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 Nowadays, the selection and management of the optimal portfolio are the most primary fields of 
financial decision-making. Thereby, selecting a portfolio capable of providing the highest effi-
ciency and, at the same time, the lowest investment risk has been turned into one of the most critical 
concerns among financial activists. However, in this selection, the two factors above are not the 
only determining ones. Various factors are affecting financial markets' behavior under different 
possible scenarios, which should be identified. In this paper, we examine the high sensitivity of the 
Iranian capital market to the exchange rate fluctuations in the different scenarios due to the lack of 
a unified view of the value of that rate among experts as one of the mentioned factors and obtain 
its value using Dempster–Shafer theory (DST). Then, a portfolio selection model that prefers stocks 
with higher ranks is proposed. Representative results of the real-life case study reveal that the sub-
mitted approach is productive and practically applicable. 
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1. Introduction 
 
Nowadays, numerous factors (directly or indirectly) affect the capital market, which makes assets' value estimation uncertain 
or, in some cases, impossible. One of the crucial problems Iran's economy is suffering from in the last years is the US sanctions 
and their effects on the currency fluctuations and imbalance. Increasing flexibility and involving such a condition in analyses 
and financial decision-making has become an inevitable necessity in Iran's economy. In addition, according to the historical 
experience between 2012 and 2013, currency exchange rate fluctuations, particularly in US dollars in the free market, will 
affect the revenue gained in export-oriented and import-orient business groups. One of the most important subjects in financial 
issues is portfolio optimization. Regarding the most important and influential investigations in this area, we can point out 
Markowitz (1952) and Sharpe's models (Sharpe, 1963). Markowitz provided the fundamental portfolio model, a foundation 
for modern portfolio theory (MPT). He proposed that besides the returns of assets, the risk criteria should be considered in 
asset selection for investment.  

One of the fundamental drawbacks of the Markowitz model is that he assumes returns and variances are accurate and can be 
calculated. However, the provided model's nature indicates its significant sensitivity to the changes made in the mentioned 
parameters. In this study, we have used DST in a new way in portfolio optimization issues to bring optimization issues closer 
to the real world. Therefore, prioritizing influential factors and acquiring behavioral scenarios in terms of practical aspects to 
calculate the behavior of those factors are fundamental problems in investigating and analyzing the changes in the stock 
market. In addition, there are situations where there is not enough historical data or the historical data are not stable in the real 
world. Available historical data should be used, but it is less critical when different scenarios are at the forefront. The stock 
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market is no exception, affected by political, social, and economic factors. In this case, utilizing the viewpoint of experts in 
decisions can be very useful.  

Plenty of researches have been done in portfolio selection, making an effort to ameliorate the efficiency of different nominal 
models of portfolio optimization under different conditions (Sharpe, 1963; Grossman & Stiglitz, 1980; Yunusoglu & Selim, 
2013; Konno & Yamazaki, 1991; Pavlou et al., 2019; Xidonas et al., 2011). Portfolio selection is authenticated to be a multi-
dimensional problem. A multi-criteria decision-making (MCDM) approach has been adopted to determine the constitutional 
multi-criteria nature of this problem by many (Thakur et al., 2018; Abdollahzadeh, 2002;  Xidonas et al., 2011; Siskosa et al., 
1999). Although all these researches made an effort to create efficiency in portfolio construction models, it is utterly difficult 
to engender an effective portfolio, especially in an uncertain dynamic atmosphere. In addition, when an incident or an unex-
pected event changes an investor's environmental conditions, the current strategy in the investment portfolio might alter. Such 
condition change requires a reasonable and regulated evaluation of the portfolio for striking a balance (Markowitz, 1952). 
Recent developments in the discipline of portfolio theory imply that the knowledge of future returns and variances, provided 
by classic point-estimation techniques, is not thoroughly trustful. It should be considered that problem data could be defined 
by a set of scenarios as risk and return are specified by randomness. Bradley and Crane (1972) first recognized the applicability 
of these techniques for financial purposes and, by Mulvey and Vladimirou (1992) for asset allocation. Mulvey et al. (1995) 
was the first to work on models of mathematical optimization where data values come in sets of scenarios while explaining 
the concept of robust solutions and introducing the robust model formulation. Guastaroba et al. (2009) surveyed different 
techniques and also compared the techniques by providing in-sample and out-of-sample analysis of the portfolios obtained by 
using these techniques to generate the rates of return. Barro and Canestrelli (2005) studied a dynamic portfolio management 
problem over a finite horizon with transaction costs and a risk objective function. They presumed that the uncertainty faced 
by the investor could be estimated using discrete probability distributions via a scenario approach. As a consequence, a sce-
nario decomposition approach was used to solve the problem. Liesiö and Salo (2012) used a scenario-based approach to model 
uncertainty involved in the selection of a portfolio. The two key features of their approach include the use of a set inclusion 
technique to model incomplete information associated with planning scenarios and an integer programming technique to 
determine non-dominance relations between portfolios. Şakar and Köksalan (2013)  evaluated the return through a regression 
equation for the single-index model and generated scenarios of index returns from a random walk model. Fulton and Bastian 
(2019) utilized Monte Carlo simulation to generate scenarios based on the assessment of sample means and covariance ma-
trices from a multivariate normal distribution, omitted the outlier data based on percentiles, and resampled the remaining data 
to obtain three types of scenarios: Positive, negative or neutral outlook. Thakur et al. (2018) used the Fuzzy Delphi method in 
the first stage for critical factors identification. In this regard, they hierarchically organized the stocks via critical factors and 
historical data using Dempster–Shafer theory. Ultimately, the mentioned researchers used Ant Colony Simulation for portfolio 
optimization. The performance of obtained results was satisfactory, compared to the recent assets' efficiency. However, jus-
tified information about the scenario probabilities or the decision-makers (DMs) risk preferences may be effortful to evoke: 
for instance, in group settings, the DMs may have differing views about the scenario probabilities, and they may also illustrate 
different risk attitudes. DST is famous for its capability of dealing with uncertain and incomplete information, but its use 
remained unnoticed in-stock selection and portfolio recommendation. In this research, DST is applied for the first time to 
estimate the US dollar rate and its effect on the selection of stocks based on the sharp multi-factor model in the Tehran Stock 
Exchange. 

 

Fig. 1. Conceptual model of this research 
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After a general review of the study subject, it is worth mentioning that we will introduce DST to receive experts' viewpoints 
under ambiguous conditions. In section three, we will further introduce the used model in this study for portfolio optimization. 
In section four, the Symbiotic Organisms Search (SOS) algorithm will be investigated to solve the problem numerically. 
Section five will investigate how to select a portfolio in the form of a numerical instance and by taking advantage of actual 
datasets extracted from Tehran Stock Exchange. In section six, we will provide the obtained results and suggestions for further 
studies. The conceptual flow chart is depicted in Fig 1.  
 
2. Dempster–Shafer theory 
 

Dempster (1967) proposed a multivalued mapping from one space to another space. It has been used for statistical inference 
when we have multiple sample information, and we need to identify a single hypothesis. The evidence theory is one of the 
important instruments in defining uncertainty, providing the opportunity for a decision-maker (DM) to understand new prob-
abilities. This theory copes with the discussion regarding existing beliefs of a situation or a system of situations. Individuals' 
beliefs are not the same when facing a single type of incidence, though they can be examined and combined by a particular 
method. Indeed, Dempster–Shafer theory has been formed based on a number of beliefs caused by observation and perception 
of evidence. The DST is successfully applied  in various kinds of problems under uncertainty. However, the DST has not 
played a pivotal role in the portfolio selection problem. We will shortly explain DST for multi-criteria decision-making anal-
ysis under uncertainty conditions (Mohammadi & Makui, 2017). Presume 𝑌 = ሼ𝑦ଵ, 𝑦ଶ, … ,𝑦௠ሽ  is a set of options, 𝐸 =ሼ𝑒ଵ, 𝑒ଶ, … , 𝑒௡ሽ a set of criteria, 𝑊 = ሼ𝑤ଵ,𝑤ଶ, … ,𝑤௡ሽ a set of weights, such that   0 ≤ 𝑤௝ ≤ 1,    1 ≤ 𝑗 ≤ 𝑛, ∑ 𝑤௝௡௝ୀଵ = 1. Pre-
sume that 𝑝 is the assessment rank of 𝐻ଵ,𝐻ଶ, … ,𝐻௣ for options’ multi-criteria assessment. Presume that 𝛽௤,௝(𝑦௜) shows a be-
lief degree of the fact that 𝑒௝ gauge has been evaluated for 𝑦௜ with 𝐻௤ degree. Where 0 ≤ 𝛽௤,௝(𝑦௜) ≤ 1 and ∑ 𝛽௤,௝(𝑦௜)௣௤ୀଵ ≤1.  Presume that 𝑆൫𝑒௝(𝑦௜)൯ shows criterion evaluation value 𝑒௝ for 𝑦௜ option, defined as follows. 𝑆(e(𝑦௜)) = ൛𝐻௤ ,𝛽௤,௝(𝑦௜)ൟ (1) 

where 𝐻௤ is an assessment degree, such that 1 ≤ 𝑞 ≤ 𝑝, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛.  

Firstly, we commute belief degree 𝛽௤,௝(𝑦௜) about appraisal degree 𝐻௤  concerning 𝑒௝  gauge of 𝑦௜  option to basic probable 
mass 𝑚௤,௝(𝑦௜). Such that:  𝑚௤,௝(𝑦௜) = 𝑤௝𝛽௤,௝(𝑦௜) (2) 

where, 1 ≤ 𝑞 ≤ 𝑝, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛.  

Now, persume that 𝑚ு,௝(𝑦௜) demonstrates the probable residual mass of 𝑒௝  criteria concerning the appraisal of 𝑦௜  option, 
which is construed as follows: 𝑚ு,௝(𝑦௜) = 𝑚ഥு,௝(𝑦௜) + 𝑚෥ு,௝(𝑦௜) 𝑚ഥு,௝(𝑦௜) = 1 −𝑤௝ 
𝑚෥ு,௝(𝑦௜) = 𝑤௝ ቌ1 −෍𝛽௤,௝(𝑦௜)௣

௤ୀଵ ቍ 

where, 1 ≤ 𝑞 ≤ 𝑝,1 ≤ 𝑖 ≤ 𝑚, and 1 ≤ 𝑗 ≤ 𝑛. Probable residual mass that is not allocated to each appraisal degree divided 
into two sections: The part pertinent to relative weights of criteria and the section pertaining to the violation in the assessment 
process. 𝑚ഥு,௝(𝑦௜) is the first part of probable hesitancy mass, which is not yet allocated to appraisal degrees. Based on the fact that 𝑒௝ 
gauge contributes to the appraisal process according to its weight, that is 𝑤௝, 𝑚ഥு,௝(𝑦௜) is a descending function of 𝑤௝. 𝑚ഥு,௝(𝑦௜) 
will be equal to 1, if the weight of 𝑎௝ is 𝑤௝ = 0. 𝑚ഥு,௝(𝑦௜) will be zero if 𝑎௝ prevails the appraisal or 𝑤௝ = 1. In other words, 𝑚ഥு,௝(𝑦௜) illustrates the degree to which other criteria could make a contribution to the appraisal process. 𝑚෥ு,௝(𝑦௜) is the second part of the probable hesitancy mass, which is not yet allocated to an appraisal degree, and because of 
violation in the appraisal process of 𝑆൫𝑒௝(𝑦௜)൯ will ensue. 𝑚෥ு,௝(𝑦௜)  will be zero if 𝑆൫𝑒௝(𝑦௜)൯ is impeccable or ∑ 𝛽௤,௝(𝑦௜)௣௤ୀଵ =1, otherwise 𝑚෥ு,௝(𝑦௜) will be a positive value.   𝑚ഥு,௝(𝑦௜) will be corresponding to 𝑤௝, whose positive values will lead to the 
next constraint’s violation.  

 𝐺ூ(௟) as a subset of 𝑙 number of first criteria will be defined as follows: 



 

 210 𝐺ூ(௟) = ሼ𝑒ଵ, 𝑒ଶ, … , 𝑒௟ሽ 
Assume that 𝑚௤,ூ(௟)(𝑦௜) is a probable mass that illustrates the support degree of a belief that all criteria prevailing in 𝐺ூ(௟) 
subset emphasize that 𝑦௜ option with 𝐻௤ degree is evaluated. 𝑚ு,ூ(௟)(𝑦௜) illustrates the probable hesitancy mass that is not 
allocated to appraisal degrees after all criteria in 𝐺ூ(௟)  subset are evaluated. 𝑚௤,ூ(௟)(𝑦௜) and 𝑚ு,ூ(௟)(𝑦௜) can be acquire amal-
gamating basic probable mass of 𝑚௤,௝(𝑦௜) and 𝑚ு,௝(𝑦௜) for all 𝑞 = 1,2, … ,𝑝 and 𝑗 = 1,2, … , 𝑙. 
Evidence-based reasoning recursive algorithm can be summarized as follows: ൛𝐻௤ൟ:𝑚௤,ூ(௟ାଵ)(𝑦௜) = 𝐾ூ(௟ାଵ)ൣ𝑚௤,ூ(௟)(𝑦௜)𝑚௤,௟ାଵ(𝑦௜) + 𝑚ு,ூ(௟)(𝑦௜)𝑚௤,௟ାଵ(𝑦௜) + 𝑚௤,ூ(௟)(𝑦௜)𝑚ு,௟ାଵ(𝑦௜)൧, 𝑚ு,ூ(௟ାଵ)(𝑦௜) = 𝑚ഥு,ூ(௟ାଵ)(𝑦௜) + 𝑚෥ு,ூ(௟ାଵ)(𝑦௜), 
ሼ𝐻ሽ:𝑚ഥு,ூ(௟ାଵ)(𝑦௜) = 𝐾ூ(௟ାଵ)ൣ𝑚ഥு,ூ(௟)(𝑦௜)𝑚ഥு,௟ାଵ(𝑦௜)൧, ሼ𝐻ሽ:𝑚෥ு,ூ(௟ାଵ)(𝑦௜) = 𝐾ூ(௟ାଵ)ൣ𝑚෥ு,ூ(௟)(𝑦௜)𝑚෥ு,௟ାଵ(𝑦௜) + 𝑚ഥு,ூ(௟)(𝑦௜)𝑚෥ு,௟ାଵ(𝑦௜) + 𝑚෥ு,ூ(௟)(𝑦௜)𝑚ഥு,௟ାଵ(𝑦௜)൧, 
𝐾ூ(௟ାଵ) = ⎣⎢⎢

⎡1 −෍෍𝑚௨,ூ(௟)(𝑦௜)𝑚௙,௟ାଵ(𝑦௜)௣
௙ୀଵ௙ஷ௨

௣
௨ୀଵ ⎦⎥⎥

⎤ିଵ
 

𝐾ூ(௟ାଵ)   is a normalization factor through which ∑ 𝑚௤,ூ(௟ାଵ)(𝑦௜) + 𝑚ு,ூ(௟ାଵ)(𝑦௜)௣௤ୀଵ = 1 . Remember that 𝑚௤,ூ(ଵ)(𝑦௜) =𝑚௤,ଵ(𝑦௜) (𝑞 = 1,2, … , 𝑝) and 𝑚ு,ூ(ଵ)(𝑦௜) = 𝑚ு,ଵ(𝑦௜). Besides, the criteria existing in 𝐺 are numbered randomly. It means 
that the results of 𝑚௤,ூ(௟)(𝑦௜), (𝑞 = 1,2, … , 𝑝), and 𝑚ு,ூ(௟)(𝑦௜) do not depend on the sum order of criteria.Besides, the criteria 
existing in G are numbered randomly. It means that 𝑚௤,ூ(௟)(𝑦௜), (𝑞 = 1,2, … ,𝑝)and 𝑚ு,ூ(௟)(𝑦௜) results do not depend on the 
sum order of the requirements. In the DST, after that entire 𝑛 criteria are composed, the amalgamated belief degree 𝛽௤ is 
directly computed from the following equation: 

൛𝐻௤ൟ:𝛽௤(𝑦௜) = 𝑚௤,ூ(௡)(𝑦௜)1 −𝑚ഥு,ூ(௡)(𝑦௜) 

ሼ𝐻ሽ:𝛽ு(𝑦௜) = 𝑚෥ு,ூ(௡)(𝑦௜)1 −𝑚ഥு,ூ(௡)(𝑦௜) 

𝛽ு indicates the violation degree existing in the assessment process. Thus, we will have:  

෍𝛽௤(𝑦௜)௣
௤ୀଵ + 𝛽ு(𝑦௜) = 1 

Note that Bୌ = 0 if the main assessment of 𝑆൫𝑎௝(𝑥௜)൯ is complete 

3. Markowitz portfolio optimization model 
 
The essential parameters in deciding on investment are the risk level and the return of invested assets. Appointing optimum 
investment ratios for the assets is the premier objective of constructing a portfolio such that the total return is maximized 
under an acceptable risk or minimized risk for a specific level of return for a given period of investment. People invest based 
on their expected utility and disregard today's consumption in anticipation of more advantages in the future. Optimal portfolio 
selection is often fulfilled by the exchange between return and risk so that the more risk of a portfolio, the more investors' 
expected efficiency. Concerning the goal of this paper, which is considering currency fluctuation and vagueness related to 
this subject in portfolio optimization, we developed our approach based on the model proposed by Markowitz, which will be 
explicated in the following. In this case, it is presumed that short sales are not allowed, and the weights of the assets in the 
portfolios are positive. Markowitz (1952) has developed a basilar model of MPT based on an issue relevant to rational investor 
behavior. Markowitz utilizes profit fluctuation as an investment risk. MPT is a quadratic model, where the variance of each 
stock or its square root, i.e., Standard Deviation (SD) is adjusted to measure the risk. He conveyed the issue as a Quadratic 
Programming (QP) aiming to minimize portfolio risk, provided that the expected efficiency is an invariable value. The stand-
ard form of the mean-variance model is as follows: 𝑚𝑎𝑥µ௣ =  ෍µ௜𝑥௜௡

௜ୀଵ  

subject to: 
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෍෍𝑥௜𝑥௝𝜎௜௝௡
௝ୀଵ

௡
௜ୀଵ = 𝜎௣ଶ 

෍𝑥௜ = 1,௡
௜ୀଵ  

𝑥௜ ≥ 0,     (𝑖 = 1, … ,𝑛) 𝑥௝ ≥ 0.     (𝑗 = 1, … ,𝑛) 

where the sum of stock weights must be equal to 1, and also the weight of each stock in the selected portfolio must be a real 
and non-negative number. This mathematical model that is the basic model delved in this paper obtains an efficient investment 
frontier after solving the portfolio optimization problem, considering different efficiencies, and determining optimal weights. 
In this regard, it is impossible to select a portfolio higher than the efficient investment frontier. Also, selecting a portfolio 
lower than the efficient frontier of investment is not suggested because a higher efficiency can be obtained at the same risk 
level in portfolio selection. 
 𝑅 = 𝑛(∑𝑥𝑦) − (∑𝑥)(∑𝑦)ට[𝑛∑𝑥ଶ − (∑𝑥)ଶ] [𝑛∑𝑦ଶ − (∑𝑦)ଶ] (19) 
 

4. The proposed model  
 

Several assumptions regarding the system's behavior must be considered in order to analyze any real problem with a mathe-
matical modeling tool. To start with, the efficiency parameter of the model fluctuates within a symmetric range, and all in-
vestors have an identical single-period time horizon. Besides, a trade in the market is costless, and personal incomes are tax-
free such that investors do not differentiate between capital profit and dividend profit. In addition, inflation does not affect 
this problem. Moreover, no capital can solely affect the stock price according to sell and buy decisions. Finally, at a certain 
level of risk, investors prefer a higher efficiency level and seek a minimum level of risk for a certain level of efficiency. The portfolio analysis problem is as follows. Given such a set of predictions, determine the set of efficient portfolios; a portfolio is efficient if none other gives either (a) a higher expected return and the same variance of return or (b) a lower variance of return and the same expected return. We can see this analytically: suppose there are N securities; Let 𝑟௜ be the discounted return of the 𝑖௧௛ security; Let 𝑥௜ be the relative amount invested in security 𝑖. Short sales are excluded, thus 𝑥௜ ≥ 0 for all 𝑖. The 𝑥௜ are not random variables, but are fixed by the investor. Since the 𝑥௜ are percent-ages we have  ∑  𝑥௜ = 1. Let ơ௜௝ be the covariance between 𝑟௜and 𝑟௝ (thus ơ௜௜ is the variance of  𝑟௜). 
 

Indexes:  
i, j Indexes for stocks; i, j={1, 2, …, n} 𝐺௠ Indexes of specified stocks; M={1, 2, …, M} 
Parameters:  𝑟௜ Return of security 𝑅௣ Return of portfolio 
n The number of stocks 
M A large amount ơ௜ଶ Expected risk ơ௜௝ Covariance between shares i and j 𝛽௜ Measurement unit of systematic risk p The number of stocks should be selected k A unique upper bound for all stocks 

Variables:  𝑥௜ The weight value of the stock i if selected 𝑧௜ ቊ1            𝑖𝑓 𝑡ℎ𝑒  𝑖௧௛ 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑;0   𝑖𝑓 𝑡ℎ𝑒  𝑖௧௛ 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑; 
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Thereby, we have:  
 𝑀𝑎𝑥𝑅௣ = ෍𝑟௜𝑥௜௡

௜ୀଵ  (20) 

Eq. (20) is the final objective function, where 𝑟௜ is independent of 𝑥௜. Since 𝑥௜ ≥ 0  for all 𝑖 and ∑𝑥௜ = 1, 𝑅௣ is a 
weighted average of 𝑟௜, with the 𝑥௜ as non-negative weights. 
Subjected to: 
   ෍෍ơ௜௝𝑥௜𝑥௝ = ơ௜ଶ௝௜  

 
 (21) 

The set constraint (21) represents the acceptable risk in order to maximize the portfolio return. 𝐿௠ ≤ ෍ 𝑥௜ ≤ 𝑈௠௜∈ீ೘   (22) 

The set constraint (22) put lower and upper bounds on each specified stock class. 𝑍௜ ≤ 𝑀𝑥௜  (23) ෍𝑧௜ ≥ 𝑝௜  

 
 (24) 

The set constraint (23) and (24) determine the selected stocks and put a lower bound on the number of invested stocks. ෍𝑥௜ = 1௡
௜ୀଵ   (25) 

The set constraint (25) indicates that the total budget must be allocated to different assets. 𝑥௜ ≤ k  (26) 

The set constraint (26) considers a unique upper bound for all stocks. 𝑥௜ ≥ 0  (27) 
The set constraint (27) defines no security may be held in negative quantities. 
 

5. Illustrative example 
 
In this research, the gathered data belong to 20 companies authorized by Tehran Stock Exchange, authorized in the time 
interval between 2019, April to 2021, July. The following constraint is applied for the selection of stock sets: 
 

A) Their financial year ends on 20 March B) in the study period, they do not experience trading halt for more than six months 
C) their financial statements and information are complete and available D) Their monthly return is more than 10%. 

As mentioned earlier, the correlation coefficient between each stock's price and dollar has captured more interest than before, 
which plays a pivotal role in the success or failure of the investment, especially in Iran's financial markets. In a considerable 
number of conducted investigations, researchers employed the Beta coefficient to assess the place of stocks existing in the 
market. In other words, they analyzed the correlation coefficient between stock price and stock exchange index. In the present 
study, the dollar exchange rate is employed as a pivotal factor in the stock exchange and other financial markets in Iran, 
according to the importance of exchange rate and its impact on the economy and domestic markets and also inappropriate 
efficiency of stock exchange index. In this section, the value of the dollar exchange rate, an uncertain parameter, will first be 
calculated by considering Dempster-Schaefer's theory. Afterward, the results of solving the model and the optimal values of 
the stock portfolio, including 𝑥௜ and 𝑅௣, based on the Sharpe ratio and PPMC, will be presented. Accordingly, the belief 
degree 𝛽௡,௜ about the dollar exchange rate 𝐵௜ is ascertained by the 𝐷𝑀௜. The results are shown in the Table1. 

 
 
 
 
 



A. Susanto et al.  / Management Science Letters 12 (2022) 213

Table 1 
Belief degree based on evidence theory 𝐃𝐌  Weight  Scenario A Scenario  B Scenario C Scenario D  𝐁𝐇 

  0.117 0.186 0.299 0.359  0.037 
DM1  0.300  0.050 0.150 0.250 0.500  0.050 
DM2   0.300   0.000 0.100 0.450 0.400   0.050 
DM3  0.200  0.200 0.400 0.200 0.200  0.000 
DM4  0.200  0.400 0.200 0.200 0.150  0.050 

 
As mentioned above, the dollar exchange rate is predicted using Dempster-Schaefer's theory in the 285600 rial. Therefore, its 
percentage of deviation from the current amount (257000 rial) is %10. In this regard, using this information and considering 
the value of β between stock returns and dollar returns, is calculated. It should be noted that the correlation coefficient between 
changes in the dollar exchange rate and changes in the total index of the Iranian Stock Exchange, based on PPMC, is equal to 
0.340. Finally, due to the Mixed Integer Non-linear Programming (MINLP) of the obtained model, the model is solved by 
GAMS 25.0.3 on a personal computer based on 2.8 GHz at 45 seconds since the computer with the ANTIGONE solver. The 
results are represented in Table 2. 
 
Table 2 
The optimal answer based on Markowitz Model 

0.0250 0.0225 0.0200 0.0175 0.0150 0.0125 0.0100 0.0075 0.0050 0.0025  Portfolio 
variance 

0.2090 0.2070 0.1980 0.1910 0.1890 0.1860 0.1850 0.1820 0.1770 0.1710  Portfolio 
returns 

0.0480 0.0480 0.0490 0.0490 0.0490 0.0500 0.0500 0.0500 0.0500 0.0500  Stock1 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0010 0.0010  Stock2 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0430 0.0500 0.1100 0.1890  Stock3 
0.0010 0.0010 0.3470 0.5000 0.5000 0.5000 0.3480 0.0970 0.0370 0.0010  Stock4 
0.3000 0.3000 0.2990 0.0490 0.0490 0.0490 0.0490 0.0010 0.0010 0.0010  Stock5 
0.3470 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0000 0.0010 0.0010  Stock6 
0.0010 0.3470 0.0010 0.0010 0.0010 0.0010 0.0000 0.0000 0.0000 0.0000  Stock7 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  Stock8 
0.0000 0.0000 0.0000 0.0010 0.0010 0.0010 0.0010 0.2990 0.2990 0.2990  Stock9 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000  Stock10 
0.0001 0.0010 0.0010 0.0010 0.0010 0.0000 0.0000 0.5000 0.0000 0.0000  Stock11 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  Stock12 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  Stock13 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  Stock14 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  Stock15 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0010 0.0010 0.0010  Stock16 
0.0010 0.0010 0.0010 0.0980 0.3480 0.3480 0.5000 0.5000 0.5000 0.4570  Stock17 
0.0010 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  Stock18 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  Stock19 
0.3000 0.3000 0.3000 0.3000 0.0500 0.0490 0.0070 0.0000 0.0000 0.0000  Stock20 

 After solving the model with the software Gams, we formed an optimal stock portfolio. As shown in Fig  2, by increasing the value of ơ௜ଶ due to the increase in the degree of risk-taking, the return of the optimal portfolio boost.  

 
Fig. 2. Portfolio Returns Based on Different Levels of Expected risk 
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6. Conclusion  
 Uncertainty is an inherent feature in human mental judgments that should be given special attention to in decisions. The present study shows a stock portfolio optimization model considering the dollar exchange rate, which seeks to consider information deficiencies to improve performance using the logic based on Dempster-Schaefer's theory. It is also formulated in a given atmosphere, and then the effectiveness of the submitted model is assessed by the case study. 
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