

* Corresponding author.
E-mail addresses: payman.a907@gmail.com (P. Behbahaninejad)

© 2012 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.msl.2012.01.010

Management Science Letters 2 (2012) 469–476

Contents lists available at GrowingScience

Management Science Letters

homepage: www.GrowingScience.com/msl

Evaluating software architecture using fuzzy formal models

Payman Behbahaninejada, Ali Harounabadib* and Sayed Javad Mirabedinib

aDepartment of Computer Engineering, Science and Research Branch, Islamic Azad University ,khouzestan-Iran
bDepartment of Computer Engineering, Central Branch, Islamic Azad university, Tehran, Iran

A R T I C L E I N F O A B S T R A C T

Article history:
Received June 2, 2011
Received in Revised form
October, 19, 2011
Accepted 8 January 2012
Available online
11 January 2012

 Unified Modeling Language (UML) has been recognized as one of the most popular techniques
to describe static and dynamic aspects of software systems. One of the primary issues in
designing software packages is the existence of uncertainty associated with such models.
Fuzzy-UML to describe software architecture has both static and dynamic perspective,
simultaneously. The evaluation of software architecture design phase initiates always help us
find some additional requirements, which helps reduce cost of design. In this paper, we use a
fuzzy data model to describe the static aspects of software architecture and the fuzzy sequence
diagram to illustrate the dynamic aspects of software architecture. We also transform these
diagrams into Petri Nets and evaluate reliability of the architecture. The web-based hotel
reservation system for further explanation has been studied.

© 2012 Growing Science Ltd. All rights reserved.

Keywords:
Fuzzy-UML
Software architecture
Evaluation
Architecture model

1. Introduction

Unified Modeling Language (UML) is a semi-formal modeling and standard language, for easy
describing software architecture (Object Management Group, 2002). This language has developed a
powerful set of predefined modeling elements, diagrams and structure to describe the structural and
behavioral properties of software architecture and the introduction of appropriate tools to support it.
Unfortunately, this language is only capable of modeling some specific information systems, where
there is no uncertainty in the model. However, when we consider uncertainty in UML, the extended
version named Fuzzy-UML will be produced (Haroonabadi & Teshnehlab, 2008; Ma et al., 2011).
Fuzzy-UML includes both o structure and behavior sights, which would be explained later in this
paper. The next section is proposed method, and its subsections included fuzzy data model, fuzzy
sequence diagram, evaluating software architecture using fuzzy Petri Nets, reliability using fuzzy
Petri Net, case study, and the last section is conclusion and future works.

470

To evaluate software architecture, both structural and behavioral aspects must be considered
including use case, deployment and class diagram used to display structural aspect and activity,
sequence and state diagram stand for behavioral aspect.

In this paper, we study Fuzzy-UML to display uncertainty in the systems, in this paper we use fuzzy
class diagram to show the structural aspect of the software system, and to display behavioral aspect,
we use fuzzy sequence diagram. During the past few years, there have been several studies on fuzzy
UML, fuzzy logic, Petri Nets, etc. (Ma, 2005; Motameni et al., 2008; Motameni & Ghassempouri,
2011). Ma has contributed on the idea of Fuzzy-UML by discussing and developing some new ideas
with complete explanation of fuzzy programming (Ma et al., 2005-2011). Haroonabadi and
Teshnehlab (2009) used stereotypes to describe software architecture and added fuzzy features to
transform use case and sequence diagram respectively to fuzzy use case and fuzzy sequence diagram.
Behavioral modeling system based on the fuzzy sequence diagram was also explained in details. With
using these diagrams, one is able to describe the architecture of uncertain information systems and
then analyze them.

2. Fuzzy data model

The class diagrams in UML are the logical frameworks, which describe the nature of the main
structure. The classes and the relationships among classes are the integrated elements of the class
diagram. Fuzzy-UML is created by adding uncertainty as part of system integration. According to
MA et al. (2011) in the context of classes, there are three levels of fuzziness defined as follows,

-Fuzziness in the extent where the class belongs to the data model as well as fuzziness on the
content of the class in term of attributes.

-Fuzziness represents whether some instances belong to a particular class; even though the structure
of a class is crisp, it is possible that an instance of the class belongs to the class with degree of
membership.

-The third level of fuzziness is on attribute values of the instances of the class; an attribute in a class
defines a value domain, and when this domain is a fuzzy subset or a set of fuzzy subset, the fuzziness
of an attribute value appears.

The attribute or the class name in the first level must be described by the phrase WITH membership
DEGREE where, 0 membership  1. This value shows the belonging degree of the attribute to the
class or the class to the data model. The second level of fuzziness, the membership degree in an
Instance of the class, which belongs to the class should be specified. So an additional attribute in the
class is defined for representing of the instance membership degree to the class where its domain is
[0, 1]. The classes with the second level of fuzziness are specified by a rectangle where its lines are in
dash form. In the third level, a fuzzy keyword is appeared in front of the attribute. Ma et al. (2011)
presents an example of banking account using the concept of fuzzy class and Fig. 1 shows the
banking account fuzzy class. In the mentioned class, the credit attribute could have the fuzzy value
(the third level of fuzziness). In the other hand, the credit attribute is a linguistic variable, and it has a
domain like fuzzy sets (for example: little / much). The account type specifies the membership degree
of credit attribute to the class (the first level of fuzziness): “Credit WITH 0.8 membership DEGREE”

Fig. 1. A fuzzy class of banking account.

Banking Account

Account Number
Type
Balance
Opening Data
Fuzzy Credit
μ

P. Behbahaninejad et al. / Management Science Letters 2 (2012)

471

The relationships among the classes are divided into four categories and they are propounded in fuzz
terms (Larman, 1998) including fuzzy generalization, fuzzy association, fuzzy aggregation and fuzzy
dependency.

3. Fuzzy system sequence diagram

In UML sequence diagram is implemented for materializing the practical cases and if the case is
uncertain, the sequence diagram will be uncertain, too. A system sequence diagram could be created
very easily by representing input and output events. System sequence diagrams such as use cases and
system contracts describe the role of a system without explaining how it accomplishes. A simple
system sequence diagram consists of actor, system, and messages and each message itself has events
and conditions. This diagram incorporates fuzzy rules for transforming the state of an object into
another state and a fuzzy rule can be expressed as follows,

 Rule = If <condition list> Then <event list>

According to Haroonabadi and Teshnehlab (2009) uncertainty in the method has two levels of
fuzzification. First, we use a degree method second we must determine the logic. Fig. 2 shows a
sample of fuzzy concept where a message C belongs to object B with the membership function of

()B x and a message D belongs to object A with the membership function of ().A x

Fig. 2. Fuzzy message in fuzzy sequence diagram

4. Fuzzy Petri Net

According to Motameni et al. (2006) the following fuzzy Petri Net (FPN) structure can be used to
model fuzzy rules,

 (P, Ps , Pe , T , TF , TRTF , A, I , O, TT , TTF , AEF , PR , PPM , TV) , where :

i. P: is a finite set of fuzzy places. Each place has a property associated with it, in which:
 Ps  p is a finite set of input places for primitive events.
 Pe  p is a finite set of output places for actions or conclusions.

ii. T: is a finite set of fuzzy transitions. They use the values provided by input places and produce
values for output places.

iii. TF: is a finite set of transition functions, which perform activities of fuzzy inference.
iv. TRTF: T  TF is transition type function, mapping each transition T to a transition

function  TF.
v. A  (P×TT× P) is a finite set of arcs for connections between places and transitions.

Connections Between the input places and transitions (P ×T) and connections between the
transitions and output places (T × P) are provided by arcs. In that:

Message C

Message D

Object-A Object-B

μB(x)

μD(x)

472

 I: P T is an input mapping.
 O: T P is an output mapping.

vi. TT is a finite set of fuzzy token (color) types. Each token has a linguistic value (i.e., low,
medium and high), which is defined with a membership function.

vii. O: TP is token type function, mapping each fuzzy place  P to a fuzzy token type  TT.
A token in a place is characterized by the property of the place and a level to which it possesses
that property.

viii. AEF: Arc  Expression is arc expression function mapping each arc to an expression, which
carries the information (token values).

ix. PR is a finite set of propositions, corresponding to either events or conditions or
actions/conclusions.

x. PPM: P [0, 1] is a fuzzy place to proposition mapping, where| PR| = |P|.
xi. TV: P [0, 1] is truth values of tokens (µi) assigned to places. It holds the degree of

membership of a token to a particular place.

5. Proposed model

To evaluate software architecture, both structural and behavioral aspects should be considered. Use
case, deployment and class diagram are implemented to display structural aspect and activity,
sequence and state diagram stand for behavioral aspect. To display uncertainty in the systems, in this
paper we use fuzzy class diagram to show the structural aspect of the software system, and to display
behavioral aspect, we use fuzzy sequence diagram as follows,

Step1. First for each message in this diagram, its event and conditions must be found. The events and
conditions calculated for the dream activity is represented in Table 1.

Step2. First we need to check the correctness of the conditions. Therefore, we should provide a
mapping to do that. For each condition, we provide a transition, which is responsible to validate the
result and the result will go to another place. That means the token with the given fuzzy amount
continues its lifecycle and the token may have the value from 0 to 1, which means: 0 ≤ token value
≤1. The result at the end of analyzing condition C will be a fuzzy amount based on the condition.
Sometimes, we have more than one condition depending on fuzzy logical operations and we choose
the appropriate function. The concept is represented in Eq. (1) as follows,

OR= µAB(x) = max [µA(x), µB(x)] ,
AND = µAB(x) = min [µA(x), µB(x)].

(1)

In Fig. 3 and Fig. 4, two different common cases are depicted. Similarly, we can play with the rules
and create more complicated and complex logical operation by extending the figure based on the
number of rules and order of logical operation.

Step3. The next step is to run the event/events if the conditions are met. Here the antecedent fuzzy
amount is used to evaluate the consequent. The transition here is to apply the antecedent truth value
to the consequent membership function. Aggregation occurs here as in Fig 5. The defuzzification
process will be accomplished here because the final output of a fuzzy system should be a crisp
number. The defuzzification process is done based on center of gravity test. Center of gravity can be
expressed as equation (2).

COG=׬ µ ሺAሻ x dx
௕

௔ / ׬ µ ሺAሻ dx
௕

௔ (2)

Table 1 shows details of the events and conditions for rule 1 and 2.

P. Behbahaninejad et al. / Management Science Letters 2 (2012)

473

Table 1
Event and condition for dream activity
Condition Event Rule
C1 E is E1 R1
C2 E is E2 R2

 Fig. 3. If (C is C1) And/OR THEN… Fig. 4. If C is C1 THEN…

Fig. 5. Modeling consequent of fuzzy rule with aggregation

Here we use fuzzy Petri Net to calculate the data flow and a brief description of Fig. 3 is as follows:
We can say t1 uses C1 to adjust and clip consequent membership function of E1, on the other hand, it
calculates the consequent of rule R1. T2 does same but for E2 , t3 aggregates the two rules , t4 does
defuzzification , t5 and t6 both are responsible to check to see if the correct condition that needs to
trigger the system occurs or not. If it does not occur t5 passes the token to its end place and if it
occurs t6 passes it to the system. The result of this step (the amount in the output place of t6) which is
a strength fuzzy amount will be exerted from actor to the system as a black box or from system to the
actor as a result of a message.

6. Reliability using Petri Net

For calculating reliability of the system, we may define a success rate, f, for the transition in CPN.
Success rate specifies the probability of firing transition if something wrong does not happen. On the
other hand, 1-f is the failure rate, the probability of data loss. The token in the input of the transition t
is assumed that carries the amount, which stands for the accumulation of the success rate up to that
place. When transition fires the amounts which represents the success rate will be changed to D*f, i.e.
the token has got a new probability of firing; D*f instead of D. Fig 6 shows the concept.

D: accumulation of success rate = Reliability

Fig. 6. Reliability using fuzzy Petri Net
7. Case study

The following case study is chosen because it is familiar, but rich architectural problems, and thus
allows one to concentrate on how to do analysis, rather than explain the problem and domain. A RRS
system is a computerized application used to record rents and handle payments; it is typically used in
web based room renting systems. It includes hardware components such as a computer and software
to run the system. It interfaces to various service applications. These systems must be relatively fault-

t0
MIN/MAX =t3

t00 t2

t1

t1 t0

D*f D

474

tolerant; that is, even if remote services are temporarily unavailable, they must still be capable of
capturing data and handling at least cash payments. After studying the use cases and use case
diagram, the main successful scenario is chosen by the analyzer for SSD. Analyzer chose the SSD in
fig 7. Now gradually we are going to transform each sequence into fuzzy message. The customer
should be able to initiate a new rent if two requirements are provided. The event and conditions of the
first message are derived. The scenario considered by the analyst as followed: for received money, we
have three fuzzy values, named: not enough, almost enough, indeed enough, and for date we have
two fuzzy values, named: valid and invalid. Combining the inputs and their corresponding fuzzy
values, we have six conditions, accordance with table 2. Like the first actor-system message, other
actor-system messages and the fuzzy rules are created by fuzzy specialist. For system- actor messages
we don't need to do the same mapping because in SSD, system is black box, so this is just the result
that system produces is important and we don't need to know how it is created. This message is based
on the result from the previous step. System reaction to the rule is done via a simple message but we
should define two important things; first value(s) that should be returned from system to actor is
associated with the previous message and in case of no proper result from the previous message,
customer should resend the previous message. Fuzzy rules for message one, are in Fig 8. Fig 9. shows
the output for two fuzzy input variables. Accordance to it, the output for mentioned inputs are 5.65
out of 15. Fig10. shows the final fuzzy system sequence diagram modeled with fuzzy Petri Net. To
calculate the reliability of each incoming message or actor-system message, we can follow the
formula given in D. With the input money s $5000 and the date 20th, we may have the following
fuzzy values:

µ(money=indeed enough) =0.0 µ(date=valid) =0.48 µ(money=almost enough) =0.09
µ(date=invalid) =0.39 µ(money=not enough) =0.88

We assume all the transitions have the probability of firing 0.97 except t0 and t00 with the reliability
of 1. path: The tokens may pass all the transitions except t15 and they may pass the rest once. One
important point here is that in case of many inputs and one output as in t3 we assume D in fig .6 the
minimum of the input reliabilities. This is because t3 should have it's both inputs if it wants to fire.
Therefore the reliability of a token after passing each transition for message one in the fuzzy SSD for
the given inputs is as follow:

t0 =1, t00 =1, t1 = 0.97, t2 = 0.97, t8 = 0.97, t9 = 0.97, t11=0.97, t12 = 0.97,

t3 =0.94, t10 =0.94, t13 = 0.94, t4 = 0.91, t5 = 0.91, t6 = 0.91, t7 = 0.88, t14 = 0.85, t16 = 0.83

The final reliability of message one with mentioned input is 0.83 because it is the last transition,
token passes. For each message, we can calculate the reliability based on the path a token may move
and success rate of the transitions token encounters in its lifecycle. And the reliability of SSD is the
reliability of its messages individually.

Fig. 7. Fuzzy sequence diagram for Room Renting System

Supply Form(money,date)

Total With Taxes

Make Payment(amount)

Accept Registration.Reciept

acto system

P. Behbahaninejad et al. / Management Science Letters 2 (2012)

475

Table 2
Event and condition for 1st message in F-SSD

Fig. 8. Fuzzy rule for 1st actor-system message

Fig. 9. Output for the two fuzzy inputs

8. Conclusion

The final reliability of the 1st message is 0.83, which is low and it is because the reliability of each
transition is 0.97. The final reliability of SSD depends on the success rate of each transition in each
incoming message. The developer of the system should create more reliable components in other
word transitions with better success rate. In order to enhance the reliability more precisely, software
classes must be programmed. In RUP, these kinds of shortcomings will be solved during the different
iterations. Reliability plays an important role in purchasing software and it must be considered by
system analysts. This is very significant while dealing with crucial controlling systems. Analysts of
the software can benefit from this research. The study concludes to model and evaluate the UML
system sequence diagram. System sequence diagram first modeled to fuzzy Petri net and then the
model was analyzed based on reliability. Through the formalism of the Petri Net, analysis of SSDs in
terms of nonfunctional parameters is done. At the end the result of these experiments were assessed.

Rule Event Condition State
R1 Money is not enough Date is invalid If Money is not enough And Date is invalid Reception is unacceptable
R2 Money is not enough Date is valid If Money is not enough And Date is valid Reception is unacceptable
R3 Money is almost enough Date is invalid If Money is almost enough And Date is invalid Reception is almost acceptable
R4 Money is almost enough Date is valid If Money is almost enough And Date is valid Reception is almost acceptable
R5 Money is indeed enough Date is invalid If Money is indeed enough And Date is invalid Reception is Indeed acceptable
R6 Money is indeed enough Date is valid If Money is indeed enough And Date is valid Reception is Indeed acceptable

 Money=5 Date=20 Output=5.65

476

As a future work, other UML diagrams specially the behavioral diagrams of UML and other
nonfunctional parameters or can be evaluated through Petri Net. Besides UML diagrams, software
architectures will be studied later through the same technique.

Fig. 10. Fuzzy Petri Net for SSD in fuzzy-UML
References

Bostan-Korpeoglu, B., & Yazici, A. (2006). A Fuzzy Petri Net Model for Intelligent Database. Data &
Knowledge Engineering, 8, 112-122.

Haroonabadi, A., & Teshnehlab, M. (2008). A novel method for behavior modeling in uncertain information
systems. World Academy of Science, Engineering and Technology, 41, 959-966.

Haroonabadi, A., & Teshnehlab, M. (2009). Behavior Modeling in uncertain information by Fuzzy-UML.
International journal of soft computing 4(1), 32-38.

Larman, C. (1998). Applying UML and Patterns: An Introduction to Object Oriented Analysis and Design and
the Unified Process. 2nd ed. Prentice Hall.

Ma, Z. (2005). Fuzzy Information Modeling With the UML. Idea Group Publishing, 153-176.
Ma, Z.M., Zhang, F., & Yan, L. (2011a). Fuzzy Information Modeling In UML Class Diagram And Relational

Database Models. Applied Soft Computing, 11, 4236-4245.
Ma, Z.M., Zhang, F., Yan, F., & Cheng, J. (2011b). Representing and reasoning on fuzzy UML models: A

description logic approach. Expert Systems With Applications, 38, 2536-2549.
Ma, Z.M., Yan, L., & Zhang, F. (2011c). Modelling fuzzy information in UML class diagrams and object-

oriented database models. Fuzzy Sets & Systems, 186, 26-46.
Motameni, H. Movaghar, A., Daneefar, I., Nematzadeh, H., & Bakhshi, J. (2008). Mapping to convert

activity diagram in fuzzy UML to fuzzy Petri Net. World Applied Sciences Journal, 3(3), 514-521.
Motameni, H., Daneefar, I., Bakhshi, J., & Nematzadeh, H. (2009). Transforming fuzzy state diagram to fuzzy

Petri net. Journal of Computer Engineering, 1(1), 29-44.
Motameni, H., & Ghassempouri, T. (2011). Transforming fuzzy communication diagram to fuzzy Petri net.

American Journal of Scientific Research, 16, 62-73.
Object Management Group. (2002). UML Profile for Schedulability. Performance and Time Specification.

http:/www.omg.org.

t0

t00

T1

T2

T8

T9

T11

T12

T3

T10

T13

T5

T6

T7 T14 T16

T4

T15

	Evaluating software architecture using fuzzy formal models
	1. Introduction
	2. Fuzzy data model
	3. Fuzzy system sequence diagram
	4. Fuzzy Petri Net
	5. Proposed model
	6. Reliability using Petri Net
	7. Case study
	8. Conclusion
	References

