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 In this paper, we evaluate the performance of a supply chains (SCs) under uncertainty with 
different components such as direct costs, operational costs, transaction expenses, order lead 
time, product flexibility and net profit. Data Envelopment Analysis (DEA) can be used for 
measuring the performance of supply chain problems. On the other hand, robust optimization 
approach is a powerful technique for handling problems faced with various environmental 
uncertainties. This paper combines these two concepts and proposes a method to evaluate SCs 
performance. The results of the proposed method, under any different environmental situation, 
show which ranking of SC’s performance is better in a network. The preliminary results of the 
implementation of a real-world case study indicates that the method could be successfully used 
for performance measurement.   
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1. Introduction 

 
Data uncertainty is presented for many real-world optimization problems. For example, in supply chain 
optimization, the actual demand for products, financial returns, actual material requirements and other 
resources are not precisely known when critical decisions need to be made. In engineering and science, 
data is subjected to measurement errors, which also constitute sources of data uncertainty in the 
optimization model. Robust Optimization (RO) is a modeling methodology, combined with 
computational tools to process optimization problems in which the data are uncertain and is only known 
to belong to some uncertainty set. Concepts of robustness and robust design optimization have been 
developed independently in different scientific disciplines, mainly in the fields of operations research 
and engineering design (Ben-Tal & Nemirovski, 1998, 2000) and El-Ghaoui et al. (1998) put a 
significant step forward in RO theory by proposing models for uncertain linear problems with 
ellipsoidal uncertainties and solving the counterparts of the nominal problem in the form of conic 
quadratic problems. Supply Chain Management which appeared in the early 1990s, now playing an 
important role as competitive advantages between firms and global markets in uncertain business 
environment. Supply chain management contains planning and managing production/manufacturing, 
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transportation and distribution products from the first stage of process in preparing and delivering raw 
materials to plants up to delivery of finished products to customers, so SCM wants to do this duty with 
lower cost and higher efficiency in uncertain environments regarding to its elements; facilities, 
suppliers, customers, products and methods of inventory control, purchasing and distribution and their 
connections  in an integrated network; that could be close or open loop. Open loop network in SCM 
has been started from material suppliers and finished by delivering to final customers, but in closed 
loop supply chain (Fig.1), products move from manufacturers to customers, and also there is another 
flow that leads defected products from customers to manufacturers to repair and move back to 
customers. Regarding these conditions and definitions and complexities, supply chain performance 
evaluation is an important fact in improving performance of supply chains. Indeed, the term 
performance evaluation is defined for analyzing and computing the measure of efficiency and 
effectiveness. As a result, the purpose of supply chain efficiency is to evaluate how well we use 
resources along all sections of supply chain to get the best result for business. 

 
 Customers 
 (demands) 
 
 
 
 
 
 
 
 
 
 
 
 

          Customers 
            (Returns) 

 
 
 
 
 
 
 

Fig. 1. A close loop supply chain. 
 
In this paper, we want to evaluate the performance of an integrated supply chain with a Robust data 
envelopment analysis (DEA) model whereas input and output parameters of this model coming from 
uncertain environment. In part 2 we have a review of works which have been implemented on supply 
chain performance evaluation topic under certain or uncertain conditions, a brief introduction to robust 
modeling will be coming in part 3 and in section 4, transforming a linear CCR DEA model to a Robust 
Data Envelopment Analysis model will be defined, in section 5 these models (RDEA and classic DEA) 
will be applied to study supply chains performance evaluation in oil supporting industry via nominal 
and real data. The nominal and real data are addressed and they are taken from the oil supporting 
industry. In section 6 there is a comparison between two models and in section 7 conclusion will be 
presented. 
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2. Literature review  

During the past decade, most studies have been executed on evaluating the performance of specific 
parts of supply chain. Kleinsorge (1992) applied DEA methodology to evaluate the performance of 
different organizations among the supply chain. Chow et al. (1994) proposed the definition and 
measurement method on logistics performance problem. Barbarosoglu and Yazgac (1997), Sinuany-
Stern et al. (2000) and Chan (2003) proposed methods like: Weighted linear methods, Linear 
programming, Analytical Hierarchy Process (AHP), Human Judgment Models, Data Envelopment 
Analysis (DEA), and Balanced Scored Cards (BSC). Ross and Droge (2002) evaluated the performance 
of distribution centers in a supply chain. Easton et al. (2002) evaluated the purchasing section of a 
supply chain and Talluria et al. (2006) evaluated the performance of different suppliers. Wu and Olson 
(2007) proposed a stochastic DEA model and compared it with a Multiple-criteria model in vendor 
selection problem. Wu et al. (2009) used stochastic DEA and Fuzzy DEA to evaluate performance of 
supply chain. In fact, these individual sections of a supply chain usually have different and often 
opposite goals, so we will use an integrated framework to evaluate the performance of all parts of 
supply chain together. During the recent years, robust optimization approach has been applied in some 
application areas such as inventory management and portfolio selection by researchers (e.g. Adida & 
Perakis, 2006; El-Ghaoui et al., 1998; Gabrel et al., 2012; Amin & Zhang, 2012). Sadjadi et al. (2011) 
presented a new method, which incorporates the robust counterpart of super-efficiency DEA. The 
perturbation and uncertainty in data is assumed as ellipsoidal set and the robust super-efficiency DEA 
model is extended. Chiang and Che (2010) applied the fuzzy AHP and fuzzy DEA to develop an 
evaluation and ranking methodology, assisting decision makers to select NPD projects with 
development potential and high added value which  helps  a company determine the direction of NPD 
for the future. 
 
Khezrimotlagh et al. (2013) suggested a robust mixed integer linear programming based on the model 
developed earlier by Kourosh and Arash Method (KAM). The proposed linear model, integer-KAM 
(IKAM), has almost all capabilities of the linear KAM and significantly removes the shortcomings in 
the current MILPs. Mahmoudzadeh et al. (2013) developed a dynamic production/pricing problem, in 
which decisions should be made in each period confronting with uncertain demand and return. Sadjadi 
and Omrani (2008) proposed a DEA model with uncertain data for performance assessment of 
electricity distribution companies. Sadjadi and Omrani (2010) presented a robust data envelopment 
analysis (BRDEA) model for measuring the efficiency of telecommunication companies. Sadjadi et al. 
(2011) presented an interactive robust data envelopment analysis (IRDEA) model to determine the 
input and output target values of electricity distribution companies with considering the existence 
perturbation in data. Sadjadi et al. (2012) also showed a new portfolio modeling approach with 
uncertain data, which also used different robust optimization techniques. Finally the proposed model 
have been solved using genetic algorithm. 
 
Sadjadi et al. (2014) proposed a capacitated multi-echelon, multi-product reverse logistic network 
design with fuzzy returned products in which both locations of the treatment activities and facilities 
were decision variables. Sadjadi et al. (2012) considered the project critical path problem in an 
environment with hybrid uncertainty. In this environment, the duration of activities were considered as 
random fuzzy variables that have probability and fuzzy natures, simultaneously. To obtain a robust 
critical path with this kind of uncertainty a chance constraints programming model was used. Soltani 
and Sadjadi  (2010) proposed two hybrid meta-heuristics—hybrid simulated annealing and hybrid 
variable neighborhood search—to solve cross-docking system by achieving the best sequence of truck 
pairs.Because cross-docking system problem is NP-hard. 
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3. Robust optimization approach for uncertain data 

In this section uncertainty construction and its robust approach will be discussed: 
 
Uncertainty construction: 
 
Consider the following problem subject to data uncertainty: 
 
min cx  
subject to (1) 
     Ax≤ b  
     L≤x≤ 𝑢𝑢  

 

In model (1) c is coefficient vector of x, x is the vector of decision variables. We assume without any 
loss of generality that data uncertainty only affects the elements in matrix A, then we model data 
uncertainty in A as follows: 
 
Each uncertain coefficient 𝑎𝑎𝑖𝑖𝑖𝑖 belongs to an interval, centered at its nominal value 𝑎𝑎�𝑖𝑖𝑖𝑖 and half length   
𝑎𝑎�𝑖𝑖𝑖𝑖, but its exact value is unknown. It is unusual to assume that all coefficients are equal to their worst-
case value; the worst-case value for all parameters; leads to the worst amount of cost. Hence, we wish 
to adjust the uncertainty level of the solution, so a reasonable trade-off between robustness, 
performance and costs will be achieved.  To quantify this concept in mathematical terms, we define the 
scaled deviation of parameter 𝑎𝑎𝑖𝑖𝑖𝑖 from its nominal value as 𝑧𝑧𝑖𝑖𝑖𝑖 = (𝑎𝑎𝑖𝑖𝑖𝑖 −  𝑎𝑎�𝑖𝑖𝑖𝑖)/𝑎𝑎�𝑖𝑖𝑖𝑖. The scaled deviation 
takes a value in interval   [−1, 1]. Moreover, we impose budget of uncertainty such as: The total (scaled) 
variation of the parameters cannot exceed threshold Γ, (not necessarily integer):          ∑ �𝑧𝑧𝑖𝑖𝑖𝑖�(𝑖𝑖,𝑗𝑗)𝜖𝜖𝜖𝜖 ≤ Γ 
where J is the set of indices of uncertain parameters. By taking Γ = 0(Γ =  |J|) we obtain the nominal 
(worst) case. Sim (2004) showed that varying the threshold  Γ in (0,|J| ) allows greater flexibility to 
build a robust model without affecting the optimal cost. 

The robust approach  

Let  Λ= �
AϵR �𝑎𝑎𝑖𝑖𝑖𝑖  ϵ�𝑎𝑎�ij − 𝑎𝑎�ij , 𝑎𝑎�ij + 𝑎𝑎�ij�∀ i, j

∑ �𝑎𝑎𝑖𝑖𝑖𝑖−𝑎𝑎�ij�
𝑎𝑎�ij(𝑖𝑖,𝑗𝑗)𝜖𝜖𝜖𝜖 ≤ Γ

�. The robust problem is then formulated as follows, 

min 𝒄𝒄𝒄𝒄  
subject to  
𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏            ∀𝐴𝐴 ∈ 𝛬𝛬 (2) 
𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑢𝑢  

 

Theorem 1 (Ben Tal, 1998): uncertain linear programming problem (2) has the following robust linear 
counterpart: 
 

min 𝒄𝒄𝒄𝒄  
subject to  

�𝑎𝑎�𝑖𝑖𝑖𝑖  𝑥𝑥𝑗𝑗
𝑗𝑗

 +  𝑞𝑞𝑖𝑖𝛤𝛤 +  � 𝑟𝑟𝑖𝑖𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖        ∀𝑖𝑖
𝑗𝑗:(𝑖𝑖,𝑗𝑗)𝜖𝜖𝜖𝜖

 
 

𝑞𝑞𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 𝑎𝑎�𝑖𝑖𝑖𝑖  𝑦𝑦𝑗𝑗                                          ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐽𝐽 (3) 

−𝑦𝑦 ≤ 𝑥𝑥 ≤ 𝑦𝑦                 𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑢𝑢    

𝑞𝑞 ≥ 0, 𝑟𝑟 ≥ 0,𝑦𝑦 ≥ 0.  

Proof: [Sim]. 
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The above robust counterpart has the same class as the nominal problem, that is, a linear programming 
, also if in the original problem (2), some of the variables have been constrained to be integers, then the 
robust counterpart (3) will have the same properties, i.e., the robust counterpart of a mixed integer 
programming problem will be a mixed integer too. 

Notation: 

Indices  
I input index of each SC i = 1,2,3,4. 
R output index of each SC r = 1, 2, 3. 
J SC (Supply Chain) index (DMU) j = 1, … , 10. 

Parameters 
𝑋𝑋𝑖𝑖𝑖𝑖 value of input i for SC j 
𝑌𝑌𝑟𝑟𝑟𝑟 value of output r for SC j 
𝛤𝛤𝑖𝑖𝑥𝑥 risk level of input parameters for constraint i 
𝛤𝛤𝑟𝑟
𝑦𝑦 risk level of output parameters for constraint r 

𝑥𝑥�𝑖𝑖𝑖𝑖 maximum deviation from 𝑥𝑥𝑖𝑖𝑖𝑖 
𝑦𝑦�𝑟𝑟𝑟𝑟 maximum deviation from 𝑦𝑦𝑟𝑟𝑟𝑟 

Variables 
𝜃𝜃𝑜𝑜 Optimal efficiency value for SCo  
𝜆𝜆𝑗𝑗 Efficiency of SCj 
𝑧𝑧𝑖𝑖𝑥𝑥,𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥 ,𝑦𝑦𝑗𝑗𝑥𝑥 Dual variables for input constraints in robust modeling, proof [1]. 
𝑧𝑧𝑟𝑟
𝑦𝑦,𝑝𝑝𝑟𝑟𝑟𝑟

𝑦𝑦 ,𝑦𝑦𝑗𝑗
𝑦𝑦 Dual variables for output constraints in robust modeling, proof [1]. 

4. Robust optimization construction for DEA model 

As we know, DEA models ranks alternatives based on some criteria. We assume each supply chain as 
a DMU (Decision Making Unit) and with respect to inputs and outputs of each SC we will decide which 
SC (Supply Chain) is more efficient than the others. For better determining outputs and inputs, we 
should use a SC performance index system. There are lots of different studies about SC performance 
index system like Lummus and Vokurka (1999) who used a 4 index system and PRTM (2000); an 
authoritative supply chain research organization; put 11 indexes in SCOR (Supply Chain Operations 
Reference) model. Regarding to above studies and rules of DEA the SC performance index system 
which will be used here has been shown in Table 1. 
 
Table 1  
Input-output evaluation index system for each SC 

Factors First index system Name of index Unit of index 

Input 
Cost 

Direct costs $ 
Operation costs $ 
Transaction expenses $ 

Time Order lead time Day 
HR Total volume of employees Person 

Output 

Flexibility Product flexibility No dimension 
Delivery flexibility 1/day 

Financial Sales volume $ 
Net profit $ 

Service Order fulfillment rate % 
Percentage of on time delivery % 

 
In this paper, we use CCR DEA model and changed it to a robust model. 
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𝑚𝑚𝑚𝑚𝑚𝑚 𝜃𝜃𝑜𝑜  
 
subject to 
 

 

�𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗

𝜆𝜆𝑗𝑗 ≤ 𝜃𝜃𝑜𝑜𝑥𝑥𝑖𝑖𝑖𝑖              ∀𝑖𝑖 (4) 

�𝑦𝑦𝑟𝑟𝑟𝑟
𝑗𝑗

𝜆𝜆𝑗𝑗 ≤   𝑦𝑦𝑟𝑟𝑟𝑟                ∀𝑟𝑟 
 

𝜆𝜆𝑗𝑗 ≥ 0  
 
In model (4), 𝑋𝑋𝑖𝑖𝑖𝑖 is the parameter of input i for SCj, and 𝑌𝑌𝑟𝑟𝑟𝑟 is the parameter of output r for SC j. 
 
Robust counterpart model for CCR of DEA models 
 
𝑴𝑴𝑴𝑴𝑴𝑴   𝜽𝜽𝒐𝒐 
 

(5) 

subject to 
 

 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗 𝜆𝜆𝑗𝑗 +  𝑧𝑧𝑖𝑖𝑥𝑥. Γix  +  ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗𝐽𝐽𝑖𝑖 . 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝜃𝜃𝑜𝑜. 𝑥𝑥𝑖𝑖𝑖𝑖                      ∀𝑖𝑖   (6) 

�𝑦𝑦𝑟𝑟𝑟𝑟
𝑗𝑗

𝜆𝜆𝑗𝑗 +  𝑧𝑧𝑟𝑟
𝑦𝑦. Γr

y  +  �𝑝𝑝𝑟𝑟𝑟𝑟
𝑦𝑦

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

≤   𝑦𝑦𝑟𝑟𝑟𝑟                                 ∀𝑟𝑟 (7) 

𝑧𝑧𝑖𝑖𝑥𝑥  + 𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥 ≥ 𝑥𝑥�𝑖𝑖𝑖𝑖  .𝑦𝑦𝑗𝑗𝑥𝑥                                                                    ∀ (𝑖𝑖, 𝑗𝑗)𝜖𝜖 𝐽𝐽𝑖𝑖  (8) 
𝑧𝑧𝑟𝑟
𝑦𝑦 + 𝑝𝑝𝑟𝑟𝑟𝑟

𝑦𝑦 ≥ 𝑦𝑦�𝑟𝑟𝑟𝑟 .𝑦𝑦𝑗𝑗
𝑦𝑦                                                                    ∀ (𝑟𝑟, 𝑗𝑗)𝜖𝜖 𝐽𝐽𝑟𝑟 (9) 

−𝑦𝑦𝑗𝑗𝑥𝑥 ≤ 𝜆𝜆𝑗𝑗 ≤   𝑦𝑦𝑗𝑗𝑥𝑥                                                                        ∀𝑗𝑗 (10) 
−𝑦𝑦𝑗𝑗

𝑦𝑦 ≤ 𝜆𝜆𝑗𝑗 ≤   𝑦𝑦𝑗𝑗
𝑦𝑦                                                                        ∀𝑗𝑗 (11) 

𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥 ≥ 0                                                                                         ∀ (𝑖𝑖, 𝑗𝑗)𝜖𝜖 𝐽𝐽𝑖𝑖 (12) 
𝑝𝑝𝑟𝑟𝑟𝑟
𝑦𝑦 ≥ 0                                                                                        ∀ (𝑟𝑟, 𝑗𝑗)𝜖𝜖 𝐽𝐽𝑟𝑟 (13) 
𝑦𝑦𝑗𝑗𝑥𝑥,𝑦𝑦𝑗𝑗

𝑦𝑦 , 𝜆𝜆𝑗𝑗 ≥ 0                                                                           ∀𝑗𝑗 (14) 
𝑧𝑧𝑖𝑖𝑥𝑥 ≥ 0                                                                                         ∀𝑖𝑖  (15) 
𝑧𝑧𝑟𝑟
𝑦𝑦 ≥ 0                                                                                         ∀𝑟𝑟 (16) 

In constraints (6) and (7) the terms  𝑧𝑧𝑖𝑖𝑥𝑥. Γix and 𝑧𝑧𝑟𝑟
𝑦𝑦. Γr

y indicate risk levels and the terms  ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗𝐽𝐽𝑖𝑖 . 𝑥𝑥𝑖𝑖𝑖𝑖 
and ∑ 𝑝𝑝𝑟𝑟𝑟𝑟

𝑦𝑦
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  indicate dual values of coefficients which addressed as uncertainty. Eqs. (8) to (16) are 

dual constraints. The proof is in given by Sim (2004), pages 1 to 28. 

5. Numerical example 

For efficiency evaluation of our proposed model, we have solved some numerical examples. Here is an 
example of a supply chain network from oil facility supporting industry, which includes 10 supply 
chains as subsystems. Each supply chain has some inputs and outputs. Our purpose is to evaluate the 
performance of these supply chains under uncertain environment terms to determine which of them are 
more efficient in different situations and rank these suppliers regarding to these uncertain conditions. 
First, we model the supply chain network for both deterministic CCR model and Robust DEA model 
under nominal data, the results are indicated in Table 3 and Input and output Nominal data of ten supply 
chains from oil facility supporting industry are shown in Table 2. Then for each value of 𝛤𝛤 (Risk level 
or deviation value of nominal data), we solve problem under real data by using; [𝑎𝑎�ij - 𝑎𝑎�ij, 𝑎𝑎�ij + 𝑎𝑎�ij]; 
interval and generating real data for each uncertain𝑎𝑎𝑖𝑖𝑖𝑖. As mentioned in introduction part, nominal data 
𝑎𝑎�ij and its interval 𝑎𝑎�ij are taken from an oil facility supporting industry. 
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 Table 2  
Nominal data for inputs-outputs 

 Corresponding random distribution Parameter Corresponding random distribution Parameter 
 Uniform ( 1,10) y1j Uniform ( 1600,2200) x1j 
 Uniform ( 5000,8000) y2j Uniform ( 500,700) x2j 
 Uniform ( 1500,2300) y3j Uniform ( 800,1000) x3j 
   Uniform ( 20,40) x4j 

 
In Table 2: X1j denotes direct costs, X2j denotes operational costs, X3j shows transaction expenses, X4j 
denotes order lead time, Y1j denotes product flexibility, Y2j is delivery flexibility and Y3j shows net 
profit. We used the constant value for 𝛤𝛤i to get more realistic results, such that if 𝛤𝛤i=4 then from 10 
coefficient of each constraint, just 4 coefficient are uncertain, and when 𝛤𝛤i=10, it means all coefficients 
of each constraint are uncertain .It should be considered that our proposed model indicates performance 
of supply chains in more real situations by varying parameters and determining which arrangement of 
supply chains will be more appropriate and efficient in supply chain network.  
 

Table 3  
DMUs efficiency under nominal data 

 CCR model Robust model in different level of uncertainty 
Γi=0 Γi =1 Γi =2 Γi =3 Γi =4 Γi =5 Γi =6 Γi =7 Γi =8 Γi =9 Γi =10 

dmu01 1 1 1 1 0.98 0.98 0.98 1 1 1 1 
dmu02 0.33 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 
dmu03 1 0.99 1 0.99 0.99 0.98 0.98 0.98 0.99 0.99 0.99 
dmu04 1 1 1 1 1 1 1 1 1 1 1 
dmu05 0.82 0.84 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 
dmu06 0.56 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 
dmu07 1 0.96 0.96 0.95 0.95 0.96 0.95 0.96 0.96 0.96 0.96 
dmu08 1 0.98 1 1 1 1 1 1 1 1 1 
dmu09 1 1 1 1 1 0.99 1 1 1 1 1 
dmu10 0.73 0.89 0.86 0.89 0.96 0.93 0.96 0.93 0.93 0.93 0.86 

 
6. Comparison between CCR and ROBUST DEA model 
 

In this part, we compare the performance between CCR and ROBUST DEA model. In the rest of the 
section, (𝛤𝛤i=0) represents CCR model which in table number 3, 4, 5 CCR model specified in a particular 
column and in Table 7, first row i.e. (𝛤𝛤i=0) represents existing CCR model. After modeling and solving 
several problems in uniform data mentioned in Table 2, by using OR software, we have DMUs ranking 
(descending) based on CCR model (𝛤𝛤i=0) regarding to Table 3 such as: 
 
DMU01≡DMU03≡DMU04≡DMU07≡DMU08≡DMU09 > DMU05 > DMU10 > DMU06 > DMU2 
 

It means the performance of SC number 1,3,4,7,8 and 9 is equal. It is perceived that ranking of DMUs 
changes by varying 𝛤𝛤i. In Table 3 for each 𝛤𝛤i=j (j=0, 1,…, 10), we generate data in range of [𝑎𝑎�ij - 𝑎𝑎�ij, 
𝑎𝑎�ij + 𝑎𝑎�ij], 20 times randomly. In Table 4, the mean of efficiency of each SC (DMU) under every 𝛤𝛤i =j 
(j=0, 1,…, 10) for twenty time realizations have been computed, then in Table 5 these efficiencies have 
been sorted in non-increasing order. In Table 5, for better understanding we resort Table 5 regarding to 
DMU’s performance for each level of uncertainty 𝛤𝛤i =j (j=0, 1,…, 10).  
 
Table 4  
Mean efficiency of SCs based on real data 

 Γi=0 Γi =1 Γi =2 Γi =3 Γi =4 Γi =5 Γi =6 Γi =7 Γi =8 Γi =9 Γi =10 
dmu01 0.768 0.786 0.798 0.85 0.848 0.848 0.846 0.844 0.836 0.836 0.848 
dmu02 1 0.878 0.924 0.94 0.952 0.95 0.948 0.948 0.948 0.95 0.948 
dmu03 0.906 0.93 0.952 0.952 0.944 0.944 0.942 0.946 0.946 0.944 0.942 
dmu04 0.96 0.964 0.964 0.96 0.97 0.972 0.964 0.972 0.972 0.958 0.966 
dmu05 0.944 0.918 0.924 0.956 0.952 0.952 0.952 0.952 0.952 0.946 0.952 
dmu06 0.926 0.858 0.85 0.858 0.844 0.844 0.844 0.844 0.844 0.84 0.844 
dmu07 1 0.936 0.974 0.976 0.984 0.984 0.982 0.984 0.982 0.982 0.984 
dmu08 0.772 0.762 0.784 0.792 0.788 0.79 0.768 0.788 0.786 0.788 0.788 
dmu09 0.936 0.94 0.948 0.95 0.95 0.952 0.94 0.948 0.952 0.952 0.948 
dmu10 0.898 0.878 0.876 0.896 0.896 0.896 0.892 0.896 0.896 0.894 0.896 
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Table 5  
Mean ordered efficiency of SCs in table 5 for each 𝛤𝛤i=j (j=0,1,…,10)   

 Γi=0 Γi =1 Γi =2 Γi =3 Γi =4 Γi =5 Γi =6 Γi =7 Γi =8 Γi =9 Γi =10 

DMUi 

1 0.964 0.974 0.976 0.984 0.984 0.982 0.984 0.982 0.982 0.984 
1 0.94 0.964 0.96 0.97 0.972 0.964 0.972 0.972 0.958 0.966 
0.96 0.936 0.952 0.956 0.952 0.952 0.952 0.952 0.952 0.952 0.952 
0.944 0.93 0.948 0.952 0.952 0.952 0.948 0.948 0.952 0.95 0.948 
0.936 0.918 0.924 0.95 0.95 0.95 0.942 0.948 0.948 0.946 0.948 
0.926 0.878 0.924 0.94 0.944 0.944 0.94 0.946 0.946 0.944 0.942 
0.906 0.878 0.876 0.896 0.896 0.896 0.892 0.896 0.896 0.894 0.896 
0.898 0.858 0.85 0.858 0.848 0.848 0.846 0.844 0.844 0.84 0.848 
0.772 0.786 0.798 0.85 0.844 0.844 0.844 0.844 0.836 0.836 0.844 
0.768 0.762 0.784 0.792 0.788 0.79 0.768 0.788 0.786 0.788 0.788 

 
Table 6  
Final ranking of SCs efficiency based on real data 
Γi Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 Rank8 Rank9 Rank10 
0 7,2 4 5 9 6 3 10 8 1  
1 4 9 7 3 5 2,10 6 1 8  
2 7 4 3 9 5,2 10 6 1 8  
3 7 4 5 3 9 2 10 6 1 8 
4 7 4 2,5 9 3 10 1 6 8  
5 7 4 5,2 9 3 10 1 6 8  
6 7 4 5 2 3 9 10 1 6 8 
7 7 4 5 2,9 3 10 6,1 8   
8 7 4 5,9 2 3 10 6 1 8  
9 7 4 9 2 5 3 10 6 1 8 
10 7 4 5 2,9 3 10 1 6 8  

 
In Table 4, uncertain parameters in each constraint have been determined by 𝛤𝛤i that could be in [0, 10]. 
In Table 6, each cell denotes the number of supply chain(s) in a particular rank and level. As it's obvious 
in Table 6, by increasing uncertainty level (increasing 𝛤𝛤i); i.e. increasing number of uncertain 
parameters; the final ranking of supply chains efficiency goes to: 
DMU07 > DMU04 > DMU05 > DMU09 > DMU02 > DMU03 > DMU10 > DMU06 > DMU01 > DMU08 

This result will be shown in Fig. 2: 

 
Fig. 2. Supply chain ranking in different level of uncertainty 

 

Meanwhile, it should be considered that in each level of uncertainty of Table 6, we are able to determine 
the best ranking of DMUs. For example, if 𝛤𝛤i=5, i.e. there are 5 uncertain parameters in each constraint, 
then ranking of DMUs would be: 
DMU07 > DMU04 > DMU05 > DMU02 > DMU09 > DMU03 > DMU10 > DMU01 > DMU06 > DMU08 
Or 
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DMU07 > DMU04 > DMU02 > DMU05 > DMU09 > DMU03 > DMU10 > DMU01 > DMU06 > DMU08 

7. Conclusions 

This paper has presented a robust data envelopment analysis model to evaluate supply chain 
performance. In this paper, we had a supply chain network where its data came from an oil facility 
supporting industry. In every SC, there are some input-output parameters, which have been considered 
under uncertainty. As a DEA model, every supply chain is assumed like a Decision Making Unit 
(DMU). We have applied a SC performance index system to determine input-output parameters 
indicated. Our proposed model not only determined the appropriate rank of DMUs in each 
environmental under uncertainty level, but also was able to offer a robust ranking of DMUs which was 
capable of providing a suitable performance in any different level of uncertainties. As a comparison, 
there is a ranking of SC’s efficiency based on real world data given in Table 6, the first row i.e. (𝛤𝛤i=0) 
shows the inflexible CCR DEA model ranking of  DMUs on any level of uncertainty, but our robust 
model gives us different ranking in any level of uncertainty. Obviously, the result of this research will 
be useful in strategic decision making in SCN (Supply Chain Network) for determining the most 
efficient suppliers. The considered problem is in initial stage of investigation and future researches can 
be accomplished based on the results of this paper, such as combining the other robust optimization 
approaches whit classical DEA models, especially for non-linear DEA models. Also some new DEA 
models like Rough DEA model could be integrated with robust optimization approach to evaluate 
DMUs with uncertain parameters.  
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