number of selected jobs. In addition, the amount of
branching increased significantly by growing the size of the problem. In the same vein, Ahonen et al.
(2009) have modeled the problem of organizing customer tasks in a virtual organization as a flexible
flow shop problem in which one machine among the available machines in a service group must be
selected and the execution order of jobs assigned to the machine must be determined. The objective

M. H. Zarei et al. / International Journal of Industrial Engineering Computations 7 (2016)

149

function was aimed at minimizing the total cost of selection as well as the makespan of the jobs sequence.
In order to solve the problem, they have proposed a tabu search and a simulated annealing algorithm with
variable neighborhood search and applied them to a cutting stock example.

This research casts a light upon the problem of simultaneous job selection and scheduling for a single
machine to maximize the net profit. The problem has been solved by two heuristic algorithms, scatter
search (SS) and simulated annealing (SA). In formulating the problem, lateness penalties, sequence-
dependent setup times, and machine availability time are considered as the main constraints. Our survey
of literature shows that the problem has not, to date, been discussed with the scope of this paper, despite
evidence of its increasing use in the manufacturing systems.

The rest of the paper is organized as follows. Next section states and formulates the problem under
consideration. SS and SA, the two solution procedures used in this research are introduced in Section 3.
In section 4, the computational results of the study are presented. Section 5 provides a comparison and
discussion on the results of investigated problems with different sizes. Finally, section 6 concludes the
paper with future research recommendations.

2. Problem Statement and Formulation

2.1. Problem Statement

Consider J jobs are offered to a company for processing on a single machine. The company is free to
choose any number of jobs. Once a job is selected, it should be processed on the machine and should be
completed on a specific due date. Any earliness or tardiness results in penalty and thus is unfavorable. A
sequence-dependent setup time is considered for each job depending on the immediate previous job. This
period of time is required for changing the tools, parts, dies and adjusting the machine feed rate, speed,
etc. The sequence-dependent setup times are assumed asymmetrically. Moreover, the machine is
available at a limited extension of time.

Completion of each job earns a specific amount of revenue for the company while it incurs a processing
cost. In addition to the processing cost, probable earliness and tardiness penalties are to be paid. The net
profit is calculated by subtracting all the costs and possible penalties of a job from its revenue. The
objective is to maximize the net profit resulted from scheduling a selected subset of jobs.

For the system under study, the following features and assumptions are considered.

• A number of jobs are available to be processed on the machine.
• Preemption is not allowed which means the jobs cannot be interrupted once started.
• Any job that is selected to be processed first has no setup time. In other words, all of the jobs are

ready to be processed at the beginning.
• Each job has a set of specific sequence-dependent setup times, each of which pertains to the job

that would precede it in the sequence. The setup times are asymmetric.
• The machine can process one job at a time only.
• Idle time is not permitted during the availability time of the machine.

2.2. Mathematical Model

In order to formulate the model, the following notations are used:

j: Index of job number
[j]: Index of position for the j-th job in the sequence
Z: Net profit
n: Number of jobs

150

𝑡𝑡𝑗𝑗: Processing time of job j
𝑑𝑑𝑗𝑗: Due date of job j
𝛼𝛼𝑗𝑗: Earliness penalty of job j per unit of time
𝛽𝛽𝑗𝑗: Tardiness penalty of job j per unit of time
𝑚𝑚𝑐𝑐𝑗𝑗: Processing cost of job j per unit of time
𝑏𝑏𝑒𝑒𝑗𝑗: Completion revenue for job j
𝐸𝐸𝑗𝑗: Actual earliness of job j
𝑇𝑇𝑗𝑗: Actual tardiness of job j
𝑐𝑐𝑗𝑗: Actual completion time of job j
A: Availability time of the machine
𝑋𝑋𝑗𝑗: 1, if job j is selected; 0, otherwise

A maximization objective function is exploited for the problem as shown in Eq. (1). The objective
function consists of three cost components for each job, including total processing cost (𝑚𝑚𝑐𝑐𝑗𝑗𝑡𝑡𝑗𝑗), total
earliness penalty (𝛼𝛼𝑗𝑗𝐸𝐸[𝑗𝑗]), and total tardiness penalty (𝛽𝛽𝑗𝑗𝑇𝑇[𝑗𝑗]). These costs are subtracted from the job's
revenue (𝑏𝑏𝑒𝑒𝑗𝑗) to give the net profit. Since the completion revenue of each job has a fixed value, the
function tries to maximize the net profit by reducing the cost components (processing cost and lateness
penalties).

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = �(
𝑛𝑛

𝑗𝑗=1

 𝑏𝑏𝑒𝑒𝑗𝑗 − (𝑚𝑚𝑐𝑐𝑗𝑗𝑡𝑡𝑗𝑗 + 𝛼𝛼𝑗𝑗𝐸𝐸[𝑗𝑗] + 𝛽𝛽𝑗𝑗𝑇𝑇[𝑗𝑗])) 𝑋𝑋𝑗𝑗

(1)

subject to:
𝑡𝑡[1]𝑋𝑋1 + 𝑡𝑡[2]𝑋𝑋2 + ⋯+ 𝑡𝑡[𝑛𝑛]𝑋𝑋𝑛𝑛 ≤ A (2)
𝐸𝐸[𝑗𝑗] ≥ 0 (3)
𝑇𝑇[𝑗𝑗] ≥ 0 (4)
𝑋𝑋𝑗𝑗= 0 or 1, j= 1,..., n (5)

where 𝐸𝐸𝑗𝑗 and 𝑇𝑇𝑗𝑗 are calculated as follows:

𝐸𝐸𝑗𝑗 = max�0 ,𝑑𝑑𝑗𝑗 − 𝑐𝑐𝑗𝑗� (6)
𝑇𝑇𝑗𝑗 = max (0 , 𝑐𝑐𝑗𝑗 − 𝑑𝑑𝑗𝑗) (7)

As the constraints of this model, Eq. (2) guarantees that the sum of processing time for the selected subset
of jobs does not exceed the availability time of the machine. Eq. (3) and Eq. (4) ensure that the values
for earliness and tardiness are not negative and Eq. (5) represents the type of decision variable. Solving
the problem stated and formulated above using exact methods is cumbersome even for small size
problems. Hence, we propose two heuristic procedures in the following section to solve the problem.

3. Solution Procedures

3.1. Scatter Search

Scatter search (SS) is a heuristic algorithm that was first introduced by Glover (1977) as an integer
programming heuristic. After the application was extended to nonlinear, binary and permutation
problems in 1994 by Glover, the algorithm became popular and its application has spread to a wide
variety of optimization problems (Glover, 1994; Martí et al., 2006). The search method of SS has a
systematic structure which differentiates it from other algorithms with random search design such as
genetic algorithm (Martí, 2006). The algorithm searches through the solution space based on a
diversification approach which enables it to escape from local optimums and presents optimal (or in the
vicinity of the optimum) solutions. The mechanisms of SS are not limited to a single uniform design but

M. H. Zarei et al. / International Journal of Industrial Engineering Computations 7 (2016)

151

help to explore the effective strategic possibilities for a particular implementation. The fundamental
structure of the algorithm consists of five methods explained in the following subsections.

3.1.1. Diversification Generation Method

The diversification generation method generates a collection of initial solutions. An arbitrary solution,
sometimes called as seed solution, is used as an input at the beginning of the run. Diversification
generation method also refreshes the reference set when the algorithm is restarted. The method is used
together with improvement method which is described in the next subsection.

3.1.2. Improvement Method

The purpose of improvement method is generating higher quality solutions by exploring and evaluating
neighbor solutions. It uses the solutions achieved from the diversification generation or combination
method to transform each solution into one or more improved ones. Note that neither the input nor the
output solutions are necessarily feasible. Amongst the five methods of SS, improvement is the only
arbitrary method.

3.1.3. Reference Set Update Method

Reference set update method is employed to construct and keep a reference set containing a definite
number of best solutions found. The size of the reference set, b, is one of the adjusting parameters of the
algorithm and is chosen relatively small (e.g. about 20). Whilst different update methods have been used
for the algorithm (see Martí et al., 2006), 2-tier reference set is used in this research. According to this
type of design, two reference sets are constructed: RefSet1 and RefSet2. The latter keeps a number of high
quality solutions, while the former contains diverse solutions with the furthest distance from high quality
solutions. By doing this, not only high quality solutions are maintained, but also the reference set is
updated with highly diverse solutions which impedes the algorithm to become homogenous by admitting
merely similar high quality solutions.

3.1.4. Subset Generation Method

This method uses the existing solutions in the reference set to generate a subset of solutions that can be
used as a basis for the solution combination method (next method). Since the combination method is not
confined to the combination of just two solutions, the subset generation method should also be able to
generate subsets of different sizes.

3.1.5. Solution Combination Method

Having generated appropriate subsets through subset generation method, the subsets must be transformed
into combined solution vectors using solution combination method. The design of SS employed in this
research uses a competitive solution combination method based on the objective function. This type of
combination assigns a higher choice probability to the combinations that can produce better solutions
according to their objective function values. A general sketch of the SS algorithm is presented in Fig. 1.

3.2. Simulated Annealing

Simulated Annealing (SA) is an optimization heuristic algorithm that was first proposed by Kirkpatrick
(1984). The idea behind the algorithm is the annealing process used in metallurgy. During this process,
a metal is heated until it reaches the temperature of liquefying, and then cooled down slowly such that
the metal atoms find a more stable state than their initial situation. The process goes on in a controlled
manner until the metal solidifies back completely. The real world optimization problems can be solved
in the same way. At each stage, the SA algorithm generates a new state and compares its energy with the

152

energy of the current state. The algorithm moves to the new state if it is found better; otherwise, a
transition probability equation shown in Eq. (8) is used to change the current state (Chen & Chien, 2011).

Fig. 1 Flowchart of SS Algorithm

𝑃𝑃𝑎𝑎 = 𝑒𝑒−
𝑘𝑘𝑘𝑘𝑘𝑘
𝑇𝑇 (8)

where k is the Boltzmann constant, T is the current temperature of the system, and 𝛥𝛥𝐸𝐸 is the difference
between the energy levels of the system that can be obtained using Eq. (9).

𝛥𝛥𝐸𝐸 = 𝐸𝐸(𝑆𝑆′) − 𝐸𝐸(𝑆𝑆) (9)

In Eq. (9), S represents the current state and 𝑆𝑆′is the new state of the system. As the algorithm proceeds,
the temperature decreases and the search through the solution area is narrowed down. Although the
algorithm accepts solutions that result in improvement, for a comprehensive search of the solution space,
it is capable of adopting bad solutions as well (Arif, 2012; Mosavi & Shiroie, 2012). The termination
criterion can be running a certain number of iterations, reaching a specified running time or cooling down
to a predetermined temperature. We have modified the algorithm to accommodate the requirements of
the twofold selection and scheduling problem.

3.2.1. Generating an Initial Solution

The algorithm generates the random permutation (randperm(n)), where n is the number of jobs. Then,
the jobs are selected from the beginning of the permutation until job j. The selection is performed such
that the machine availability constraint is not violated.

M. H. Zarei et al. / International Journal of Industrial Engineering Computations 7 (2016)

153

3.2.2. Neighbor Generation

For generating neighbors, the algorithm makes two by two replacements for all the jobs existing in the
random permutation (randperm(n)). Then again, the jobs are selected from the beginning of the new
permutation until job j so that the machine availability constraint is kept. The flowchart of the SA
algorithm is presented in Fig. 2.

Read random input
data

Better than the
current solution?

End

Generate an initial
solution based on the
current temperature

Assess the generated
solution

Use transition
probability

Move to the new
solution

Update parameters and
counters and decrease

the temperature

Termination
criteria met?

Yes

No

Yes

No

Fig. 2 Flowchart of SA algorithm

4. Computational Results

In order to evaluate the proposed approaches, the SS and SA algorithms were implemented in MATLAB
R2009a computer software and applied to the problems of different sizes. In this section, the details of a
10-job instance problem are described to provide a walk through on the problem specifications and the
performance of the proposed approaches. Then, the 80-job instance problem is presented to show the
performance of the proposed heuristics to solve large size real world problems. In the next section, the
results of all investigated problems are reported and compared.

154

4.1. The 10-Job Instance Problem

The values for the job specifications and the asymmetric sequence-dependent setup times of the 10-job
instance problem are shown in Table 1 and Table 2, respectively. The initial parameters were adjusted
with respect to the size of the problem: The initial temperature and cooling rate of the SA algorithm were
set to 1200 and 0.5, respectively while the reference set size of the SS algorithm was adjusted to 5. The
termination criterion for both algorithms was reaching 150 seconds of running time.

Table 1
Job Specifications for the 10-job Instance Problem
 Jobs
Parameters 1 2 3 4 5 6 7 8 9 10
Processing time (unit of time) 5 4 8 7 3 2 10 10 7 8
Due date (unit of time) 15 25 10 10 3 20 40 60 30 18
Tardiness penalty (per unit of time in $) 0.5 1 2 4 0.2 2.5 1 1.5 2 1
Earliness penalty (per unit of time in $) 0.3 2 1 0.5 1 4 0.2 0.4 1.5 0.2
Processing cost (per unit of time in $) 4 3 6 6 2 1 7 8 5 7
Completion revenue ($) 350 100 50 250 300 150 20 450 120 80

Table 2
The Sequence-dependent Asymmetric Setup Times for the 10-job Instance Problem

 Next Job
First Job 1 2 3 4 5 6 7 8 9 10

1 - 0.1 0.8 0.7 0.4 1.2 1.1 0.5 0.3 0.8
2 1.4 - 0.3 0.7 2 0.2 0.4 1.5 1.6 0.1
3 0.7 1.1 - 1.6 0.5 0.5 0.1 0.2 1.6 0.2
4 1 0.3 1.7 - 0.2 2 0.2 0.3 0.7 0.4
5 2 0.6 2 0.6 - 0.4 0.3 0.2 0.3 1.5
6 0.8 0.4 0.1 0.6 1.6 - 0.8 0.2 0.6 0.2
7 1.1 2 0.7 1.8 0.3 1.8 - 0.1 0.8 0.4
8 0.8 0.3 2.9 0.1 0.1 0.2 0.2 - 0.3 0.6
9 1.6 0.4 0.9 0.3 2 0.6 1.4 1.2 - 0.3

10 0.7 1.8 0.3 1.8 0.2 0.1 0.8 0.4 1.7 -

After running the algorithms, they both produced the same results. The sequence of {5 - 4 - 1 - 6 - 8}
was selected and scheduled resulting in the net profit of $1334. The complete enumeration of all possible
sequences also resulted in the same solution. This proves that both algorithms are capable of reaching
optimal solutions for small size problems.

4.2. The 80-job Instance Problem

In order to evaluate the performance of the algorithms in solving real life problems, a problem with 80
jobs was solved. Such large size problems are very likely to be confronted in daily manufacturing
practices. The ranges of input parameters within which the job specifications vary are shown in Table 3.

Table 3
The Ranges of Job Specifications for the 80-job Instance Problem

Machine
availability

time (unit of
time)

Setup
time

(unit of
time)

Lateness penalties
(per unit of time in $) Processing cost

(per unit of time
in $)

Job completion
revenue ($)

Due date
(unit of
time)

Processing
time (unit
of time) Tardiness Earliness

960 0.1 - 3 0.6 - 3 0 - 2.4 5 - 15 100 - 1000 10 - 480 4 - 35

The parameters of the algorithms need to be tuned prior to their run. Parameter tuning (e.g. tuning of
cooling rate for the SA algorithm) has been found to be drastically influencing on both the efficiency and
effectiveness of heuristics (Lessmann et al., 2011). Appropriate calibration of parameters boosts the

M. H. Zarei et al. / International Journal of Industrial Engineering Computations 7 (2016)

155

capability of heuristic algorithms to find optimal or sub-optimal solutions in a rational amount of time
(Akbaripour & Masehian, 2013) especially for problems with larger size. For the SS algorithm, since the
reference set size was the only parameter to be tuned, different values were tested and the pertaining
changes in the objective function were observed. Eventually, the optimum value of reference set size was
found to be 19. When there is more than one parameter involved, such as the case of our SA algorithm
with two parameters: initial temperature and cooling rate, different parameter tuning methods can be
used. Design of experiment (DOE) is one of the best and most frequently used approaches for parameter
tuning. Each experiment within DOE collects information resulting from purposeful changes made to
parameters of a process so that the reasons for changes in the objective function values are identified
(Montgomery, 2012). Through these experiments, the largest information possible is collected with the
least number of experiments and hence the optimal settings for the parameters are found.

In this paper, DOE was adopted to investigate the effect of SA parameters on the response obtained from
the objective function. Each parameter had two levels of high and low denoted by (+1) and (-1),
respectively and a 22 full factorial design was developed. The levels and values of parameters are shown
in Table 4. The responses of the algorithm to different combinations of parameters’ levels are shown in
Table 5. According to Table 5, the best experimental result was achieved from the combination of +1
and +1 for initial temperature and cooling rate, respectively. Hence, these parameters were respectively
tuned to 8000 and 0.9999 for the initiation of the algorithm.

Table 4
Levels of Parameters for the SA Algorithm

 Level
Parameter Low (-1) High (+1)
Initial temperature 6000 8000
Cooling rate 0.6666 0.9999

Table 5
Experimental Results of the SA Algorithm for Parameter Tuning

Run order Initial
temperature

Cooling
rate

Objective function value (response)
Revenue

($)
Processing

cost ($)
Tardiness
penalty ($)

Earliness
penalty ($)

Net profit
($)

1 +1 +1 24182 9217 469 503 13992
2 +1 -1 24131 9596 424 840 13271
3 -1 +1 24095 9513 394 806 13382
4 -1 -1 23298 9633 452 777 12436

Considering the size of the problem, reaching 2500 seconds was set as the termination criterion and both
algorithms were run 10 times with the same starting schedule in each run.

Table 6
Summary of Results for the 80-job Instance Problem

SS SA

Improvement
(%)

Final
scheduling

plan

Initial
scheduling

plan

Improvement
(%)

Final
scheduling

plan

Initial
scheduling

plan

Cost components

52.7 24434 15992 51.2 24182 15992 Revenue ($)
-1.3 9495 9372 1.6 9217 9372 Processing cost ($)
97 387 13286 96.4 469 13286 Tardiness penalty ($)

95.5 449 10140 95 503 10140 Earliness penalty ($)
183.9 14103 -16806 183.2 13992 -16806 Net profit ($)

For the best run, Table 6 shows the cost components of the initial and final scheduling plans. The table
shows that whilst the processing cost of the final scheduling plan shows minor changes compared to the

156

initial scheduling plan, the revenue and weighted lateness penalties, however, have improved
considerably. Consequently, the net profit of the final plan shows an upsurge of more than 183% for both
algorithms. For this problem, the SA algorithm could converge in 800 seconds, while it took 1500
seconds for the SS algorithm to converge. The latter, though, could present slightly better results in the
long run. Hence, we present the details of the best solution found by SS in Table 7.

Table 7
Details of the Best Solution Found by SS for the 80-job Instance Problem

Order of the job
in the sequence

Job number Completion time (time
unit)

Lateness (time
unit)

Lateness penalty
incurred ($)

Processing cost
($)

Revenue
($)

[1] 22 6.0 -19.0 5.7 36 374
[2] 10 23.4 -11.6 24.3 85 600
[3] 37 43.6 -5.4 9.7 300 600
[4] 15 70.6 -14.4 34.5 275 455
[5] 35 86.9 +1.9 3.4 208 259
[6] 26 104.7 -3.3 4.9 119 232
[7] 45 114.6 +0.6 0.9 56 434
[8] 77 120.1 +0.1 0.0 60 180
[9] 7 136.8 +29.8 35.7 126 277
[10] 28 157.1 +2.1 5.6 108 208
[11] 32 176.8 -3.2 2.8 285 455
[12] 18 208.3 +8.3 4.4 450 950
[13] 52 235.5 -40.5 24.3 175 335
[14] 50 244.7 -7.3 6.5 117 306
[15] 1 264.2 +0.2 0.2 190 950
[16] 40 294.7 +23.7 14.2 330 416
[17] 68 317.4 -6.6 3.9 308 434
[18] 75 327.8 +1.8 3.7 50 335
[19] 30 356.0 +6.0 12.6 392 500
[20] 69 366.0 +9.0 10.8 88 800
[21] 31 392.8 +2.8 4.2 275 800
[22] 36 416.1 +84.1 75.7 322 424
[23] 63 422.9 -2.1 3.7 60 416
[24] 59 440.3 +8.3 22.4 240 424
[25] 38 458.6 +18.6 22.3 90 251
[26] 9 471.8 -8.2 4.9 72 232
[27] 13 477.3 +1.7 3.0 75 500
[28] 4 513.7 +65.7 59.1 210 258
[29] 57 522.5 +2.5 6.0 104 1000
[30] 74 531.8 +2.8 5.8 108 200
[31] 46 560.0 -260.0 78.0 270 800
[32] 42 566.0 -4.0 1.2 40 231
[33] 51 577.3 -142.7 85.6 110 200
[34] 53 584.3 +1.3 2.3 60 162
[35] 29 590.5 -19.5 11.7 25 179
[36] 14 619.7 -30.3 63.6 336 800
[37] 66 625.6 -14.4 12.9 28 369
[38] 61 646.7 -3.3 5.9 220 251
[39] 60 670.5 +0.5 0.9 322 600
[40] 80 687.6 -12.4 14.8 255 1000
[41] 54 720.4 -8.6 20.6 160 180
[42] 49 751.0 -6.0 7.2 420 496
[43] 72 776.3 +0.3 0.7 275 496
[44] 23 796.1 +46.1 41.4 108 1000
[45] 71 812.7 +12.7 7.6 208 445
[46] 73 843.0 +6.0 7.2 210 306
[47] 27 863.5 +3.5 3.1 200 600
[48] 33 872.3 -7.7 4.6 96 256
[49] 56 890.1 +2.1 5.0 204 400
[50] 6 898.1 -1.9 4.5 60 1000
[51] 39 906.1 -3.9 9.3 84 186
[52] 48 932.8 +8.8 15.8 275 445
[53] 19 941.0 +1.0 2.4 35 150
[54] 24 956.4 +8.4 10.0 180 277

Total 956.4

-638
(total earliness)

449.07
(total earliness penalty) 9495 24434 +359

(total tardiness)
387.33

(total tardiness penalty)

According to the table, 54 jobs out of the 80 candidate jobs were selected and scheduled. The first three
columns show the order of job, job number, and its completion time. The fourth column gives the lateness
of the scheduled jobs which is the difference between the scheduled completion time (cj) and the job’s

M. H. Zarei et al. / International Journal of Industrial Engineering Computations 7 (2016)

157

due date (dj). Negative values indicate that the job was processed sooner than the due date (earliness),
while positive values indicate completion after the due date (tardiness). The fifth column shows the
lateness penalty imposed according to the type and magnitude of the job’s lateness. Note that the jobs
with high lateness times (in column four) had relatively small penalties per time unit and vice versa. This
shows that the algorithm levels the variation of incurred penalties (column five) and avoids fluctuated
results. Calculations show that about 70% of the incurred penalties are less than $20. The sixth and the
seventh columns depict the processing cost for each job and its revenue, respectively. The total
processing cost of this sequence is $9495 resulting in $24434 of revenue.

5. Discussion

In this section, we provide a discussion on the findings of the study and delineate the practical
implications on the application of the proposed algorithms. In our experiments, we studied four problems
with 10, 20, 40, and 80 jobs. Table 8 depicts the average convergence times and the net profits for the
investigated problems.

Table 8
Comparison of Convergence Time and Net Profit of Results

Number of jobs SS SA
Convergence time

(second)
Net profit ($) Convergence time

(second)
Net profit ($)

10 1.8 1334 0.2 1334
20 10.9 3732 1.6 3732
40 54.9 7193 19.5 7193
80 1500 14103 800 13992

5.1. Convergence Speed and Quality of Solutions

According to the results presented in Table 8, the convergence rate of SA was higher in comparison with
SS for all the examples. This would be due to the mechanism of searching and moving through the
solution space towards the optimum (or sub-optimum) solution. SA is a single agent algorithm that
evaluates only one neighbor at each iteration. On the other side, SS examines a certain number of
solutions, improves their quality, combines them, and then repeats the improvement again. Then, the
algorithm moves to the best generated solution. Obviously, this procedure of searching covers a larger
portion of the solution space but at the cost of higher computational times and lower convergence rate.

Both algorithms produced solutions of the same quality for the first three examples (10, 20, and 40 jobs).
However, for the example problem with 80 jobs, SS generated the results with slightly higher quality
compared to SA. That is because SS explores more solutions at each iteration and thus the chance of
finding a better solution is higher. As the size of the problem grows, it is expected that the quality of
solutions produced by SS improves. Moreover, since our proposed SS examines neighbors of high quality
solutions according to Euclidean distance, the algorithm hardly traps in local optimums.

Whilst both algorithms could solve the problems of different sizes in reasonable running times with good
quality solutions, their speed and quality in solving the problems were not identical, especially for large
size problems. Therefore, for the problems in which the computational times are of great importance, SA
may be preferred due to its higher convergence rate. Small daily problems and short-term production
planning are among the instances where the quality of solutions can be of secondary consideration.
Whereas, if higher quality solutions are required (e.g. larger scheduling problems, long-term planning,
and planning during the product design or development stage), application of SS is recommended.

158

5.2. Changing of the Cost Components

Every scheduling method should be flexible enough to meet the requirements of a changing work
environment. Very often, the elements of the objective function such as costs or penalties vary during
the planning horizon. The algorithms should be able to deal with the changes and adapt to the new
situation. As an example, let us assume the case of a company whose managers intend to increase their
market penetration and prevent lost sales by minimizing delivery tardiness, a strategy which is in line
with just-in-time (JIT) philosophy. The input parameters of the algorithms can be adjusted to account for
higher tardiness penalties. In turn, the final solution found by the proposed approaches should have less
total tardiness. To illustrate, we have resolved the 40-job instance problem while the tardiness penalties
have increased incrementally. Fig. 3 presents the effect of increasing the tardiness penalties on the total
tardiness time. As shown, the total tardiness of the solution found by the SS algorithm was initially 374.8
units of time. After doubling, tripling, and quadrupling the tardiness penalty, it decreased to 348.5, 240.3,
and 222.6 units of time, respectively. Therefore, by increasing the importance of tardiness, the algorithm
tends to find solutions with lower tardiness.

Fig. 3. The effect of increasing tardiness penalties on total tardiness time (SS)

The algorithms have dealt with changing other input parameters in the same way. For instance, when the
processing costs increased, the algorithms kept the costs low by shortening the total processing time.
Such purposeful changes of parameter settings help production planners to evaluate the efficiency of
their scheduling methods when facing unforeseen variations after planning and ensure that these methods
can properly adapt to changing environments.

6. Conclusion

The necessity of selecting from a group of available projects due to resource limitations of companies
and frequent occurrence of sequence-dependent setup times pinpoint the need for studying the twofold
problem of selection and scheduling. In this paper, we have addressed the problem on a single machine
by proposing two efficient heuristic algorithms, SS and SA. We assumed asymmetric sequence-
dependent setup times, weighted earliness and tardiness penalties, distinct processing costs and machine
availability constraint for modeling the problem. Both proposed heuristics were found quite efficient in
solving problems of different sizes. SS could present slightly better solutions for larger problems while
SA outperformed in terms of convergence speed.

The scope of this paper can be broadened to multi-machine problems in different environments. For
instance, the production system of many industries contains a bottleneck machine which determines the
production rate of the entire system. Scheduling the jobs on this machine is vital to avoid delays in
customer order delivery (Sioud et al., 2012). Moreover, the terms “job” and “machine” can refer not only

374.8
348.5

240.3
222.6

0

50

100

150

200

250

300

350

400

1 2 3 4

T
ot

al
 T

ar
di

ne
ss

 T
im

e

Coefficient of Tardiness Penalty

M. H. Zarei et al. / International Journal of Industrial Engineering Computations 7 (2016)

159

to their manufacturing definitions, but also to a variety of projects in different industries to be selected
and scheduled. Therefore, the single machine model can be applied to a wide range of manufacturing and
service industries.

Future research may include applying other heuristic algorithms such as genetic algorithm and particle
swarm optimization to the problem. The problem can be modeled and optimized with different objectives
such as minimizing the total weighted earliness and tardiness or minimizing the makespan with minimum
number of tardy jobs.

References

Ahonen, H., de Alvarenga, A. G., & Provedel, A. (2009). Selection and scheduling in a virtual
organisation environment with a service broker. Computers& Industrial Engineering, 57(4), 1353-
1362.

Akbaripour, H., & Masehian, E. (2013). Efficient and robust parameter tuning for heuristic algorithms.
International Journal of Industrial Engineering & Production Research, 24(2), 143-150.

Allahverdi, A., Ng, C. T., Cheng, T. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems
with setup times or costs. European Journal of Operational Research, 187(3), 985-1032.

Arif, S., Mohammedi, R. D., Hellal, A., & Choucha, A. (2012). A memory simulated annealing method
to the unit commitment problem with ramp constraints. Arabian Journal for Science and
Engineering, 37(4), 1021-1031.

Baker, K.R. (1974). Introduction to Sequencing and Scheduling. Wiley, NY.
Behnamian, J., & Zandieh, M. (2013). Earliness and tardiness minimizing on a realistic hybrid flowshop

scheduling with learning effect by advanced metaheuristic. Arabian Journal for Science and
Engineering, 38(5), 1229-1242.

Chen, J. S., Liu, H. S., & Nien, H. Y. (2007). Minimizing makespan in single machine scheduling with
job deliveries to one customer area. International Journal of Industiral Engineering-Theory and
Applilcations and Practice, 14(2), 203-211.

Chen, S. M., & Chien, C. Y. (2011). Solving the traveling salesman problem based on the genetic
simulated annealing ant colony system with particle swarm optimization techniques. Expert Systems
with Applications, 38(12), 14439-14450.

Conway, R. W., Maxwell, W. L., & Miller, L. W. (2012). Theory of scheduling. Courier Corporation.
Du, J., & Leung, J. Y. T. (1990). Minimizing total tardiness on one machine is NP-hard. Mathematics of

Operations Research, 15(3), 483-495.
Emmons, H. (1975). One machine sequencing to minimize mean flow time with minimum number

tardy. Naval Research Logistics Quarterly, 22(3), 585-592.
Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision

Sciences, 8(1), 156-166.
Glover, F. (1994). Tabu search for nonlinear and parametric optimization (with links to genetic

algorithms). Discrete Applied Mathematics, 49(1), 231-255.
Henriksen, A. D., & Traynor, A. J. (1999). A practical R&D project-selection scoring tool. Engineering

Management, IEEE Transactions on, 46(2), 158-170.
Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. Journal of statistical

physics, 34(5-6), 975-986.
Kolahan, F., & Liang, M. (1998). An adaptive TS approach to JIT sequencing with variable processing

times and sequence-dependent setups. European Journal of Operational Research, 109(1), 142-159.
Kyparisis, J., &Douligeris, C. (1993). Single machine scheduling and selection to minimize total flow

time with minimum number tardy. Journal of the Operational Research Society, 44(8), 835-838.
Lessmann, S., Caserta, M., & Arango, I. M. (2011). Tuning metaheuristics: A data mining based

approach for particle swarm optimization. Expert Systems with Applications, 38(10), 12826-12838.

160

Low, C., Hsu, C. J., & Su, C. T. (2008). Minimizing the makespan with an availability constraint on a
single machine under simple linear deterioration. Computers& Mathematics with Applications, 56(1),
257-265.

Luo, X., & Chu, C. (2007). A branch-and-bound algorithm of the single machine schedule with sequence-
dependent setup times for minimizing maximum tardiness. European Journal of Operational
Research, 180(1), 68-81.

Meade, L. M., & Presley, A. (2002). R&D project selection using the analytic network
process. Engineering Management, IEEE Transactions on, 49(1), 59-66.

Martí, R., Laguna, M., & Glover, F. (2006). Principles of scatter search. European Journal of
Operational Research, 169(2), 359-372.

Martí, R. (2006). Scatter search—wellsprings and challenges. European Journal of Operational
Research, 169(2), 351-358.

Montgomery, D. C. (2012). Design and Analysis of Experiments, 8th Edition: John Wiley & Sons,
Hoboken, NJ.

Mosavi, M. R., & Shiroie, M. (2012). Efficient evolutionary algorithms for GPS satellites
classification. Arabian Journal for Science and Engineering, 37(7), 2003-2015.

Sioud, A., Gravel, M., & Gagné, C. (2012). A hybrid genetic algorithm for the single machine scheduling
problem with sequence-dependent setup times. Computers& Operations Research, 39(10), 2415-
2424.

Shingo, S. (1989). A study of the Toyota production system: From an Industrial Engineering Viewpoint.
Productivity Press.

Yavuz, S., & Captain, T. A. (2002). Making project selection decisions: a multi-period capital budgeting
problem. International Journal of Industrial Engineering, 9(3), 301-310.

