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 Multi-period models of portfolio selection have been developed in the literature with respect to 
certain assumptions. In this study, for the first time, the portfolio selection problem has been 
modeled based on mean-semi variance with transaction cost and minimum transaction lots 
considering functional constraints and fuzzy parameters. Functional constraints such as 
transaction cost and minimum transaction lots were included. In addition, the returns on assets 
parameters were considered as trapezoidal fuzzy numbers. An efficient genetic algorithm (GA) 
was designed, results were analyzed using numerical instances and sensitivity analysis were 
executed. In the numerical study, the problem was solved based on the presence or absence of 
each mode of constraints including transaction costs and minimum transaction lots. In addition, 
with the use of sensitivity analysis, the results of the model were presented with the variations 
of minimum expected rate of programming periods. 
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1. Introduction 
 

The investment portfolio selection problem is one of the classical issues of the financial world which was 
first introduced by Markowitz (1959). This problem includes two main and inseparable components of 
return and risk aimed at maximizing the expected return at a certain level of risk or minimizing the 
expected risk at a certain level of return. Markowitz (1959), for first time, presented the optimum set of 
assets model (mean-variance theory). He presented the problem as quadratic programing aimed at 
minimizing the set of assets variance under the condition that the expected return is a fixed value. The 
main assumption of this model is that all investors avoid risk. The problem has another functional 
constraint based on which the sum of ratios of capital involved in assets should equal 1. In addition, the 
ratio of capital involved in any asset in the portfolio should be non-negative. The primary model of 
Markowitz was presented given the normal distribution of returns on assets with the absence of 
transaction costs and taxes, as well as the ban on short selling and indivisibility of shares.  
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In recent years, the need for multi-period portfolio optimization has been emphasized. The goal is to 
maximize the fortune at the end of a certain period. In such a situation, the decision-maker constantly 
monitors the market, gathers information about the events taking place in the market and anticipates the 
future as well. This issue has many financial applications including asset-debt management, index 
tracking, investment management, organizational investment funds etc.  

With multi-period portfolio as a newly-emerged issue, the need for certain factors to make the model 
more tangible is felt. Transaction cost and minimum transaction lots are among the most important 
factors. In addition, for the purpose of approximating the issue to the real dominant conditions of the 
market and given the nature of the parameters which are often ambiguous and uncertain, the problem 
was inevitably raised in a fuzzy environment.  

This paper examined a multi-period model of portfolio selection problem. The problem was addressed 
as a mean semi-variance model encompassing such functional constraints as minimum transaction lots 
and transaction cost. After modeling, the above issue was studied taking into account the uncertainty of 
some parameters in the fuzzy environment, and then a meta-heuristic GA was used to solve the model. 
Although, with respect to portfolio optimization, there are studies on multi-period models, models with 
fuzzy parameters, and mean semi-variance models, the combination of all these points along with 
functional constraints, such as transactions cost and minimum transaction lots have never been analyzed 
in any of the previous research studies.  

2. A review of the literature  

In this section, studies relevant to portfolio are examined from different perspectives.  

2.1 Single-Period Investment Portfolio 

After the introduction of the mean-variance model by Markowitz which is the basis for single-period 
investment portfolio selection models, many developments were performed on the model (see, for 
example, Xia et al., 2000; Giove et al., 2006: Gupta et al., 2008; Yu & Lee, 2011).  

2.2 Multi-Period Investment Portfolio  

Recently, Li and Ng (2000) provided an optimum analytic solution to multiple-period mean-variance 
model. They raised the dynamic portfolio selection problem and introduced an analytic model. Having 
added a constraint called bankruptcy constraint to the model, Wei and Ye (2007) assumed the mean-
variance model in multi-period conditions. The model followed the Markov chain and stochastic market 
conditions. Gülpinar and Rustem (2007) proposed the multi-period mean-variance optimization problem 
in which the scenario tree was used to include the uncertainty and the occurrence probability of each 
scenario in the next periods.  

Çelikyurt and Özekici (2007) applied the Markov chain to propose several multi-period mean-variance 
investment portfolio optimization models. Calafiore (2008) targeted risk as a goal so that the function of 
any decision on the portfolio is to minimize the overall risks in different periods. Including transaction 
cost in the model, Zhang and Zhang (2009) introduced a new multi-period stochastic optimization model 
based on conditional at-risk value. Takano and Gotoh (2010) discussed the resolution of multi-period 
investment portfolio optimization problem through a conditional at-risk value under the nonlinear 
transaction cost.  

Sadjadi, et al. (2011) proposed a fuzzy multi-period investment portfolio with different lending and 
borrowing rates. Sun, et al. (2011) introduced the multi-period investment portfolio optimization problem 
with a new algorithm called particles congestion buoyancy optimization and suggested that the new 
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algorithm is more efficient than other algorithms. Liu et al. (2012) proposed the multi-period mean-
elongation investment portfolio in a fuzzy environment and showed that this model preserves a better 
function than models that do not use elongation as a risk measure.  

2.3 Transaction cost 

WagnerWayne (1990) maintained that failure to include transaction costs leads to the worse solution, 
thus transaction costs must constitute one of the main concerns of today’s portfolio managers. Liu et al. 
(2012) discussed the portfolio selection problem with the multi-period approach, and considered a 
number of criteria such as return, transaction cost, risk and skewness of the portfolio. Also, some others 
such as Takano and Gotoh (2009), Zhang and Zhang (2009), and Zhang et al. (2012) entered transaction 
cost into the investment portfolio selection problem.  

2.4 Transaction Lots 

Mansini and Speranza (1999) added minimum transaction lots as a constraint to the original model, and 
offered an innovative way to solve the problem.  

2.5 Fuzzy Models  

For the first time in 1965 following the publication of fuzzy sets by Professor Lotfi Zadeh (Zadeh, 1965), 
the fuzzy logic appeared in calculations and studies. Due to the uncertain nature of the variables and 
parameters of the capital markets, the need for using a fuzzy concept was felt in this area. For the first 
time the fuzzy logic entered portfolio selection problems and related articles and research in the beginning 
of the 90s. In the following some of these articles are cited.  

Sadjadi et al. (2011) proposed a fuzzy linear model that can calculate the amount of investments in assets 
in different time cycles (Multi-period model). In this paper, the rate of return and the rate of lending or 
borrowing are presented in the form of triangular fuzzy parameters. It is also assumed that the borrowing 
rate exceeds the lending rates. Liu et al. (2012) discussed the multi-period portfolio selection problem in 
a fuzzy environment. They used the TOPSIS method to convert the model into a single-objective one 
and solved it by genetic algorithm.  

Liu et al. (2013) addressed a multi-period portfolio optimization problem while the return, risk and 
liquidity of the stock were introduced as interval variables. The problem defined was solved using the 
fuzzy decision theory, the multi-objective programming approach and the improved PSO algorithm.  

Li and Xu (2013) proposed a multi-objective model of the portfolio selection problem where the rate of 
return was calculated in a fuzzy environment and model was presented with three criteria of return, risk 
and liquidity. In the optimum solution, based on the GA, a method was introduced whose function has 
been verified in numerical examples as well.  

3. Modeling of the Problem  

In this section, the multi-period portfolio problem is modeled. A multi-period portfolio selection problem 
is considered with n assets. It is assumed that the investor at the beginning of Period 1 joins the market 
with the initial wealth w1. The investor plans to allocate his wealth between n risky assets during the T 
periods. His wealth could be reallocated between n assets at the beginning of each subsequent period. 
Symbols for the problem are presented below:  

xti Weight of asset i in the portfolio in period t  
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xt Portfolio of period t where: xt = (xt1, xt2, … , xtn) 
rti Expected rate of return on asset i in period t  
rt Minimum rate of return on the portfolioxtin period t  

RPt Rate of return on the portfolio xtin period t  
RNt Net rate of return on the portfolio xtin period t  
Wt Accumulated wealth at the beginning of period t  
cti Cost of asset i in period t  
c′ti Rate of transaction cost of asset i in period t 
Ct Total transaction cost of portfolio 𝑥𝑥𝑡𝑡 = (𝑥𝑥𝑡𝑡1, 𝑥𝑥𝑡𝑡2, … , 𝑥𝑥𝑡𝑡𝑡𝑡)in period t  
yti Minimum transaction lots of asset i in period t (Variable integer)  
zti Binary variable equal to 1 if asset i in period t is selected  
Li Lower limit for transaction cost of asset i in each period  
Ui Upper limit for transaction cost of asset i in each period 
M Very large number  

It is assumed that the investor's objective is to minimize the risk of the assets portfolio. The rate of return 
on the portfolio in each period must be greater than a predetermined level. Nonetheless, the multi-period 
portfolio selection problem can be formulated as a mathematical programming model as follows:  

(1) min𝑉𝑉𝑉𝑉𝑟𝑟−(𝑅𝑅𝑁𝑁𝑁𝑁) = �𝑥𝑥𝑡𝑡𝑡𝑡2𝑉𝑉𝑉𝑉𝑟𝑟−(𝑟𝑟𝑡𝑡𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

+ 2 � 𝑥𝑥𝑡𝑡𝑡𝑡𝑥𝑥𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝑣𝑣−(𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡𝑡𝑡)
𝑛𝑛

𝑖𝑖<𝑗𝑗=1

 

(2) 𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡(1 + 𝑅𝑅𝑁𝑁𝑁𝑁),         𝑡𝑡 = 1,2 …𝑇𝑇 − 1 

(3) 𝑅𝑅𝑁𝑁𝑁𝑁 = 𝐸𝐸 ��𝑥𝑥𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡

𝑛𝑛

𝑖𝑖=1

� −�𝑐𝑐′𝑡𝑡𝑡𝑡�𝑥𝑥𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑡𝑡−1,𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

,         𝑡𝑡 = 1,2 …𝑇𝑇 

(4) 𝑅𝑅𝑁𝑁𝑁𝑁 ≥ 𝑟𝑟(𝑡𝑡),         𝑡𝑡 = 1,2 …𝑇𝑇 

(5) 𝑥𝑥𝑡𝑡𝑡𝑡 =
𝑦𝑦𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡

∑ 𝑦𝑦𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛
𝑖𝑖=1

,         𝑡𝑡 = 1,2 …𝑇𝑇 

(6) �𝑦𝑦𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡

𝑛𝑛

𝑖𝑖=1

≤ 𝑊𝑊(𝑡𝑡),         𝑡𝑡 = 1,2 …𝑇𝑇 

(7) 𝐿𝐿𝑖𝑖 − 𝑀𝑀(1 − 𝑧𝑧𝑡𝑡𝑡𝑡) ≤ 𝑦𝑦𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡 ≤ 𝑈𝑈𝑖𝑖 + 𝑀𝑀(1 − 𝑧𝑧𝑡𝑡𝑡𝑡),         𝑡𝑡 = 1,2 …𝑇𝑇; 𝑖𝑖 = 1,2 …𝑛𝑛 

(8) �𝑧𝑧𝑡𝑡𝑡𝑡

𝑛𝑛

𝑖𝑖=1

≤ 𝑘𝑘,         𝑡𝑡 = 1,2 …𝑇𝑇 

(9) 
𝑥𝑥𝑡𝑡𝑡𝑡
𝑀𝑀

≤ 𝑧𝑧𝑡𝑡𝑡𝑡 ≤ 𝑥𝑥𝑡𝑡𝑡𝑡 ,         𝑡𝑡 = 1,2 …𝑇𝑇; 𝑖𝑖 = 1,2 …𝑛𝑛 

(10) 𝑥𝑥𝑡𝑡𝑡𝑡 ≥ 0,         𝑖𝑖 = 1,2 …𝑛𝑛;  𝑡𝑡 = 1,2 …𝑇𝑇 

(11) 𝑦𝑦𝑡𝑡𝑡𝑡 ≥ 0, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼        𝑖𝑖 = 1,2 …𝑛𝑛;  𝑡𝑡 = 1,2 …𝑇𝑇 

(12) 𝑧𝑧𝑡𝑡𝑡𝑡 ∈ {0,1},        𝑖𝑖 = 1,2 …𝑛𝑛;  𝑡𝑡 = 1,2 …𝑇𝑇 
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In accordance with the theory of mean semi-variance criteria, the investor seeks to determine the best 
strategy 𝑥𝑥𝑡𝑡 = (𝑥𝑥𝑡𝑡1, 𝑥𝑥𝑡𝑡2, … , 𝑥𝑥𝑡𝑡𝑡𝑡)to minimize the semi-variance or Eq. (1); Eq. (2) is the accumulated 
wealth at the beginning of period t or the amount of capital available in period t; Eq. (3) indicates the net 
rate of return on the portfolio𝑥𝑥𝑡𝑡 = (𝑥𝑥𝑡𝑡1, 𝑥𝑥𝑡𝑡2, … , 𝑥𝑥𝑡𝑡𝑡𝑡) in the period t that includes two phrases, the former 
of which is that the mean value of the rate of return and the latter is the transaction cost of portfolio 𝑥𝑥𝑡𝑡in 
period t. It is assumed that transaction cost is a V-shaped function of the difference between portfolio of 
period t, 𝑥𝑥𝑡𝑡 = (𝑥𝑥𝑡𝑡1, 𝑥𝑥𝑡𝑡2, … , 𝑥𝑥𝑡𝑡𝑡𝑡) and t-1,𝑥𝑥𝑡𝑡−1 = (𝑥𝑥𝑡𝑡−1,1, 𝑥𝑥𝑡𝑡−1,2, … , 𝑥𝑥𝑡𝑡−1,𝑛𝑛) (Zhang et al., 2012). Eq. (4) 
ensures that in each period, the portfolio expected return is greater than a minimum certain amount; the 
weight of each asset in each period is equal to the ratio of transaction cost of that asset to the total 
transaction cost indicated by Eq. (5); Eq. (6) ensures that in each programming period, the cost of the 
selected portfolio does not exceed that the available budget in that period; using Eq. (7), the transaction 
cost of each asset is placed between an upper and a lower limit; Eq. (8) ensures that exactly k assets in 
the portfolio are selected; Eq. (9) states the relationship between variables 𝑥𝑥𝑡𝑡𝑡𝑡and𝑧𝑧𝑡𝑡𝑡𝑡; finally Eq. (10), Eq. 
(11) and Eq. (12) describe the types of variables.  

3.1 Premises of Fuzzy Relations  

Based on Zhang, et al. (2012) relations of trapezoidal fuzzy numbers like𝐴𝐴 = (𝑎𝑎, 𝑏𝑏,𝛼𝛼,𝛽𝛽)in which the 
variation interval is [𝑎𝑎, 𝑏𝑏], the left width is 𝛼𝛼 > 0and the right width is 𝛽𝛽 > 0, are presented below. If 
the membership function of the fuzzy number is as follows:  

(13) 

µ𝐴𝐴(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧1 − 𝑎𝑎−𝑥𝑥

𝛼𝛼
    𝑎𝑎 − 𝛼𝛼 ≤ 𝑥𝑥 ≤ 𝑎𝑎

1               𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
1 − 𝑥𝑥−𝑏𝑏

𝛽𝛽
   𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑏𝑏 + 𝛽𝛽

0    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

Then, set 𝛾𝛾- of fuzzy number A is defined as follows:  

(14) [𝐴𝐴]𝛾𝛾 = [𝑎𝑎 − (1 − 𝛾𝛾)𝛼𝛼, 𝑏𝑏 + (1 − 𝛾𝛾)𝛽𝛽],∀𝛾𝛾𝛾𝛾[0,1] . 

The expected value of mean and variance A is calculated as follows respectively:  

(15) 𝐸𝐸(𝐴𝐴) =
𝑎𝑎 + 𝑏𝑏

2
+
𝛽𝛽 − 𝛼𝛼

6
 , 

(16) 𝑉𝑉𝑉𝑉𝑉𝑉(𝐴𝐴) = �
𝑏𝑏 − 𝑎𝑎

2
+
𝛼𝛼 + 𝛽𝛽

6
�
2

+
(𝛽𝛽 + 𝛼𝛼)2

72
+

(𝛽𝛽 − 𝛼𝛼)2

72
 . 

Also, the upper and lower limits of the semi-variance of fuzzy number Aare calculated as follows 
respectively:  

(17) 𝑉𝑉𝑉𝑉𝑟𝑟+(𝐴𝐴) = �
𝑏𝑏 − 𝑎𝑎

2
+
𝛼𝛼 + 𝛽𝛽

6
�
2

+
𝛽𝛽2

18
 , 

(18) 𝑉𝑉𝑉𝑉𝑟𝑟−(𝐴𝐴) = �
𝑏𝑏 − 𝑎𝑎

2
+
𝛼𝛼 + 𝛽𝛽

6
�
2

+
𝛼𝛼2

18
 . 

The upper and lower limits of semi-covariance of two fuzzy numbers of 𝐴𝐴1 = (𝑎𝑎1, 𝑏𝑏1,𝛼𝛼1,𝛽𝛽1), and 𝐴𝐴2 =
(𝑎𝑎2, 𝑏𝑏2,𝛼𝛼2,𝛽𝛽2), are respectively calculated as follows:  
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(19) 
𝐶𝐶𝐶𝐶𝑣𝑣+(𝐴𝐴1,𝐴𝐴2) =

(𝛽𝛽1 + 𝛼𝛼1)(𝛽𝛽2 + 𝛼𝛼2)
36

+
(𝑏𝑏1 − 𝑎𝑎1)(𝛽𝛽2 + 𝛼𝛼2) + (𝑏𝑏2 − 𝑎𝑎2)(𝛽𝛽1 + 𝛼𝛼1)

12
+

(𝑏𝑏1 − 𝑎𝑎1)(𝑏𝑏2 − 𝑎𝑎2)
4

+
𝛽𝛽1𝛽𝛽2
18

 , 

(20) 
𝐶𝐶𝐶𝐶𝑣𝑣−(𝐴𝐴1,𝐴𝐴2) =

(𝛽𝛽1 + 𝛼𝛼1)(𝛽𝛽2 + 𝛼𝛼2)
36

+
(𝑏𝑏1 − 𝑎𝑎1)(𝛽𝛽2 + 𝛼𝛼2) + (𝑏𝑏2 − 𝑎𝑎2)(𝛽𝛽1 + 𝛼𝛼1)

12
+

(𝑏𝑏1 − 𝑎𝑎1)(𝑏𝑏2 − 𝑎𝑎2)
4

+
𝛼𝛼1𝛼𝛼2

18
 . 

4. The Problem-Solving Approach  

Genetic algorithm (GA) is inspired by Darwin's theory of evolution as well as genetics based on the 
survival of the superiors and or natural selection. A common application of GA is presented as an 
optimizer function. In GAs, the genetic evolution of living organisms is simulated. In the following, the 
genetic algorithm for the modeling problem is designed. 

4.1 Coding solutions  

According to the model of the problem, each solution to the model and each chromosome in GA can be 
represented by matrix X and matrix Y respectively.  

𝑋𝑋 = �

𝑥𝑥11𝑥𝑥12  …  𝑥𝑥1𝑛𝑛
𝑥𝑥21𝑥𝑥22  …  𝑥𝑥2𝑛𝑛
⋮      ⋮     ⋱     ⋮
𝑥𝑥𝑇𝑇1𝑥𝑥𝑇𝑇2  …  𝑥𝑥𝑇𝑇𝑇𝑇

� ,   𝑌𝑌 = �

𝑦𝑦11𝑦𝑦12  …  𝑦𝑦1𝑛𝑛
𝑦𝑦21𝑦𝑦22  …  𝑦𝑦2𝑛𝑛
⋮      ⋮     ⋱     ⋮
𝑦𝑦𝑇𝑇1𝑦𝑦𝑇𝑇2  …  𝑦𝑦𝑇𝑇𝑇𝑇

� . 

To convert each chromosome to a solution, the following is taken:  

𝑥𝑥𝑡𝑡𝑡𝑡 =
𝑦𝑦𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡

∑ 𝑦𝑦𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛
𝑖𝑖=1

        ∀𝑡𝑡, 𝑖𝑖 

This coding method ensures that ∑ 𝑥𝑥𝑡𝑡𝑡𝑡𝑛𝑛
𝑖𝑖=1 = 1. Thus one of the problem constraints is automatically 

during the problem-solving process.  

4.2 Initial solution production 

The initial solution is provided as follows. Matrix elements (genes) or are randomly initialized; due to 
the constraints of Eq. (7), assuming an asset is selected 𝑧𝑧𝑡𝑡𝑡𝑡 = 1, then:  

𝑙𝑙𝑖𝑖
𝑐𝑐𝑡𝑡𝑡𝑡

≤ 𝑦𝑦𝑡𝑡𝑡𝑡 ≤
𝑈𝑈𝑖𝑖
𝑐𝑐𝑡𝑡𝑡𝑡

 . (21) 

Therefore, first matrix Y is initialized with respect to Eq. (21) and its being integer. After checking the 
constraints of the maximum number of assets in each period (Eq. (8)), using the relation between X and 
Y expressed in the previous section, matrix Y is converted to matrix X. If the provided solution does not 
establish the problem constraints, it is rejected and another solution is provided.  

4.3 Constraint-Handling Method 

When working with meta-heuristic algorithms, at every stage of the solution production, impossible 
solutions that occur due to a violation of the problem constraints may be encountered. In the literature 
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there are several methods to handle the constraints, some of which include: penalty function, repair 
algorithm, rejection strategy etc.  

In the present study, in the initial stage of solution production, when faced with impossible solutions, the 
rejection strategy is used to produce new solutions in order to produce possible solutions as much as pop 
at the beginning of the algorithm. However, in the algorithm iterations after the intersection and mutation 
operators were applied, impossible solutions may occur, in which case the penalty function is used.  

4.4 Fitness Function  

There are different methods to define the fitness function (see Goldberg, 1989). In this algorithm, an 
exponential fitness function which is defined for chromosome j as follows is used: 

𝐹𝐹𝑗𝑗 = 𝑒𝑒𝑓𝑓𝑗𝑗 ,      𝑗𝑗 = 1, 2, … , 𝑝𝑝𝑝𝑝𝑝𝑝 

where𝑓𝑓𝑗𝑗 is the value of the objective function of the j-th chromosome.  

4.5 Selection Operator  

Using the selection operator, a number of chromosomes in a population of chromosomes are selected for 
breeding. In this algorithm the roulette wheel method is used where the probability of selecting any 
solution is tailored to its fitness. According to the fitness function defined in the previous section, the 
selection probability of chromosome j is as follows: 

𝑝𝑝𝑗𝑗 =
1/𝐹𝐹𝑗𝑗

∑ 1/𝐹𝐹𝑗𝑗𝑛𝑛
𝑗𝑗=1

 . (22) 

4.6 Intersection Operator  

In this algorithm, a type of arithmetic intersection is used, such that a random number is generated as 
θ𝜖𝜖(0,1). If θ < Pc(Pc is the probability of intersection), the intersection operator runs; otherwise, it does 
not run. Since this process is iterated as much as pop, θ ∗ 𝑝𝑝𝑝𝑝𝑝𝑝 times the intersection operator is performed 
on average. However, when the intersection operator should be performed, bearing in mind that Y1 and 
Y2are the parental chromosomes, two new offspring are produced as follows.  

Y1′ = 𝜏𝜏𝑌𝑌1 + (1 − 𝜏𝜏)𝑌𝑌2 , (23) 

Y2′ = 𝜏𝜏𝑌𝑌2 + (1 − 𝜏𝜏)𝑌𝑌1 , (24) 

where 𝜏𝜏 is a random number in the interval (0,1). In other words, at this type of intersection, the new 
offspring’s genes are a linear combination of parental genes.  

4.6 Mutation Operator 

This operator selects of a gene from a chromosome randomly and then alters the content of that gene. 
Here 𝑃𝑃𝑚𝑚 is defined as the probability of mutation. A chromosome is selected randomly with 
probability𝑃𝑃𝑚𝑚, the mutation operator is applied on it. If the mutation operator is to be applied, on the 
genes of the chromosome is selected, then the value of this gene is randomly initialized between zero and 
one.  
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4.7 Termination Condition Algorithm 

The termination condition of the algorithm is defined based on the number of iteration of the algorithm. 
For example, the algorithm runs after being iterated 200 times.  

5. Setting the Parameters  

The Taguchi method is used to set the parameters of the GA. To present his experiments, Taguchi, 
introduced specific groups of orthogonal arrays. In this method, the setting of the parameters based on 
the variance analysis is known as the concept of signal-to-noise. In this method the signal-to-noise ratio 
or S/N is calculated as follows:  

n
2
i

i 1

1S / N  10 Log( y )
n =

= − × ∑ , (25) 

where y is the observed fitness value and n is the number of observations.  

The GA parameters include: population size, intersection rate and mutation rate. Each of the parameters 
of the algorithm is studied at three levels. The levels of the parameters are presented in Table 1. 

Table 1  
Levels Defined For GA Parameters  
Parameter  Level 1 Level 2 Level 3 
Population size  50 100 150 
intersection Rate 0.6 0.7 0.8 
Mutation probability 0.1 0.2 0.3 

Since there are 3 levels, the orthogonal array L18 shown in Table 2, is used provided that the additional 
columns are removed. Now each time the experiment is conducted 4 times in the levels specified in this 
array.  

Table 2 
Orthogonal Array 
  

Parameters 
A B C D E F G H 

 
 
 
 
 
 
 
 
 
 
Experiments 

1  1 1 1 1 1 1 1 1 
2  1 1 2 2 2 2 2 2 
3  1 1 3 3 3 3 3 3 
4  1 2 1 1 2 2 3 3 
5  1 2 2 2 3 3 1 1 
6  1 2 3 3 1 1 2 2 
7  1 3 1 2 1 3 2 3 
8  1 3 2 3 2 1 3 1 
9  1 3 3 1 3 2 1 2 
10  2 1 1 3 3 2 2 1 
11  2 1 2 1 1 3 3 2 
12  2 1 3 2 2 1 1 3 
13  2 2 1 2 3 1 3 2 
14  2 2 2 3 1 2 1 3 
15  2 2 3 1 2 3 2 1 
16  2 3 1 3 2 3 1 2 
17  2 3 2 1 3 1 2 3 
18  2 3 3 2 1 2 3 1 
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The results of ANOVA are presented in Table 3. As we can observe, the most important factor in 
determining the performance of this algorithm is population size with a P-value of 0.02 at 5% significance 
level. Therefore, the homogeneity of the levels of this parameter is rejected. The levels defined for other 
parameters are not significantly different.  

Table 3 
ANOVA of the Algorithm Signal-To-Noise  
Source  df Sum of squares  Mean of squares  F sig 
Population size  2  0.01845  0.009225  5.172018  0. 0261 
intersection Rate  2  0.00337  0.001685  0.944699  0.418196  
Mutation probability 2  0.006201  0.003101  1.738303  0.220797  
Error  11  0.01962  0.001784    
Total  17  0.047641     

In Table 4, the signal-to-noise values are calculated for each of the levels as well. Using these values, 
optimum levels could be identified.  A level is selected for Population size to maximize its value with 
respect to other parameters. The levels of other parameters are not significantly different. Therefore, one 
of these levels could be selected desirably. Here again the levels with highest signal-to-noise ratio are 
selected. Therefore, the optimum levels are as follows: population size: 150; intersection rate: 0.7; and 
mutation probability: 0.3.  

Table 4  
Mean Signal-To-Noise values for the levels of Genetic Parameters  
Parameter  Level 1  Level 2  Level 3  
Population size  -0.82944  -0.82833  -0.8271  
intersection Rate  -0.82863  -0.82767  -0.82858  
Mutation probability -0.82899  -0.82806  -0.82783  

6. Computational Results 

In this section, an example is provided and in the following the results of the sensitivity analysis are 
presented.  

 6.1 Example  

Consider a financial market with 3 risky assets where their rates of return are considered as trapezoidal 
fuzzy numbers. An investor with an initial capital W1 = 10000 joins the market. The investor plans to 
decide in connection with the two-period portfolio, in which each investment period is a year. The 
necessary data have been extracted from Zhang et al. (2012). The trapezoidal fuzzy numbers of the rate 
of return on assets in each of the periods are shown in Table 5.  

Table 5  
The Rate of Return on Assets as Trapezoidal Fuzzy Numbers  
 Period 1 Period 2 
Asset 1  (0.0361, 0.1634,0.5521,1.7053) (0.0000, 0.0819,0.2563,0.4565) 
Asset 2  (0.0346, 0.1118,0.2800,0.7781) (0.0048,0.1099,0.2968,0.4748) 
Asset 3  (0.0241, 0.0838,0.2057,0.3573) (0.0045,0.0845,0.2613,0.4325) 

It is also assumed that the transaction cost of each share is equal to 0.003, considered for each 3 shares 
in the same period. The minimum expected rate of return in Periods 1 and 2 is assumed, respectively, 
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0.17 and 0.08. MATLAB is used to solve the developed algorithm problem. Also, the minimum 
transaction lot for each of the shares is set as 500. The problem is resolved in the following modes:  

Mode 1.Regardless of transaction cost of stocks and minimum transaction lots, 

Mode 2.Regardless of transaction cost of stocks and with regard to minimum transaction lots, 

Mode 3. With regard to transaction cost of stocks and regardless of minimum transaction lots, 

Mode 4. With regard to transaction cost of stocks and minimum transaction lots. 

The comparative results of the model solution are listed below. All solutions were possible and the 
solution time is about 30 seconds. In all cases:  

   RN: [0.1700 0.0800] 

   W: [1.1700e+04 1.2637e+04] 

The values of the fitness as well as the objective functions for different modes are provided in Table 6.  

Table 6 
Fitness and Objective Functions Values in the Base Example in Different Modes  
 Fitness function objective function 
Mode 1  1.1001 .0954 
Mode 2  1.1032 .0983 
Mode 3  1.1050 .0998 
Mode 4  1.1079 .1025 

From the results of Table 6 it follows that, with regard to each of the parameters of transaction cost of 
stocks and minimum transaction lots, the objective function problem gets worse. In other words, the 
semi-variance value enlarges. Note that although the objective function gets worse, the value of 
accumulated wealth and the rate of return in the periods remains constant. Note that return values are 
exactly equal to the minimum expected rate of return. Table 7 presents the values of variables y and the 
optimum portfolio.  

Table 7 
Solution to the problem in the base example in different modes  

 Variable y (*1015 ) Optimum Portfolio 
Mode 1 [0.45 3.06 0.15 1.34 2.66 1.58] [0.13 0.83 0.04 0.25 0.47 0.28] 
Mode 2 [0.97 2.98 0.85 2.25 2.46 0.63] [0.20 0.62 0.18 0.42 0.46 0.12] 
Mode 3 [0.72 3.08 0.36 1.56 2.62 0.56] [0.17 0.74 0.09 0.33 0.55 0.12] 
Mode 4 [1.86 3.32 1.76 1.80 3.20 1.73] [12:27 12:48 12:25 0.27 0.47 0.26] 

6.2 Sensitivity analysis of the minimum rate of return  

In this section, the results of the sensitivity analysis on the minimum rate of returns of the periods are 
presented. Note that here only the results of mode4 are considered where transactions cost as well as 
minimum transaction lots are included. The results of the sensitivity analysis are shown in Table 8. The 
first column of this table represents the number of the problems; the second column represents the 
parameters of the problem that vary in different problems. The third to fifth columns represent the 
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optimum parameters of each problem. Note that in this table, dash represents the impossibility of the 
solution.  

Table 8 
Sensitivity Analysis Parameters and Results  

 The expected rate (r1 , r2) RN: [R 1 R 2 ] W: [W 1 W 2 ] OBJ (10 -4 ) 
1 .05.02 [0.1496 0.0752] [11496 12361] 855 
2 .08.02 [0.1496 0.0752] [11496 12361] 855 
3 .11.02 [0.1496 0.0752] [11496 12361] 855 
4 .14.02 [0.1496 0.0752] [11496 12361] 855 
5 .17.02 [0.1700 0.0748] [11700 12575] 1002 
6 .20.02 [0.2000 0.0755] [12000 12906] 1299 
7 .23.02 - - - 
8 .05.04 [0.1496 0.0752] [11496 12361] 855 
9 .08.04 [0.1496 0.0752] [11496 12361] 855 

10 .11.04 [0.1496 0.0752] [11496 12361] 855 
11 .14.04 [0.1496 0.0752] [11496 12361] 855 
12 .17.04 [0.1700 0.0748] [11700 12575] 1003 
13 .20.04 [0.2000 0.0755] [12000 12906] 1298 
14 .23.04 - - - 
15 .05.06 [0.1496 0.0752] [11496 12361] 855 
16 .08.06 [0.1496 0.0752] [11496 12361] 855 
17 .11.06 [0.1496 0.0752] [11496 12361] 855 
18 .14.06 [0.1496 0.0752] [11496 12361] 855 
19 .17.06 [0.1700 0.0749] [11700 12575] 1004 
20 .20.06 [0.2000 0.0754] [12000 12905] 1299 
21 .23.06 - - - 
22 .05.08 [0.1619 0.0800] [11618 12547] 965 
23 .08.08 [0.1618 0.0800] [11618 12547] 963 
24 .11.08 [0.1618 0.0800] [11618 12547] 964 
25 .14.08 [0.1620 0.0800] [11620 12549] 964 
26 .17.08 [0.1700 0.0800] [11700 12636] 1026 
27 .20.08 - - - 
28 .23.08 - - - 

7. Conclusion  

The present study has examined a multi-period portfolio selection problem which was based on a mean 
semi-variance model and had to cope with transaction costs and transaction lots. To approximate the 
problem to the dominant conditions of the market, and given the nature of the parameters which were 
often under vagueness and uncertainty, the problem has been studied in fuzzy environment. The 
parameters of the rate of returns on assets have been considered as trapezoidal fuzzy numbers. With 
multi-period portfolio as a newly-emerged issue, the need for certain factors was felt to make the resulted 
model more realistic. Among these factors, transaction costs as well as transaction lots were considered 
important factors on optimal portfolio selection. The problem has been solved using genetic algorithm 
under the assumption of both states of presence and absence of each of the constraints including 
transaction costs and transaction lots. The results of the model were presented with variations of 
minimum expected rate of programming periods. 

8. Future Studies 

To extend the findings, other meta-heuristic algorithms such as simulated annealing, particle swarm 
optimization, or harmony search could be designed for the problem and a comparison between the 
obtained results and the results of GA for problems with different sizes could be proposed. In addition, 
other measures may enter the model and as a result a multi-objective optimization model could be 
investigated and solved. For example, measures such as rate of return or skewed could be maximized and 
the risk could be minimized. 
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