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 This paper considers a multi period serial production systems for one product and deals with the 
problem of planned lead-time calculation in a Material Requirement Planning (MRP) 
environment under probabilistic lead times.  It is assumed that lead times for all stages have the 
same distribution with different parameters.  A MRP approach with periodic order quantity 
(POQ) policy is used for the supply planning of components.  The objective is to minimize the 
sum of   fixed ordering, holding and backlogging costs.  A mathematical model is suggested 
and then an optimal planning lead-time, ordering quantity and periodic time are determined.          
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1. Introduction 
 

Material requirement planning (MRP) is a well-known approach inventory management of dependent 
demand items. We consider a multi stage, multi period serial-production system with constant 
demand and probabilistic lead-time.  Examples of serial production systems include electronic, 
automotive assembly systems, and packing systems.  Serial production systems are in a sense simpler 
form of multistage production systems. For the corresponding single level problem with random lead-
time, Kaplan (1970) suggested a finite horizon dynamic programming model whose optimal 
inventory policy turned out to depend on whether ordering cost is fixed or not.  A probabilistic model 
was developed for arrival of outstanding orders assuming that orders would not cross in time and that 
the arrival probabilities are independent of the number and size of outstanding orders.  Based on those 
assumptions, it was demonstrated that the sequential multidimensional minimization problem 
normally associated with the random lead-time model could be reduced to a sequence of one-
dimensional minimizations.  These policies were shown to be quite similar to those obtained with 
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deterministic lead times; some differences are noted in the behavior of the single-period critical 
numbers (when the setup cost is zero).   
 
Yano (1987b) suggested an analytic approach and a single-period model to determine optimal 
planned lead times in serial production systems in which the actual procurement and processing times 
may be stochastic.  The objective in this paper is to minimize the sum of inventory holding.  A 
general solution is proposed for a two-stage serial system, which for most cost structures and lead 
time distributions, is a single-pass algorithm.  The paper provides some insight into the characteristics 
of optimal safety time policies. In another paper, Yano (1987) investigated the problem of 
determining optimal planned lead times in serial production systems in which the actual procurement 
and processing times may be stochastic.  The objective was to minimize the sum of inventory holding 
costs and job tardiness costs.  Optimal lead times in serial production systems were also examined by 
various researchers (Gong et al., 1994; Mohan & Ritzman, 1998).  Harrison and Lewis (1996) 
presented another related work on serial production systems, which includes lot sizing in serial 
systems.  Conway et al. (1988) examine the role of work-in-process inventory in serial production 
systems.  Ballou and Pazer (1982) and Rebello et al. (1995) examined inspection issues in serial 
production systems. 
 
Tang (1990) presented a discrete time model of a multi-stage production system that faces two major 
types of uncertainties: the output rate at each production stage and the demand for the finished 
product. Tang proposed a scheme in which a complex production rule is approximated by a linear 
production rule.  Wein (1992) studied on a make-to-order marketing environment where an order was 
met from a single production lot size.  A Markov decision process model was developed and it was 
solved using dynamic programming techniques.  The model assumes that demand is given, and 
material, processing and rework costs are linear in the production lot size.  Modeling random yield at 
each stage of the production process is of key interest.  The solution to the problem is characterized 
and the sensitivity of the solution for the parameters of the model is examined.  
 
Karimi et al. (1992) analyzed scheduling of multistage serial production systems under constant 
demand and infinite horizon.  An integer nonlinear programming formulation is presented for 
determining a stationary, cyclic schedule with no stock-outs in any inventory and minimum sum of 
setup and inventory costs. It allows a lot-sizing policy involving arbitrary, non-integer 
splitting/merging of lots.  Three, almost optimal, heuristic algorithms and an exact branch and bound 
algorithm are developed using analytical results.  Their evaluation using simulated problems shows 
the branch and bound algorithm to be the best, as it is fast even for systems with as many as 11 
stages. Elhafsi (2002) considered a production system consisting of N processing stages which actual 
lead times at the stages are stochastic. The problem was formulated as a convex nonlinear 
programming problem. The latter was then solved using classical convex optimization algorithms.  
For the special case of exponentially distributed lead times, the objective function is derived in a 
closed form.  The objective is to determine the planned lead times at each stage so as to minimize the 
expected total inventory costs, tardiness penalties, and a backlog penalty for not meeting demand due 
date at the last stage. 
 
Hnaien et al. (2008) considered single period, multi stage problem of planned lead-time calculation in 
a Material requirement Planning (MRP) environment under stochastic lead times and used lot-for-lot 
policy for all levels.  An optimization model was suggested for the serial production system.  In the 
present paper, the criterion considered is the sum of backlogging and holding costs.  Assume that the 
actual level lead times are independent discrete random variables.  The distribution probability for the 
different levels cannot be identical. We use POQ policy, which is a lot size technique that orders to 
cover requirements for a variable number of periods based on order and holding costs, as opposed to 
a fixed period quantity that uses standard number of periods.  We assume that a FIFO policy is used 
to fill the backorders once the production run starts. 
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2. Problem formulation 
 
In this section, we consider a serial production system with one type of product.  This production 
system consisting of m processing stages which actual lead times at the stages are probabilistic and 
the POQ policy is used for this multi stage multi period system.  We suppose that the demand for 
finishing goods is constant for each period, but actual lead-time is probabilistic for all stages. If at a 
certain stage, a job (or a batch) is completed before its planned lead-time, it is held at that stage until 
its planned release time, including inventory-holding cost.  Similarly, if at a certain stage, a job is not 
received as planned, a penalty cost is incurred at that stage.  We assume that stage m receives its job 
as planned, therefore, incurs no tardiness penalty.  In addition, Stage 1 will incur a backlog penalty if 
it completes processing a job later than the planned time.  This penalty represents a customer goods 
will lose and cost of delayed delivery to the customer and if Stage 1 completed before the due date, 
the final product held until delivering it to the customer. The policy of ordering is periodic order 
quantity (POQ).  Final products are ordered at every P period. We suppose that we have a demand D 
for finished products at each period with a fixed due date.  To satisfy this, we need to launch the 
production processes composed of m serial levels for the lot of D items. 
 
 
 
 
 
 

Fig. 1. An m-level linear supply chain 
 
The raw materials are released at level m, the semi-finished products are processed at levels ,..., 21 mm  

and finally, the finished product is produced at level 1.  We assume that lead-time at each level is 
probabilistic.  The objective is to find the component release dates at each level and time period (P)  
for minimizing the sum of the holding costs for the components of each level and backordering cost, 
lost sale cost, holding cost for the finished product.  
 
t : Index of period's t=1, 2, 3, 
A : ordering cost per order, 
D : Demand (known) for finished product for at the period t 
p : Time periods for each ordering 
h : Per unit holding cost per time unit 
̂ : Per unit backorder cost per time unit  
il : Random lead time for level i 





N

i
ill

1 : Total lead-time of the system 
ix : Planned lead time for level i 





N

i
ixx

1 : Total planned lead-time of the system (planned lead-time for finished product) 
)( ilf : The continue distribution of lead-time in level i 

)(lf : The convolution of lead-time with continue distribution  
)( jlP i  : The discrete distribution of lead time distribution in level i 
)( jLP  : The convolution of lead-time with discrete distribution  
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Variables 
 
P: periodicity   
X: planned lead time for finished product 
 
2.1 convolution 
 
The probability distribution of the sum of two or more independent random variables is the 
convolution of their individual distributions.  The term is motivated by the fact that the probability 
mass function or probability density function of a sum of random variables is the convolution of their 
corresponding probability mass functions or probability density functions respectively.  
Many well-known distributions have simple convolutions. 
 
Convolution defecation: 
 
Let 1l , 2l ,…, Nl be independent and identically distributed random variables with the common 
distribution function F and probability density function f. then the distribution function of the sum nL  
is the n-fold convolution of itself F such as  
 

* ( 1)*( ) * ( ) ( 2)n nF x F F x n   (1) 
     
where )()(*1 xFxF   and its probability density function is  
 

* ( 1)*( ) * ( ) ( 2)n nf x f f x n   (2) 
where 

1*( ) ( )f x f x . (3) 
 
Convolution of Uniform Distributions 
 
Theorem 1:  Let  il  be independent random variable with PDF    2,...,2,1,1




 Ni
ab

f
ii

li  then PDF 




N

i
ill

1
is given as follow: 
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0 Otherwise

n
l

l
f l A l B

f l
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i
iaA

1
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i
iin abA

1
 , and 

1 1

1 1 1

1 1( ) ( 1) ( 1) .
( 1)! ( 1)!

n n
n n m n n

R R
n i j j

k m k i k j i jn n

f l x a b x b
n A n A

  

     

                                 
      

(5) 

R is the total number of jb     , j=1, 2…N 
 
The proof of Eq. (5) is shown in the Appendix A. List of convolutions of some of probability 
distributions are shown in Appendix B  
 
3. Model development   
 
The lead-time is assumed probabilistic.  The planned lead-time is ix for level i.  The orders for 
products are made at the beginning of the periods 1, p+1, 2p+1… and there is no order made in other 
periods.  Order quantities are constant and equal to PD (P is a decision variable).  (See Fig. 2) 
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Fig.2. An illustration of the planning problem when planned lead time equal to actual lead time  
 
Because of probabilistic lead-time, there are three states in action: 
 
The planned lead time equal to actual lead time (see Fig. 1). This state has not backorder and model 
cost is equal to: 
 

 1
( 1)( , ) ( 1) ( 2) ... 2 ( ) ( )

2
p pC x p A p hD p hD hD hD f l x A hD f l x                

 (6) 

where )(lf t is the convolution of lead-time. The planned lead-time is smaller than to actual lead-time 
(see Fig. 2).  If the finished product is assembled after the due date, there exists backlog. 
In this state, the cost is equal to: 
 

  
2

( ) 1 ( ) ( )( 1)( , ) ( ) ( )
2 2

p l x p l x l x l xC x p A hD P l x bD P l x
                     

 
(7) 

 

 
l 

Fig .3: An illustration of the planning problem when planned lead-time is smaller than to actual lead-time 
 

 
The planned lead time is bigger than the actual lead time (see Fig. 3). In this state, the cost is equal to: 
 

3
( 1)( , ) ( ) ( )

2
p pC x p A hD hpD x l P l x        

 (8) 
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Fig. 4. An illustration of the planning problem when planned lead-time is bigger than the actual lead-time 
 
Objective function for continue distribution  
 
By using Eqs. (6-8), total cost can be expressed as follows: 
 

 1 2 3
( 1)( , ) ( , ) ( , ) ( , ) ( ) ( )

2
( )( 1) ( )(2 1)                                                               ( ) ( )

2 2

p pC x p C x p C x p C x p A hD hpD x l P l x

l x l x hD l x pbD P l x P l x


         

          
 

 

 
(9) 

Then by using Eq. (9), the expressed unit cost will be as follows:  

p
pxCpxC ),(),(ˆ   

  2( 1)ˆ ( , ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2l l

l x l x

A p D DC x p h D h D E x l h b l x f l d h b l x f l d
p p p 

                      (10) 

 
Objective function for discrete  distribution  
 
Then by using Eq. (9), unit cost for discrete distribution is expressed as follows:  
 

  2( 1)ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2l x l x

A p D DC x p h D h D E x l h b l x p L l h b l x p L l
p p p 

                        (11) 

4. Solution procedure 
 
Theorem 2:  The objective function ),(ˆ pxC  in Eq. (10) is convex. 
 
Proof:  
The function ),(ˆ pxC is convex if and only if twice-differentiable function is non-negative. 

2

2

ˆ ( , ) ˆ0 for all ( , )C x p x dom C x p
x


 


 (12) 

In addition, the function ),(ˆ pxC is strictly convex if twice-differentiable function is positive 
 

2

2

ˆ ( , ) ˆ0 for all ( , )C x p x domC x p
x


 


 (14) 

ˆ ( , ) ( ) ( ) ( ) ( ) ( )
2l l

l x l x

C x p D Dh b l x f l d h b f l d
x p p 


       

    (15) 
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2

2

ˆ ( , ) ( ) ( ) l
l x

C x p D h b f l d
px 


  

   (16) 

 
The Eq (10) is positive then, according to Eq (13) the objective function is strictly convex. 
 
Optimal solution for continues distribution 
 
To find the optimal planned lead-time (x) and the optimal periodicity (P), we use differentiate ),(ˆ pxC  
with respect to x and solve the resulted system of equation obtained by equating the derivative to zero 
(see Eq. (13)). 
 

ˆ( , ) ( , )( ) ( ) ( ) ( ) ( ) 0 ( .5) ( )
2l l l

l x l x l x

C x p D D C x p phh b l x f l d h b f l d l x f l d
x p p x h b  

 
            

    


 (16) 

To find p, we let it to have respectively the values 1, 2, and obtain by Eq. (16) the optimal x for each 
value p and x that cause the lowest cost, will be the optimum solution. In the model considered, the 
demand D is constant and the quantities ordered are the same and equal to Dp; so the optimal planned 
lead time x is also the for all orders. Noted that x is planned lead time for pD items and l is actual lead 
time for D items then in the all equation x equal to xp/p which  is planned lead time p periods. 
 
Optimal solution for discrete  distribution 
 
To find the optimal planned lead-time (x) and the optimal, we use 0),1(ˆ),(ˆ),(ˆ  pxCpxCpxC  or 

0),(ˆ),1(ˆ),(ˆ  pxCpxCpxC . 
 
Theorem 3:  the optimal solution for discrete distribution is obtained by: 

)17()()1(
 




xl bh
phlLpxl  

 
The prove of this Theorem is expressed in Appendix C 
  
5. Numerical example 
 
Consider the following data: N= 3, h = 10, b = 100, A=100, D = 10.  The probability distribution for 
all stages is uniform and as follow: 
 
Table 1 
The example input data 
i Distribution ia  ib  
1 )( 1lg  uniform 4 6 
2 )( 2lg  uniform 2 5 
3 )( 3lg  uniform 5 10 
 
By of Eq (5) )(3 lf equal to: 
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The probability distributions of the lead times are reported in Table 1. 
According to Eq (16) have: 

     

         

2 2 2

2 2 2 2 2

1 1( .5) ( ) ( 0.5) ( 11) ( 13) ( 14)
60 60

10( 16) ( 16) ( 18) ( 19) ( 21)
10

l
l x l x

l

phl x f l d l x l l l
h b

pl l l l l d
b

  

 

    

             
           

 

 After that, the optimal lead-times x are obtained by using (16), for each periodicity p.  The results are 
reported in Table 2.  
 
Table 2  
The example output data 

P 1 2 3 4 5 6 
X  18.547 18.007 17.6320 17.332 17.0770 16.853 

px 18.547 36.014 52.896 69.328 85.385 101.118 
ˆ ( , )C x p 409.458 367.5248    372.052     390.976 416.8195    446.7321    

 
The global optimal solution is obtained when p=2 and x=18.007.  The minimum cost is 367.5248. 
Note that for Lot for Lot policy (p=1) the cost is 409.458.  The optimal solution is p=2, x*=18.007 
and C(c, p)*= 367.5248. The order quantity is as follows, 

20102*  DpQ  

The function cost is shown in Fig 5.  
 

Fig. 5.  The cost functions for different values of p 
The answer of this system is dependent to the cost parameters.  For example if  setup cost was very 
small rather than holding cost therefore the lot for lot ordering system is better. Table 3 show the 
optimal solution for varies parameter's cost. 
Table 3  
The optimal solution for varies parameter's cost 
P. No A h b p  x  

* *
px p x   ),(  pxC  

1 100 10 100 2 18.007 36.014  367.5248 
2 500 10 100 5 17.077 85.385  496.8195 
3 1000 10 100 6 16.9 101.4  596.7 
4 10000 10 100 18 1.5 27  1457 
5 100 20 100 2 17.4260 34.852  596.1508 
6 100 40 100 2 16.8 33.6  952.5 
7 100 100 100 3 15.2 45.6  1668.8 
8 100 1000 100 6 11 66  5418 
9 100 10 200 2 18.515 37.03  406.8962 
10 100 10 400 2 18.946 37.892  440.7579    
11 100 10 1000 2 19.416 38.832  477.6658 
12 100 10 10000 2 20.199 40.398  538.792 
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According to the results of Table 3, with increase in the setup cost, the periodic time is increased, but 
the planned lead time is reduced. With increase in holding cost, the periodic time is increased, but the 
planned lead time is reduced. And with increase in back order cost, the periodic time is fixed, but the 
planned lead time is increased. 
 
6. Conclusion 
 
The goal of this paper was to present a model for optimizing the planned lead-time and order 
periodicity for production and assembly systems with random stage procurement times.  The 
proposed model and algorithms minimize the sum of the average holding cost, backlogging product 
and setup cost.  We have assumed that the distributions of lead times in each stage are the same but 
these parameters are different.  By using of convolution concept, the distribution lead-time was 
determined.  Lead time distribution can be having continue or discrete distribution.  Therefore we 
find a close form equation for continue and discrete distribution and by using this equation optimal 
planned lead-time.  This method, also can calculate the cost of the Lot for Lot policy.  The cost of Lot 
for Lot order policy is when P equal to one. In this paper, various problems have been solved to show 
the efficacy of cost parameter's on optimal planned lead-time and periodicity time.  
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Appendix A. proof Eq. (5) 
 
Proof: 
 
For prove this theorem, using of Mathematical induction. 
 
Without loss of generality, we assume that ),(~ iii baUl then )( ilF  is: 
 

  ( )
( ) ,

i

i i
l

i i

x a x b
F x

b a

   



 

 
(18) 

where  )( ibx =  0,)(  ibxMax . In addition, we note that, by convolution, probability density functions 
and distribution functions are related as follows: 
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Claim 1.2 One has 
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Claim 1.3 One has 
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Then according to Mathematical induction theory the Eq. (25) holds for n=k  
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Then we should prove the equation is true for n=k+1. 
 
We proceed by induction.  Claims 1.2 and 1.3 show that Eqs. (24) and (25) hold for n = 1 and n = 2.  
Let us now assume that they hold for n = k and prove that they also hold for n = k+1.  To this purpose 
Eq. (26) with n = k+1 then follows.  To obtain Eq. (27) for n = k we use of Eq(24) and of the just 
obtained expression of )(lFk .  Hence, 
 

1 1 1 1

1
1 1 11

1 1( ) ( 1) ( 1)
( )! ( )!

k k
k k m k k

R R
k i f j

j m j i j f i jk k

f l x a b x b
k A k A
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Appendix B. List of convolutions some of probability distributions (Sheldon, 2002;  Hogg et al., 
2013). 
 
In probability theory, the probability distribution of the sum of two or more independent random 
variables is the convolution of their individual distributions.  The term is motivated by the fact that 
the probability mass function or probability density function of a sum of random variables is the 
convolution of their corresponding probability mass functions or probability density functions 
respectively.  Many well-known distributions have simple convolutions.  The following is a list of 

these convolutions.  Each statement is of the form yx
n

i
i 

1
where nxxx ,...,, 21 are independent and 

identically distributed random variables. In place of ix and y the names of the corresponding 
distributions and their parameters have been indicated. 
 
Discrete distributions 

1
( ) ~ ( , ) 0 1 1,2,...

n

i
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(28) 

 

1 1
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i i

Binomial n p Binomial n p p n
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( , ) ~ ( , ) 0 1 1,2,...

n n

i i
i i

NegativeBinomial n p NegativeBinomial n p p n
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1
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n

i
Geometric p NegativeBinomial n p p n
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i i i
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Poisson Poisson  
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Continuous distributions 
 

2 2
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       (33) 
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2 2

1 1

( ) ~ ( ) 1,2,...
n n

i i i
i i

    
 

   (36) 

1 1 1
( , ) ~ ( , )      , 1

n n n

i i i i i i
i i i

cauchy cauchy     
  

        
(37) 

 
 
Appendix C: The prove of Eq.(17) 
 
By using Eq. (11), ),(ˆ pxC   is expressed  as follow: 
 

 

 

2 2ˆ ˆ ˆ( , ) ( 1, ) ( , ) ( ) ( 1) ( ) ( )
2

                                                ( ) ( 1) ( ) ( )
2

l x

l x

DC x p C x p C x p h D h b l x l x p L l
p

D h b l x l x p L l
p





             

       




 

 

 

 

ˆ( , ) ( ) (2 ( ) 1) ( ) ( ) ( )
2 2

                  ( ) ( 1) ( )

l x l x

l x

D DC x p h D h b l x p L l h b p L l
p p

Dh D h b l x p L l
p

 



             

       

 


 

   ˆ( , ) 0 ( ) ( 1) ( ) 0 ( 1) ( )
l x l x

D h pC x p h D h b l x p L l l x p L l
p h b 


               

   

  

 


