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 Hub covering problem is one of the most popular areas of research due to wide ranges of 
applications in different service or manufacturing industries. This paper considers a multi-
objective hub covering location problem under congestion. The proposed study of this paper 
considers two objectives where the first one minimizes total transportation cost and the second 
one minimizes total waiting time for all hobs. The resulted multi-objective decision making 
problem is formulated as mixed integer programming. Simulated annealing is used to solve the 
resulted model and the performance of the proposed model is compared against two other 
alternative methods, particle sward optimization and NSGA-II. The results are compared in 
terms of four criteria including quality metric, mean ideal distance, diversification metric and 
spacing metric. The results indicate that the proposed model could perform better than the other 
two alternative methods in terms of quality metric but the results are somehow mix in terms of 
other three criteria.        

© 2013 Growing Science Ltd.  All rights reserved. 

Keywords: 
Simulated annealing 
Hub location 
Multi objective decision making  
 

 

 

 

 

1. Introduction 
 

Hubs are normally referred to facilities that serve as switching, transshipment and sorting points from 
different distribution systems to various demand nodes. The primary objective of hub location is to 
locate hub facilities and allocate demand nodes to hubs to route the traffic between origin–destination 
pairs. Alumur and Kara (2008) presented a good classification on hub location models, discussed 
trends on hub location, and provided a synthesis of the literature. One of the most popular forms of 
Hub location is the one with single assignment, which is the problem of locating hubs and assigning 
the terminal nodes to hubs to minimize the cost of hub installation and the cost of routing the traffic 
in the network. There are normally some capacity restrictions on the amount of traffic, which could 
transit by hubs. Labbé et al. (2005) investigated polyhedral properties of this kind of problem and 
developed a branch-and-cut algorithm.  



 
  

154

Ebery et al. (2000) presented formulations and solution techniques for the capacitated multi-location-
allocation hub problem. They developed a new mixed integer linear programming formulation and 
constructed a heuristic algorithm, using shortest paths and provided an upper bound from this 
heuristic in a linear-programming-based branch-and-bound solution procedure. In addition, they 
presented the results of extensive computational experience with both the heuristic and the exact 
proposed technique. Ernst and Krishnamoorthy (1999) presented a method to solve capacitated single 
allocation hub location using a modified mixed integer linear programming formulation for p‐hub 
median problems.  They developed some heuristic algorithms for its solution based on simulated 
annealing (SA) and random descent (RDH), implemented an upper bound to develop an LP‐based 
branch and bound solution technique. The problem tried to find applications in the design of postal 
delivery networks, specifically in the location of capacitated mail sorting and distribution centers. 
They examined the algorithms on data obtained from some application and reported some promising 
results.  
 
Boland et al. (2004) considered formulations and solution techniques for multiple allocation hub 
location problems. They presented a number of results, which helps us develop preprocessing 
procedures and tightening constraints for existing mathematical programming formulations. They 
used flow cover constraints for capacitated problems to improve performance and presented the 
results of their computational experience, which demonstrate that all of these steps could effectively 
reduce the computational effort needed to obtain optimal solutions.  
 
Labbé et al. (2005) presented  tight integer linear programming formulations for hub location problem 
along with some properties of the optimal solutions, which can be used to speed up the resolution. 
They reported that computational instances of medium size could be solved very efficiently using the 
new proposed method. Sasaki and Fukushima (2003) proposed a new formulation of one-stop 
capacitated hub-and-spoke framework as a natural extension of the un-capacitated one-stop model. 
The proposed model involved arc capacity constraints as well as hub capacity constraints, which 
helped incorporate some practical factors into the model. They also presented a branch-and-bound 
based exact solution technique with Lagrangian relaxation bounding strategy, and reported some 
results of numerical experiments based on real aviation data. Their computational results indicated 
that the proposed capacitated model could provide some efficient results.  
 
Marín (2005) presented a problem formulation to solve splittable capacitated multiple allocation hub 
location problems. de Camargo et al. (2008) presented an efficient Benders decomposition algorithms 
based on a well-known formulation to tackle the uncapacitated multiple allocation hub location 
problem and solved some large instances, considered ‘out of reach’ of other exact methods in 
reasonable amount of time. Contreras et al. (2009) considered the capacitated hub location problem 
with single assignment and proposed a Lagrangean relaxation to compute tight upper and lower 
bounds. The Lagrangean function that they used could exploit the structure of the problem and it 
could be decomposed into smaller sub-problems, which could be solved, efficiently. Besides, they 
presented some simple reduction instances, based on the Lagrangean relaxation bounds, which helps 
reduce the size of the formulation and reduces the computational effort, significantly. Aykin (1995) 
introduced a framework for the design of some distribution network with networking policies and 
models together with exact and heuristic solution methods. Pirkul and Schilling (1998) presented an 
efficient procedure for designing single allocation hub and spoke systems. Abdinnour-Helm (2001) 
used simulated annealing (Brooks & Morgan, 1995) to solve the p-hub median problem.  
 
2. The proposed model 
 
In this paper, we consider a classical hub problem by considering queuing theory. The following 
summarizes the necessary assumptions. 
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2.1 Assumptions 
 

1. All locations are precisely determined and can be considered as hub location. 
2. The number of hubs allowed to build the transportation network has a certain value. 
3. The input flow is determined based on a pre-specified regulation and time is independent from 

flow. 
4. In case the inflow is more than service time, there is queue in the system and there is a waiting 

time. 
5. There is a capacity for each inflow. 
6. The capacity between different locations is unlimited. 

 
2.2 Objectives 
 

1. The first objective minimizes total transportation cost. 
2. The second objective minimizes total waiting time. 

 
2.3 Notations 
 
N A set of all transportation network points, 
P Maximum number of permitted hubs, 
Wij Maximum flow between node i and node j, 
Cij The cost of transportation between node i and node j, 
Fk Fixed cost of establishing hub on point k, 
rk Radius of coverage for hub k,  
Pk Setup time for hub k, 
Tk Total time consumed on hub k, 
Oi The output of node i, 
Di Demand for node i, 
Xik A binary variable, which is one when point i is assigned to hub k and zero, otherwise, 

i
klY  A binary variable, which is one when point i has an outflow from hub k to hub l, 

0,1      Discount factor of transportation cost between two hubs 
0,1      Discount factor of transportation cost between a demand point and hub, 

M A big number. 
 
2.4 Problem statement 
 
The following summarizes the problem statement of the proposed method. 
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The first objective function, stated in Eq. (1), minimizes total cost of transportation, which consists of 
two parts of fixed and variable costs. Eq. (2) presents the second objective function, which is 
associated with the minimization of total waiting time in hub. Eq. (3) specifies that only one point can 
be assigned to only one hub. Eq. (4) specifies the number of predetermined hubs. Eq. (5) specifies 
how far a hub can give services. Eq. (6) determines that all inputs must be equal to all outputs. 
According to Eqs. (7-9), a point can get a point only when l and k denote hubs and point i is assigned 
to hub k. Finally, Eq. (10) and Eq. (11) determines that the variables are binary.  
 

The proposed model of this paper uses simulated annealing (SA) approach introduced originally by 
Karimi et al. (2012) and we extend it for a more general form of multi-objective problem. The 
chromosome we choose for the proposed study of this paper consists of two parts. The first part 
determines how we should distribute the goods and the section part allocate hubs to their positions.  
 
2.5. Arrangement of chromosome 
 
The proposed model of this paper uses a string, size 2×(n+p), with two parts where the first part 
contains n real numbers representing the points and the second part includes p binary numbers 
denoting the hubs. For instance, if there are 10 points and 4 hubs we first arrange the following string, 
 

10  7  5  2  0.26  0.49 0.69  0.41  0.10  0.72  0.56  0.03  0.98  0.23  
                            

 
To fill the second row, we first copy the last four cells into the second row and assign a rank number 
to the remaining cells as follows, 
 

10  7  5  2  0.26  0.49 0.69  0.41  0.10  0.72  0.56  0.03  0.98  0.23  
10  7  5  2  7  5  3  6  9  2  4  10  1  8  

 
Now, we select four points randomly as follows, 
 

10  7  5  2  0.26  0.49 0.69  0.41  0.10  0.72  0.56  0.03  0.98  0.23  
10  7  5  2  7  5  3  6  9  2  4  10  1  8  

 
Here, 1, 2, 6 and 7 are hubs and the other numbers are points which are assigned to hubs from left to 
right. For instance, point 8 is assigned to hub 1, points 10 and 4 are assigned to hub 2, point 9 is 
assigned to hub 6 and finally point 3 and 5 are assigned to hub 7.  
 
2.6. Mutation 
 
The proposed multi-objective SA uses two positions in each chromosome and randomly changes their 
addresses for neighborhood search. Fig. 1 to Fig. 3 show details of our strategy, 

   ; 1, 2,..., , 1, 2,...,ik ik k kkC X r X i n k n   

   
1 1 1

; 1, 2,..., , 1, 2,...,
n n n

i i
kl ij jk i ik lk

l j l

Y W X O X Y i n k n
  

       
     ; 1,2,..., , 1, 2,..., , 1, 2,...,i

kl kkY MX i n k n l n    

     ; 1, 2,..., , 1,2,..., , 1, 2,...,i
kl llY MX i n k n l n    

     ; 1, 2,..., , 1, 2,..., , 1, 2,...,i
kl ikY MX i n k n l n    

     0,1 ; 1, 2,..., , 1, 2,...,ikX i n k n   

     0; 1,2,..., , 1, 2,..., , 1, 2,...,i
klY i n k n l n    
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0.26 0.49 0.69 0.41 0.10 Initial solution  

     
        

0.41  0.49 0.69  0.26 0.10  Mutated solution  
 

Fig. 1. A simple mutation operation 
 

The second operation selects a chunk of chromosome a reverse the order. Fig. 2 shows details of this 
operation.  

0.26 0.49 0.69  0.41  0.10  Initial solution  

   
  

        

0.41  0.69  0.49 0.26 0.10  Mutated solution  
 

Fig. 2. A simple mutation operation 
 

Finally, the third strategy is to generate a position randomly and replace it with a newly generated 
random number as we show in Fig. 3. 
 

0.26 0.49  0.69 0.41  0.10  Initial solution  
  Random number =65.0        

0.41  0.69  0.49  0.65  0.10  Mutated solution  
 

Fig. 3. A simple mutation operation 
 
2.7. Crossover 
 
The proposed model of this paper uses three methods for crossover namely, one-point, two-point and 
uniform. The first method, one-point, divides the region into two sections and exchanges the 
information of two chromosomes as shown in Fig. 4 as follows, 

  
26.0 49.0 69.0 41.0 10.0 72.0 56.0 03.0 98.0 23.0 First selected 

  
06.0  97.0 89.0  30.0  0.68  0.27  16.0  43.0  21.0  530.  Second selected 

                                                                   
06.0  97.0 89.0  30.0  0.68  720.  560.  03.0  98.0  23.0  First new 

  
26.0  49.0 690.  41.0  10.0  0.27  160.  430.  210.  530.  Second new 

  
Fig. 4. The point crossover operation 

The two-point strategy selects two regions of the chromosomes to exchange the information as shown 
in Fig. 5 as follows, 
 

26.0  49.0 69.0  41.0  10.0  72.0  56.0  03.0  98.0  23.0  First selected 
  

06.0  97.0 89.0  30.0  0.68  0.27  16.0  43.0  21.0  53.0  Second selected 
                                                   

26.0  49.0 69.0  30.0  0.68  0.27  16.0  03.0  98.0  23.0  The first new 
  

06.0  97.0 89.0  41.0  10.0  72.0  56.0  43.0  21.0  53.0  The second new 
 

Fig. 5. Two point strategy 
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The last strategy uses a uniform vector and arranges entities based on that vector.  
 

     
26.0  49.0 69.0  41.0  10.0  72.0  56.0  03.0  98.0  23.0  First selected 

  
1  0 0  1  0  1  1  0  0  1  Coverage vector 

  
06.0  97.0 89.0  30.0  0.68  0.27  16.0  43.0  21.0  53.0  Second selected  

 
06.0  49.0 69.0  30.0  10.0  0.27  16.0  03.0  98.0  53.0  First new 

  
26.0  97.0 89.0  41.0  0.68  72.0  56.0  43.0  21.0  23.0  Second new 

  
Fig. 6. The uniform strategy 

 
As we can observe from the results of Fig. 6, when a cell inside the coverage vector receives a value 
one, the method exchanges two cells.  
 
2.8 Annealing operation 
 
The proposed simulated annealing strategy uses a probability density function to accept new solutions 
as follows, 
 

,
f

TP e


  (1) 

 
where Δf is the difference between the objective functions of new and old solutions and T is the 
annealing temperature. Since we have two objective functions, we extend Eq. (1) to the following, 
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 The annealing operations start at temperature T0 and the temperature is reduced by a factor α until it 
reaches Tf . The proposed method of this paper uses different criteria to terminate the algorithm such 
as having a limitation on CPU time, no improvement on objective function, etc.  
 
3. The results 
 
In this section, before we implement the proposed method for some standard problems, we use 
parameter tuning based on response surface methodology to adjust parameters. In addition, in order to 
evaluate the performance of the proposed method, we compare the results with NSGA-II and multi- 
objective particle swarm optimization (MOPSO). Table 1 shows details of our parameters used for 
the proposed method. 
 
Table 1 
The summary of the parameters used for SA 
Factors   Optimal real value 

  S L 
T0   10 13 
α   0..84 0.91 
nMove   10 16 
nPop   5 6 
pCrossover   0.5 0.7 
β   1.8 2 
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 In Table 1, S and L represent parameter values used for small and large size problems. For NSGA-II, 
the number of initial population are 200 and 300 for small and large problems, respectively. Mutation 
and crossover rates are 0.2 and 0.8, respectively. In addition, termination criteria are set to 30NFC 
and 100,000 for small and large-scale problems. In addition, Table 2 shows details of parameters used 
for MOPSO. 
 
Table 2 
The summary of parameters setting for MOPSO 

Problem size 

  S L  S L  S L  S L  S L 
Factor    c1  c2  PopSize  MaxItr 
Tuned 
Value 

  0.62 0.84   1.2 1.4   1.5 1.8   50 120   200 500 
 
We use four criteria to measure the quality of solutions namely; Quality Metric (QM), Mean Ideal 
Distance (MID), Diversification Metric (MD) and Spacing Metric (SM). These criteria are calculated 
as follows, 
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where d represents deviation between two Pareto solutions, which is calculated based on Euclidian 
norm and d is the average of all di . We compare our results on 67 different benchmark problems. 
Table 3 and Table 4 show the results of our computations for some small instances. 
 
Table 3 
The summary of the performance of the proposed method versus NSGA-II and MOPSO for small 
instances 

Problem No. Quality Metric (QM) Spacing Metric (SM) 
NSGA-II MOPSO MOPSA NSGA-II MOPSO MOPSA 

10 0.235 0 0.765 0.827 0.625 0.741 
10 0.105 0 0.895 0.661 0.495 0.778 
15 0.250 0 0.750 0.791 0.788 0.920 
15 0 0 1 0.693 0.785 0.868 
15 0 0 1 0.571 1.092 0.634 
20 0 0 1 1.184 0.999 0.881 
20 0.235 0 0.765 0.778 1.257 0.973 
20 0.434 0 0.565 0.560 1.036 0.874 

 
Problem No. Diversity Metric (DM) Mean Ideal Distance (MID) 

NSGA-II MOPSO MOPSA NSGA-II MOPSO MOPSA 
10 1.397 0.996 1.574 0.633 0.632 0.518 
10 1.102 1.067 1.414 0.704 0.597 0.581 
15 0.652 0.208 1.414 0.873 0.608 0.242 
15 0.404 1.125 0.664 0.712 0.872 0.348 
15 0.203 1.232 0.444 0.339 0.708 0.230 
20 1.323 1.270 1.087 0.776 0.696 0.523 
20 0.714 1.268 0.896 0.440 0.674 0.399 
20 0.958 1.029 1.169 0.518 0.845 0.538 
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As we can observe from Table 3, the proposed method provides better quality results in terms quality 
metric for small instances. In terms of Spacing, the proposed method provides some mix results. In 
terms of diversity, all four instances provide results that are more diverse.   
 
Table 4 
The summary of the performance of the proposed method versus NSGA-II and MOPSO for small 
instances 

Problem 
No. 

Diversity Metric (DM) Mean Ideal Distance (MID) 
NSGA-II MOPSO MOPSA NSGA-II MOPSO MOPSA 

10 1.397 0.996 1.574 0.633 0.632 0.518 
10 1.102 1.067 1.414 0.704 0.597 0.581 
15 0.652 0.208 1.414 0.873 0.608 0.242 
15 0.404 1.125 0.664 0.712 0.872 0.348 
15 0.203 1.232 0.444 0.339 0.708 0.230 
20 1.323 1.270 1.087 0.776 0.696 0.523 
20 0.714 1.268 0.896 0.440 0.674 0.399 
20 0.958 1.029 1.169 0.518 0.845 0.538 
20 1.063 1.075 1.161 0.575 0.751 0.621 
25 1.295 0.436 1.381 0.601 0.437 0.247 
25 0.960 0.943 1.297 0.663 0.762 0.718 
25 1.105 0.775 1.314 0.536 0.577 0.511 
25 0.559 0.911 1.414 0.482 0.576 0.287 
30 0.566 1.012 1.279 0.697 0.731 0.632 
30 1.160 0.954 1.178 0.762 0.547 0.485 
30 1.103 0.860 1.478 0.781 0.846 0.500 
30 0.484 1.021 1.010 0.297 0.481 0.379 
30 0.733 1.267 0.947 0.479 0.646 0.276 
30 0.699 0.696 1.184 0.579 0.860 0.554 

 
In addition, we have used the proposed model of this paper and tested against other alternative 
methods and the results are summarized in Tables 5-8. 
 
Table 5 
The results of the proposed model for larger sizes 

Problem 
No. 

Quality Metric (QM) Spacing Metric (SM) 
NSGA-II MOPSO MOPSA NSGA-II MOPSO MOPSA 

40 0.071 0 0.928 1.302 1.417 1.390 
40 0.3634 0.272 0.364 1.019 1.167 1.267 
40 0.357 0 0.642 1.628 1.295 1.649 
40 0.318 0.182 0.500 1.059 1.272 1.321 
40 0.370 0 0.630 0.984 1.374 1.372 
40 0.0416 0 0.958 1.037 1.296 0.935 
40 0.240 0 0.760 1.2678 1.049 1.410 
40 0.111 0.111 0.778 0.979 1.422 0.928 
       

Problem 
No. 

Diversity Metric (DM) Mean Ideal Distance (MID) 
NSGA-II MOPSO MOPSA NSGA-II MOPSO MOPSA 

40 1.244 1.105 1.267 0.707 0.776 0.430 
40 1.019 1.225 1.175 0.609 0.750 0.452 
40 0.986 1.264 1.176 0.554 0.813 0.377 
40 1.032 1.105 1.179 0.664 0.677 0.408 
40 0.702 1.192 1.064 0.731 0.765 0.563 
40 0.458 1.170 0.827 0.430 0.767 0.322 
40 1.203 0.802 1.132 0.506 0.601 0.431 
40 1.036 1.349 1.350 0.692 0.823 0.360 

 
As we can observe from the results of Table 5, in terms of quality of solutions, in most cases, the 
proposed model of this paper performs better than alternative methods. In terms of other three 
criteria, the proposed model seems to be comparable.  
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Table 6 
The summary of the performance of the proposed method for some large instances 

Problem 
No. 

Quality Metric (QM) Spacing Metric (SM) 
NSGA-II MOPSO MOPSA NSGA-II MOPSO MOPSA 

50 0.434 0.086 0.478 1.339 1.461 1.479 
50 0.105 0 0.895 1.342 1.181 1.292 
50 0.238 0 0.762 1.465 1.548 1.466 
50 0 0 1 1.076 1.346 0.764 
50 0 0 1 1.042 1.249 1.446 
50 0 0 1 1.469 1.212 0.893 
50 0 0 1 0.753 1.202 1.432 
50 0 0.107 0.892 1.127 1.043 0.795 
50 0.160 0 0.840 0.952 0.998 0.863 
50 0 0 1 1.001 1.020 1.033 

       
Problem 

No. 
Diversity Metric (DM) Mean Ideal Distance (MID) 

NSGA-II MOPSO MOPSA NSGA-II MOPSO MOPSA 
50 0.722 1.289 1.340 0.641 0.731 0.658 
50 0.633 0.826 1.145 0.526 0.679 0.492 
50 1.342 1.084 1.175 0.603 0.601 0.443 
50 0.799 1.266 0.920 0.554 0.715 0.482 
50 0.443 0.985 1.388 0.490 0.517 0.383 
50 1.137 1.174 0.752 0.457 0.608 0.281 
50 0.875 0.961 1.155 0.504 0.734 0.369 
50 1.077 0.500 1.232 0.702 0.526 0.373 
50 0.904 1.222 1.414 0.585 0.668 0.640 
50 0.918 0.887 1.112 0.680 0.551 0.230 

 
Table 7 
The summary of the performance of the proposed method for some large instances 
Problem No. Quality Metric (QM) Spacing Metric (SM) 

NSGA-II MOPSO MOPSA NSGA-II MOPSO MOPSA 
70 0 0 1 0.672 0.501 0.905 
70 0 0 1 0.517 1.299 0.811 
70 0 0 1 0.586 0.593 0.878 
70 0 0 1 0.737 0.402 0.752 
70 0.200 0 0.800 0.826 0.514 0.953 
70 0 0 1 0.495 1.032 0.427 
70 0 0.076 0.924 1.230 0.559 0.893 
70 0 0 1 0.994 0.789 0.806 
70 0 0 1 0.726 1.119 0.850 
70 0 0 1 0.632 0.904 0.608 
70 0 0 1 1.019 1.069 1.071 
70 0.352 0 0.647 0.721 1.024 0.721 
70 0.273 0 0.727 0.491 1.151 0.993 
70 0 0 1 1.039 0.550 0.673 
       

Problem No. Diversity Metric (DM) Mean Ideal Distance (MID) 
NSGA-II MOPSO MOPSA NSGA-II MOPSO MOPSA 

70 0.470 0.122 1.00 0.492 0.992 0.125 
70 0.110 1.095 0.417 0.519 0.743 0.250 
70 0.362 0.249 1.043 0.959 0.806 0.365 
70 0.815 0.443 1.367 0.672 0.519 0.174 
70 1.066 0.484 0.808 0.692 0.832 0.336 
70 0.709 1.189 0.749 0.509 0.846 0.364 
70 1.203 0.445 1.041 0.643 0.563 0.257 
70 1.081 0.605 0.600 0.696 0.758 0.222 
70 0.321 1.184 0.891 0.275 0.668 0.250 
70 0.561 1.109 0.723 0.643 0.832 0.127 
70 0.604 1.246 0.820 0.518 0.737 0.220 
70 0.918 1.136 0.751 0.491 0.753 0.459 
70 0.173 1.009 1.051 0.456 0.724 0.256 
70 0.724 0.552 0.912 0.847 1.021 0.210 
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Table 8 
The summary of the performance of the proposed method for some large instances 
Problem No. Quality Metric (QM) Spacing Metric (SM) 

NSGA-II MOPSO MOPSA NSGA-II MOPSO MOPSA 
100 0 0 1 0.468 1.231     0.653 
100 0.5 0 0.5 1.037 0.509 1.364 
100 0 0 1 0.013 0.199 1.177 
100 0 0.250 0.750 0.499 0.298 0.568 
100 0.333 0.0833 0.583 0.659 0.823 1.044 
100 0 0 1 1.704 0.285 0.547 
100 0 0 1 0.892 1.487 0.454 
100 0 0 1 1.035 0.841 0.963 
100 0 0 1 0.7051 1.000 0.580 
100 0 0 1 1.069 0.062 0.711 
100 0 0 1 0.633 0.968 0.392 
100 0 0 1 1.240 0.357 1.028 
100 0 0 1 0.911 0.861 1.355 
100 0 0 1 0.628 1.076 1.114 
100 0 0 1 1.105 0.901 0.765 
100 0 0 1 0.977 1.106 1.036 

       

Problem No. Diversity Metric (DM) Mean Ideal Distance (MID) 
NSGA-II MOPSO MOPSA NSGA-II MOPSO MOPSA 

100 0.231 0.649 0.656 0.832 1.349 0.243 
100 1.039 0.512 1.080 0.449 0.749 0.440 
100 1.042 0.422 1.164 0.798 0.852 0.099 
100 0.869 1.290 0.834 0.727 0.761 0.397 
100 0.442 1.042 1.016 0.310 0.364 0.230 
100 1.174 0.255 0.367 0.673 0.606 0.147 
100 0.187 1.100 0.562 0.394 0.872 0.027 
100 1.131 0.855 0.955 0.653 0.590 0.275 
100 0.289 1.146 0.680 0.467 0.830 0.275 
100 1.047 0.232 1.191 0.590 0.207 0.340 
100 0.585 0.958 0.657 0.571 0.880 0.175 
100 1.058 0.724 0.895 0.624 0.523 0.218 
100 1.211 0.559 1.121 0.692 0.734 0.482 
100 0.871 0.760 1.156 0.963 0.794 0.392 
100 0.660 1.064 0.891 0.758 0.916 0.179 
100 0.447 1.187 0.943 0.815 0.765 0.280 

 
Note that as the size of the problem increases, it is getting difficult to solve the problem directly using 
mathematical programming. In fact, for large size, problems the only practical choice is to use 
metaheuristics methods. Fig. 7 to Fig. 10 show the summary of the performance of the proposed 
method in terms of four criteria. 
 

 
 

Fig. 7. The summary of the performance of the proposed method in terms quality metric 
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Fig. 8. The summary of the performance of the proposed method in terms spacing metric 

 

 
Fig. 9. The summary of the performance of the proposed method in terms diversity metric 

 

 
Fig. 10. The summary of the performance of the proposed method in terms MD metric 

 
According to the results of Fig. 7, the proposed model of this paper provides better quality Pareto 
solutions but the results of Fig. 8, Fig. 9 and Fig. 10 indicate some mix results.  
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3. Conclusion 
 
In this paper, we have presented a multi-objective decision making problem to assign hubs in 
different places by data concession. The proposed study considers two objectives: the first one was 
the minimization of total transportation cost and the second one was associated with minimization of 
total waiting times in all hubs. We have presented simulated annealing as an alternative solution to 
generate Pareto solution strategies and compared the performance of the proposed model with two 
alternative solution strategies. The results of testing various benchmark problems indicate that 
simulated annealing may provide better quality solutions but it may not necessarily produce better 
solutions in terms of other criteria.    
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